Московский физико-технический институт Факультет инноваций и высоких технологий Математическая логика и теория алгоритмов, весна 2013 Задачи для работы над ошибками к контрольной работе номер 1.

- **1.** (а) Упорядочьте по возрастанию ординалы $(1+\omega)\cdot(\omega+1), (\omega+1)\cdot(1+\omega), (\omega+1)^2, \omega^2, \omega^3, \omega^{2^{\omega}}, \omega^{3^{\omega}}$. Укажите, какие из этих ординалов равны друг другу.
- (б) Упорядочьте по возрастанию ординалы $(1+\omega)\cdot(\omega+\omega), (\omega+\omega)\cdot(1+\omega), (\omega+1)\cdot\omega, (\omega+1)\cdot(\omega+1), \omega^2, \omega^{\omega^2}, \omega^{\omega^3}$. Укажите, какие из этих ординалов равны друг другу.
- (в) Найдите в \mathbb{R} (со стандартным линейным порядком) такие подмножества чисел, порядки на которых изоморфны $\omega + \omega + \omega$, ω^3 , $\omega^2 + \omega + 2$, $(\omega + 1) \cdot (1 + \omega)$.
- (г) Найдите в \mathbb{R} (со стандартным линейным порядком) такие подмножества чисел, порядки на которых изоморфны ω^2 , $1+\omega+\omega+1$, $(\omega+1)^2+\omega+2$, $\omega\cdot(\omega+10)$. (д) Сравните ординалы $2^{\omega^2}+\omega^3+7$ и $\omega^3+2^{\omega^2}+7$; найдите в \mathbb{R} (со стандартным
- (д) Сравните ординалы $2^{\omega^2} + \omega^3 + 7$ и $\omega^3 + 2^{\omega^2} + 7$; найдите в \mathbb{R} (со стандартным линейным порядком) такие подмножества чисел, порядки на которых изоморфны этим ординалам.
- (е) Сравните ординалы $\omega^{\omega^3} + \omega^4 + 2$ и $\omega^4 + \omega^{\omega^3} + 2$; найдите в \mathbb{R} (со стандартным линейным порядком) такие подмножества чисел, порядки на которых изоморфны этим ординалам.
- **2.** (a) Приведите пример такой счётной цепи ординалов попарно различных мощностей, предел которой есть ординал мощности большей, чем мощность каждого элемента цепи.
- (б) Существует ли такое бесконечное множество A, которое pashomoumho декартову произведению счетного семейства множеств B_i , каждой из которых имеет мощность меньше мощности A? Существует ли такое бесконечное множество A, которое ne pashomoumho никакому декартову произведению счетного семейства множеств B_i , каждой из которых имеет мощность меньше мощности A?
- (в) Ординал $\alpha>0$ называется аддитивно неразложимым, если для любых $\beta,\gamma<\alpha$ верно $\beta+\gamma<\alpha$. Докажите, что ординал α аддитивно неразложим тогда и только тогда, когда для любого $\gamma<\alpha$ верно $\gamma+\alpha=\alpha$.
- (г) Ординал $\alpha>0$ называется аддитивно неразложимым, если для любых $\beta,\gamma<\alpha$ верно $\beta+\gamma<\alpha$. Докажите, что все ординалы вида ω^{α} аддитивно неразложимы.
- (д) Ординал $\alpha>0$ называется мультипликативно неразложимым, если для любых ординалов $\beta,\gamma<\alpha$ верно $\beta\gamma<\alpha$. Докажите, что ординал $\alpha>1$ мулитипликативно неразложим тогда и только тогда, когда для всех $\gamma<\alpha$ верно $\gamma\alpha=\alpha$.
- (e) Могут ли два бесконечных вполне упорядоченных множества, имеющие порядковые типы α и 2^{α} соответственно, быть равномощными? Неравномощными?
 - **3.** (а) Найдите все предельные элементы ординала $\omega^{\omega+1} + \omega^3 + \omega + 3$.
 - (б) Найдите все предельные элементы ординала $\omega \cdot 2 + \omega^{\omega} + (\omega + 1)^3 + \omega + 2$.
 - (в) Найдите все предельные элементы ординала $\omega^{\omega \cdot 2} + \omega^{2 \cdot \omega} + \omega + 1$.
 - (г) Найдите все предельные элементы ординала $\omega^{\omega^2} + \omega + 3$.
- (д) Какие ординалы можно представить вполне упорядоченными подмножествами \mathbb{Z} со стандартным порядком?

- **4.** (а) Существует ли такой бесконечный ординал α , для которого $\alpha^2 = \alpha$?
- (б) Существует ли такой ординал α , для которого $2^{\alpha} = \alpha$?
- (в) Пусть α, β, γ такие ординалы, что $1 < \beta < \gamma$ и $\alpha > 0$. Можно ли утверждать, что $\beta^{\alpha} < \gamma^{\alpha}$? (Докажите данное неравенство или приведите контрпример.)
- (г) Пусть $\omega < \alpha < \beta < \gamma$. Можно ли сравнить $\alpha^{\beta^{\gamma}}$ и $\alpha^{\gamma^{\beta}}$? (Докажите нестрогое неравенство или приведите два примера со строгими неравенствами разных знаков)
- (д) Пусть $\omega < \alpha < \beta < \gamma$. Можно ли сравнить $\alpha^{\beta^{\gamma}}$ и $\beta^{\gamma^{\alpha}}$? (Докажите нестрогое неравенство или приведите два примера со строгими неравенствами разных знаков)
- 5. (a) Можно ли найти в \mathbb{R} такое несчетное подмножество, которое (со стандартным линейным порядком на вещественных числах) является вполне упорядоченным.
- (б) Всякое ли счетное вполне упорядоченное множество (A, \leq) можно вложить в \mathbb{R} , т.е., найти такое подмножество $B \subset \mathbb{R}$, которое (со стандартным порядком на вещественных числах) изоморфно (A, \leq) .
- (в) Все ли ординалы, представимые как подмножества \mathbb{R} со стандартным порядком, представимы как подмножества \mathbb{Q} со стандартным порядком?