ФИВТ МФТИ, весна 2014. Специальности ПМФ и ПМИ.

Краткие заметки по курсу Математическая логика и теория алгоритмов. Часть третья: лямбда-исчисление. (А.Е. Ромащенко).

Краткий конспект для студентов, слушавших лекции курса и посещавших семинары на факультете ИВТ Физтеха.

1 Введение и мотивировки

На лекции мы обсуждали

- *прямую польскую нотацию* для логических, арифметических и алгебраических выражений;
- лямбда-обозначение для описания функций;
- каррирование (карринг) как способ описания функции нескольких переменных.

2 Основные определения

Мы дали определение

- λ -терма,
- области действия квантора в λ -терме,
- свободные и связанные переменные,
- \bullet комбинаторы (замкнутые λ -термы).

Мы договорились о стандартном правиле сокращения записи: мы обычно опускаем внешние скобки λ -терма; кроме того, мы пишем

- ABC вместо (AB)C,
- $\lambda x.AB$ вместо $\lambda x.(AB)$ и
- $\lambda xy.A$ вместо $\lambda x.(\lambda y.A)$.

Далее мы ввели основные операции на λ -термах:

- α-конверсию,
- β -редукцию,
- η-редукцию.

Каждое из этих трёх преобразований определялось индукцивно (индукция по построению терма).

Мы договорились называть *нормальной формой* такой λ -терм, к которому нельзя применить ни одну из редукций (даже если предварительно применить одну или несколько α -конверсий).

Мы определили равенство λ -термов: термы A и B считаются равными, если существует такая последовательность λ -термов C_0, C_1, \ldots, C_n , где терм C_0 совпадает с A, терм C_n совпадает с B, и для каждого $i=0,\ldots,n-1$ либо терм C_i можно преобразовать в C_{i+1} с помощью α -конверсий, β -редукций и η -редукций, либо, наоборот, терм C_{i+1} можно преобразовать в C_i с помощью α -конверсий, β -редукций и η -редукций. Другими словами, термы A и B считаются равными, если A можно преобразовать в B, совершив последовательность операций, каждая их которых является либо α -конверсией, либо β - или η -редукцией, либо преобразованием, обратным к β - или η -редукции.

3 О приведении к нормальной форме

Некоторые λ -термы сами не являются нормальными формами, однако их можно *привести к нормальной форме* (превратить в терм, являющийся нормальной формой, применив последовательность α -конверсий, β -редукций и η -редукций). Бывают и термы, которые невозможно привести к нормальной форме.

Теорема Чёрча—Россера. Если λ -терм A с помощью последовательности α -конверсий, β -редукций и η -редукций можно преобразовать в терм B и в терм C, то существует такой терм D, что B и C в свою очередь можно преобразовать в D с помощью α -конверсий, β -редукций и η -редукций. [без доказательства]

Следствие 1. Если λ -терм A равен некоторому λ -терму B, являющемуся нормальной формой, то A можно преобразовать в B с помощью последовательности α -конверсий, β -редукций и η -редукций (не применяя операции, обратные к редукциям).

Следствие 2. Если λ -терм A равен двум λ -термам B и C в нормальной форме, то B и C можно преобразовать друг в друга последовательностью α -конверсий. (Другими словами, нормальная форма для λ -терма A определена однозначно с точностью до переименования связанных переменных.)

4 Кодирование логических операций и структуры данных в λ -исчислении

Мы договорились кодировать ucmuny и noж комбинаторами $\lambda xy.x$ и $\lambda xy.y$ соответственно. Мы нашли комбинаторы, представляющие в λ -исчислении операции kon ko

Мы условились кодировать упорядоченную пару комбинаторов $\langle A, B \rangle$ в виде комбинатора $\lambda f.fAB$. Мы построили комбинатор **Pair** такой, что

Pair
$$AB = \lambda f. fAB$$
.

Также мы построили комбинаторы First и Second такие, что

$$\mathbf{First} (\lambda f. fAB) = A$$

И

Second
$$(\lambda f. fAB) = B.$$

5 Арифметика в λ -исчислении

Мы кодируем в λ -исчислении натуральные числа с помощью *нумералов* Чёрча:

$$\underline{0} = \lambda f x.x, \ \underline{1} = \lambda f x.f x, \ \underline{2} = \lambda f x.f(f(x)), \ \underline{3} = \lambda f x.f(f(f(x))), \dots$$

Мы построили комбинаторы, представляющие в λ -исчислении функции npu-бавления единицы, сложения, умножения, возведения в степень.

С помощью «трюка Клини» мы построили комбинатор представляющий функцию вычитания единицы. Из неё мы получили комбиантор, представляющий функцию модифицированного вычитания

$$\operatorname{sub} n\, m = \left\{ \begin{array}{ll} n-m, & \operatorname{если} \, n \geq m \\ 0, & \operatorname{иначе}. \end{array} \right.$$

6 Рекурсивное программирование

Мы построили комбинатор Y (комбинатор неподвижной точки) такой, что для любого комбинатора F для уравнения

$$X = F X$$

терм $X=Y\,F$ является решением. Другими словами, для любого F выполнено равенство

$$YF = F(YF).$$

На лекциях и семинарах с помощью комбинатора неподвижной точки мы научились строить комбинаторы, представляющие различные арифметические функции с «рекурсивным» определением — факториал, n-ое число Фибоначчи, и т.п.

7 Представление произвольных функций в λ -исчислении

Говорят, что комбинатор F представляет в λ -исчислении (частичную) функцию $f: \mathbb{N}^k \to \mathbb{N}$, если для любых чисел n_1, \ldots, n_k комбинатор $(F \, \underline{n_1} \, \underline{n_2} \, \ldots \, \underline{n_k})$ равен нумералу Чёрча для числа $f(n_1, \ldots, n_k)$, если значение $f(n_1, \ldots, n_k)$ определено, и не имеет нормальной формы в противном случае.

Теорема. Все вычислимые функции (и только они) представимы в λ -исчислении. [без доказательства]

Список литературы

- [1] Барендрегт Х. Ламбда-исчисление. Его синтаксис и семантика. Пер. с англ. М.: Мир, 1985.
- [2] eter Selinger, Lecture notes on the lambda calculus. http://arxiv.org/abs/0804.3434
- [3] chim Jung, A short introduction to the Lambda Calculus. http://www.cs.bham.ac.uk/axj/pub/papers/lambda-calculus.pdf
- [4] enk Barendregt, Erik Barendsen, Introduction to Lambda Calculus. https://files.nyu.edu/cb125/public/Lambda/barendregt.94.pdf
- [5] awrence Paulson. Foundations of Functional Programming. http://www.cl.cam.ac.uk/lp15/papers/Notes/Founds-FP.pdf