Law invariant subsets

Ivar Ekeland www.ceremade.dauphine.fr/~ekeland

CEREMADE., Université Paris-Dauphine

June 4, 2012

Strongly exposed points

Let V be a Banach space, with dual V^{*}, and $C \subset X$ a closed set.

Definition

Let $v \in C$ and $v^{*} \in V^{*}$. We shall say that v^{*} strongly exposes v in V if every minimizing sequence of v^{*} in C norm-converges to v

$$
\left[w_{n} \in C, \quad \lim _{n}\left\langle v^{*}, w_{n}\right\rangle=\inf \left\{\left\langle v^{*}, w\right\rangle \mid w \in V\right\}\right] \Longrightarrow \lim _{n}\left\|w_{n}-v\right\|=0
$$

Denote by $\mathcal{E}(C)$ the set of extreme points.

Theorem (Phelps, 1974)

If C is convex and weakly compact, it is the closed convex hull of the set of its strongly exposed points:

$$
C=\overline{\mathrm{co}}(\mathcal{E}(C))
$$

Laws

We fix a probability space (Ω, \mathcal{A}, P). The law μ_{X} of a random vector X is a probability on \mathbb{R}^{d} defined by:

$$
\forall f \in C_{+}^{0}\left(\mathbb{R}^{d}\right), E_{\mu}[f]=\int_{\Omega} f(X(\omega)) d P=\int_{\mathbb{R}^{d}} f(x) d \mu_{X}
$$

Denote by $\mathcal{P}\left(\mathbb{R}^{d}\right)$ the set of probabilities on R^{d} and by $\mathcal{P}_{1}\left(\mathbb{R}^{d}\right)$ the set of $\mu \in \mathcal{P}\left(\mathbb{R}^{d}\right)$ such that $E_{\mu}[|x|]<\infty$. We are interested in the space $L^{1}\left(\Omega, A, P ; \mathbb{R}^{d}\right)$. Clearly $X \in L^{1}$ iff $\mu_{X} \in \mathcal{P}_{1}\left(\mathbb{R}^{d}\right)$

Measure-preserving transformations.

We shall write $X_{1} \sim X_{2}$ to mean that X_{1} and X_{2} have the same law. Denote by Σ the set of all measure-preserving transformations from Ω into itself: $\sigma \in \Sigma$ iff σ is measurable, invertible, and
$\forall A \in \mathcal{A}, \quad P(\sigma(A))=P(A)$. It is a group, which operates on random variables and preserves the law:

$$
X \sim X \circ \sigma \quad \forall \sigma \in \Sigma
$$

The set of all random vectors with given law

For $\mu \in \mathcal{P}_{1}\left(\mathbb{R}^{d}\right)$, we set:

$$
M(\mu):=\{X \mid \text { law }(X)=\mu\}
$$

Lemma

$M(\mu)=\overline{\{X \circ \sigma \mid \sigma \in \Sigma\}}$, the closure being taken in the L^{1} norm.
So $M(\mu)$ is closed, but it is not convex, nor weakly closed. We introduce its closed convex hull $C(\mu)$:

$$
C(\mu)=\overline{\mathrm{co}}(M(\mu))
$$

It is easily checked that $M(\mu)$ is equiintegrable, so $C(\mu)$ is weakly compact (Dunford-Pettis)

The structure of C

Definition

Take $\mu, v \in \mathcal{P}_{1}\left(\mathbb{R}^{d}\right)$. We shall say that $v \preccurlyeq \mu$ if, for every convex function f, we have:

$$
\int_{R^{d}} f(x) d v \preccurlyeq \int_{R^{d}} f(x) d \mu
$$

This is an (incomplete) order relation.It is known in potential theory as sweeping (μ est une balayee de v), or Choquet ordering.

- If $\nu \preccurlyeq \mu$, then ν and μ have the same barycenter.
- (certainty equivalence) if $x_{0}=E[x]$, then $\delta_{x_{0}} \preccurlyeq \mu$
- (diversification) if $X_{1} \sim X_{2}$ have law μ, and $Y=\frac{1}{2}\left(X_{1}+X_{2}\right)$ has law ν, then $\nu \preccurlyeq \mu$

Theorem

$C(\mu)=\left\{Y \in L^{1} \mid \operatorname{law}(Y) \preccurlyeq \operatorname{law}(X)\right\}$

Weak convergence

Theorem

If $X_{n} \rightarrow Y$ weakly, law $\left(X_{n}\right)=\mu$ and law $(Y)=v$, then $v \preccurlyeq \mu$, with equality iff $\left\|X_{n}-Y\right\|_{1} \rightarrow 0$

Proof.

If f is convex and continuous:

$$
\int_{\mathbb{R}^{d}} f(x) d \mu=\int_{\Omega} f\left(X_{n}\right) d P \geq \int_{\Omega} f(Y) d P=\int_{\mathbb{R}^{d}} f(x) d v
$$

so $v \preccurlyeq \mu$. Suppose $\mu=v$. Taking $f=|x|^{p}$, we find $\left\|X_{n}\right\|_{p} \rightarrow\|Y\|_{p}$.

Corollary

$\overline{\operatorname{co}} M(\mu)=\overline{M(\mu)}^{w}=C(\mu)$
Compare with relaxation theory and chattering solutions in the calculus of variations (see Ekeland-Temam)

Optimal transportation

Take some $Z \in L^{\infty}\left(R^{d}\right)$ with law v. The three following problems yield the same value (Kantorovitch) called maximal correlation between v and μ

$$
\begin{gathered}
\max \{\langle Z, X\rangle \mid X \in M(\mu)\} \\
\max \left\{\int_{R^{d} \times R^{d}} z \cdot x d \pi \mid \pi \in \Pi(v, \mu)\right\} \\
\max \left\{\int_{R^{d}} z \cdot T(z) d v \mid \mu=T \sharp v\right\}
\end{gathered}
$$

If v is ac wrt Lebesgue. We get a unique solution T so the last problem.

Strongly exposing functionals

Setting $X=T \circ Z$, we find the following:

Theorem

Let $Z \in L^{\infty}\left(\mathbb{R}^{d}\right)$ with law v, ac wrt Lebesgue measure. Then Z strongly exposes some point X in $C(\mu)$, and in fact $X \in M(\mu)$.

Theorem

Suppose μ and v both are ac wrt Lebesgue measure, with $\mu \in \mathcal{P}_{1}\left(\mathbb{R}^{d}\right)$ and v compact support. Then every point $X \in M(\mu)$ can be strongly exposed in $C(\mu)$ by some Z with law v.

Minimal subsets

Given a convex, law invariant subset A of L^{1}, we consider:

$$
K:=\{(X, X \circ \sigma) \mid X \in A, \sigma \in \Sigma\} \subset A \times A
$$

Definition

We shall say that A is minimal if:

$$
A \times A=\overline{\mathrm{co}}(K)
$$

Example

If $A=C(\mu)$, then $A=\overline{\{X \circ \sigma \mid \sigma \in \Sigma\}}^{w}$ for any X with law μ, so:

$$
A \times A=\overline{\{(X, X \circ \sigma) \mid \sigma \in \Sigma\}}
$$

Is there anything else ?

Structure of minimal subsets

Theorem

If a convex law-invariant set A is minimal and weakly compact, then there is some $\mu \in \mathcal{P}_{1}\left(\mathbb{R}^{d}\right)$ such that $A=C(\mu)$

Since A is weakly compact, it is the closed convex hull of its set of strongly exposed points. Let $X \in A$ be such a point and μ its law. We claim that $A=C(\mu)$.

Proof (cont'd)

By definition, there is some $Z \in L^{\infty}\left(R^{d}\right)$ such that $\sup _{Y \in A}$ $-\langle Y, Z\rangle=-\langle X, Z\rangle$ and if $X_{n} \in A$ is a maximizing sequence, then $X_{n} \rightarrow X$ strongly in $L^{1}\left(R^{d}\right)$. Since A is minimal we have, for every $Z^{\prime} \in L^{\infty}\left(R^{d}\right):$
$\sup _{Y \in A}\langle-Y, Z\rangle+\sup _{Y \in A}\left\langle-Y, Z^{\prime}\right\rangle=\sup \left\{\langle-Y, Z\rangle+\left\langle-Y \circ \sigma, Z^{\prime}\right\rangle \mid Y \in A, \sigma \in\right.$
Let $\left(Y_{n}, \sigma_{n}\right)$ be a maximizing sequence. Since we have $=$ instead of \geq, the sequence Y_{n} must be maximizing for Z and the sequence $Y_{n} \circ \sigma_{n}$ for Z^{\prime}. So $Y_{n} \rightarrow X$ in L^{1} and:

$$
\sup _{Y \in A}\left\langle-Y, Z^{\prime}\right\rangle=\sup _{\tau}\left\langle-X \circ \sigma, Z^{\prime}\right\rangle=\sup \left\{\left\langle-\widetilde{X}, Z^{\prime}\right\rangle \mid \widetilde{X} \in C(\mu)\right\}
$$

Since A is convex and closed, $A=C(\mu)$

Risk measures

A d-dimensional risk measure (d-r.m.) is a function $\rho: L^{p}\left(\Omega, \mathcal{F}, P ; R^{d}\right) \rightarrow \mathbb{R}, 1 \leq p \leq \infty$, such that:

- $\rho(0)=0$
- $X \geq Y \Longrightarrow \rho(X) \leq \rho(Y)$
- $\rho(X+m e)=\rho(X)-m$ for $m \in \mathbb{R}$ and $e=(1, \ldots, 1)$

It is

- law-invariant if $X \sim Y$ implies that $\rho(X)=\rho(Y)$
- convex if ρ is a convex function
- strongly coherent if positively homogeneous and:

$$
\rho(X)+\rho(Y)=\sup \{\rho(X+\widetilde{Y}) \mid Y \sim \widetilde{Y}\}
$$

Examples of strongly coherent risk measures

(1) Let $F=\left(F_{1}, \ldots, F_{d}\right) \in L^{1}\left(R^{d}\right)$ satisfy $F_{i} \geq 0,1 \leq i \leq d$, and $\sum_{i} E\left[F_{i}\right]=1$. Define

$$
\rho_{F}:=\sup \{\mathbb{E}[-F \cdot \widetilde{X}] \mid \widetilde{X} \sim X\}=\sup \left\{\sum_{i} \mathbb{E}\left[-F_{i} \widetilde{X}_{i}\right] \mid \widetilde{X} \sim X\right\}
$$

(2) $(p=\infty)$ Denote by S^{d} the unit simplex in R^{d} and let $\xi \in S^{d}$, so that $\xi_{i} \geq 0$ and $\sum \xi_{i}=1$. Define

$$
\rho_{\xi}(X):=\text { ess sup }-X \cdot \xi=\text { ess sup }-\sum X_{i} \xi_{i}
$$

(3) $(p=\infty)$ Let π be a probability on S^{d}. Set:

$$
\rho_{\pi}(X):=\int_{S^{d}} \rho_{\xi}(X) d \pi(\xi)
$$

Theorem

ρ is a strongly coherent d-r.m. if and only if there is some $F \in L_{+}^{1}\left(R^{d}\right)$ with $\sum_{i} E\left[F_{i}\right]=1$, a probability π on S^{d} and a number s with $0 \leq s \leq 1$ such that:

$$
\forall X \in L^{\infty}, \quad \rho(X)=s \rho_{\pi}(X)+(1-s) \rho_{F}(X)
$$

This result is due to:

- Kusuoka (2001) in the case $d=1$
- IE, Galichon and Henry in the case $d>1, p<\infty$
- IE and Schachermayer in the case $d>1, p<\infty$

Duality

If $\rho: L^{\infty}\left(R^{d}\right) \rightarrow R$ is a convex and law-invariant, it is lower semi-continuous wrt $\sigma\left(L^{\infty}, L^{1}\right)$ (Jouini, Schachermayer, Touzi, 2006). It follows that ρ is coherent (homogeneous) if and only if there exists a closed, convex, law-invariant subset C of $L^{1}\left(R^{d}\right)$ such that.

$$
\rho(X)=\sup _{F \subseteq C}\langle F, X\rangle
$$

$$
F \in C
$$

Lemma

ρ is strongly coherent iff C is minimal

Suppose $\rho=\rho_{C}$ and $C \times C$ is the closed convex hull of K. Then:

$$
\begin{aligned}
\rho_{C}(X)+\rho_{C}(Y) & =\sup \{-\langle F, X\rangle-\langle G, Y\rangle \mid(F, G) \in C \times C\} \\
& =\sup \{-\langle F, X\rangle-\langle F \circ \tau, Y\rangle \mid F \in C, \tau \in \mathcal{T}\} \\
& =\sup \left\{-\left\langle F, X+Y \circ \tau^{-1}\right\rangle \mid F \in C, \tau \in \mathcal{T}\right\} \\
& \leq \sup \{-\langle F, X+\widetilde{Y}\rangle \mid \widetilde{Y} \sim Y\}=\rho_{C}(X+\widetilde{Y})
\end{aligned}
$$

and the reverse inequality is always true

