Мехмат МГУ. Программа курса Алгоритмические методы в теории сложности. (А.Е. Ромащенко, весна 2013).

- 1. Формальное определение понятия *алгоритм*. Алгоритмически разрешимые и алгоритмически неразрешимые задачи.
 - Формализация понятия «эффективный алгоритм». Определение сложностных классов P, BPP, RP, PSPACE.
 - Теоремы об иерархии по времени и памяти (для детерминированных вычислений).
 - Понятие переборной задачи.
- 2. Недетерминированные вычисления.
 - Два эквивалентных определения класса NP.
 - Сводимость по Карпу, понятие NP-полнота.
 - Теорема Кука-Левина: NP-полнота задач выполнимость и 3-КНФ.
- 3. Леммы об изоляции и их применение.
 - Две леммы об изоляции.
 - Вероятностный алгоритм поиска соврешенного паросочетания в двудольном графе по работе Вазирани—Вазирани—Малмалея (Vazirani—Vazirani—Mulmuley).
 - Вероятностный полиномиальный алгоритм сведения задачи о выполнимости булевой формулы к задаче о булевой формуле с единственным выполняющим набором.
 - Вероятностное сведения задачи о существовании в графе клики данного размера к задаче о существовании единственной клики данного размера.
 - Вероятностное сведение задачи SAT к задаче \oplus SAT.
 - Полиномиальная иерархия. Сложностной класс #Р. Теорема Тода (Seinosuke Toda).
- 4. Интерактивные доказательства.
 - Интерактивные доказательства с открытыми и секретными случайными битами. Определение сложностных классов IP и AM.
 - Игра Артура и Мерлина для задачи неизоморфизм графов. Игра Артура и Мерлина для той же задачи с односторонней ошибкой.
 - Доказательство IP[poly] = AM[poly] методом Килиана (Joe Kilian).
 - Определения доказательства с нулевым разглашением.
 - Доказательство с нулевым разглашением для задачи *изоморфизм* графов.

5. Ветвящиеся программы.

Теорема Баррингтона (David A. Barrington): если для булевой функции существует булева схема глубины d, то её можно вычислить ветвящейся программой ширины 5 и длины $L < 4^d$.

Следствие: Если функция вычислима булевой схемой логарифмической глубины, то эта функция вычислима ветвящейся программой полиномиальной длины ширины 5.

- 6. Метод самосводимости.
 - Самосводимость языка SAT. Теорема Махейни (Stephen Mahaney).
 - Эквивалентность существования NP-полного тощего множества и равенства P = NP. Эквивалентность существования NP-полного разреженного множества и равенства P = NP.
 - Вычисление с логарифмической памятью. Самосводимость задачи достижимости на ориентированном графе (достижима ли вершина t из вершины s за $\leq k$ шагов).
 - Теорема Сэвича (Walter Savitch): $\mathsf{Space}(f(n)) \subset \mathsf{Space}(f^2(n))$. Следствие: $\mathsf{NPSPACE} \subset \mathsf{NPSPACE}$.
 - Теорема Фортноу (Lance Fortnow): не существует алгоритма, решающего задачу SAT за время $n^{1+o(n)}$ с использованием памяти $O(\log n)$.

Список литературы

- [1] Michael Sipser. Introduction to the theory of computation. CENGAGE Learning Custom Publishing, 2012.
- [2] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. Cambridge, 2009.
- [3] Lane A. Hemasphaandra, Mitsunori Ogihara. The Complexity Companion. Springer, 2002.
- [4] Ketan Mulmuley, Umesh V. Vazirani. Vijay V. Vazirani. Matching as Easy as Matrix Inversion. Combinatorica, Volume 7, Issue 1, pp. 105–113, 1987.
- [5] S. P. Vadhan. A Study of Statistical Zero-Knowledge Proofs. PhD thesis, Massachusetts Institute of Technology, 1999.
- [6] O. Goldreich. Foundations of Cryptography, Volumes 1 and 2. Cambridge University Press, 2001, 2004.