Law invariant subsets

Ivar Ekeland www.ceremade.dauphine.fr/~ekeland

CEREMADE., Université Paris-Dauphine

June 4, 2012

Strongly exposed points

Let V be a Banach space, with dual V^* , and $C \subset X$ a closed set.

Definition

Let $v \in C$ and $v^* \in V^*$. We shall say that v^* strongly exposes v in V if every minimizing sequence of v^* in C norm-converges to v

$$\left[w_n \in C, \quad \lim_n \langle v^*, w_n \rangle = \inf \left\{ \langle v^*, w \rangle \mid w \in V \right\} \right] \Longrightarrow \lim_n \|w_n - v\| = 0$$

Denote by $\mathcal{E}(C)$ the set of extreme points.

Theorem (Phelps, 1974)

If C is convex and weakly compact, it is the closed convex hull of the set of its strongly exposed points:

$$C = \overline{\mathrm{co}}\left(\mathcal{E}\left(\mathcal{C}\right)\right)$$

We fix a probability space (Ω, \mathcal{A}, P) . The *law* μ_X of a random vector X is a probability on \mathbb{R}^d defined by:

$$\forall f \in C^{0}_{+}\left(\mathbb{R}^{d}\right)$$
, $E_{\mu}\left[f\right] = \int_{\Omega} f\left(X\left(\omega\right)\right) dP = \int_{\mathbb{R}^{d}} f\left(x\right) d\mu_{X}$

Denote by $\mathcal{P}(\mathbb{R}^d)$ the set of probabilities on \mathbb{R}^d and by $\mathcal{P}_1(\mathbb{R}^d)$ the set of $\mu \in \mathcal{P}(\mathbb{R}^d)$ such that $E_{\mu}[|x|] < \infty$. We are interested in the space $L^1(\Omega, A, P; \mathbb{R}^d)$. Clearly $X \in L^1$ iff $\mu_X \in \mathcal{P}_1(\mathbb{R}^d)$

We shall write $X_1 \sim X_2$ to mean that X_1 and X_2 have the same law. Denote by Σ the set of all measure-preserving transformations from Ω into itself: $\sigma \in \Sigma$ iff σ is measurable, invertible, and $\forall A \in \mathcal{A}, P(\sigma(A)) = P(A)$. It is a group, which operates on random variables and preserves the law:

 $X \sim X \circ \sigma \qquad \forall \sigma \in \Sigma$

The set of all random vectors with given law

For $\mu \in \mathcal{P}_1\left(\mathbb{R}^d
ight)$, we set:

$$M(\mu) := \{X \mid \text{law}(X) = \mu\}$$

Lemma

 $M(\mu) = \overline{\{X \circ \sigma \mid \sigma \in \Sigma\}}$, the closure being taken in the L^1 norm.

So $M(\mu)$ is closed, but it is not convex, nor weakly closed. We introduce its closed convex hull $C(\mu)$:

$$C\left(\mu\right)=\overline{\mathrm{co}}\left(M\left(\mu\right)\right)$$

It is easily checked that $M(\mu)$ is equiintegrable, so $C(\mu)$ is weakly compact (Dunford-Pettis)

The structure of C

Definition

Take $\mu, \nu \in \mathcal{P}_1(\mathbb{R}^d)$. We shall say that $\nu \preccurlyeq \mu$ if, for every convex function f, we have:

$$\int_{R^{d}} f(x) \, d\nu \preccurlyeq \int_{R^{d}} f(x) \, d\mu$$

This is an (incomplete) order relation. It is known in potential theory as sweeping (μ est une balayee de ν), or Choquet ordering.

- If $\nu \preccurlyeq \mu$, then ν and μ have the same barycenter.
- (certainty equivalence) if $x_0 = E[x]$, then $\delta_{x_0} \preccurlyeq \mu$
- (diversification) if $X_1 \sim X_2$ have law μ , and $Y = \frac{1}{2} (X_1 + X_2)$ has law ν , then $\nu \preccurlyeq \mu$

Theorem

$$C(\mu) = \left\{ Y \in L^1 \mid \text{law}(Y) \preccurlyeq \text{law}(X) \right\}$$

Weak convergence

Theorem

If
$$X_n \to Y$$
 weakly, $\text{law}(X_n) = \mu$ and $\text{law}(Y) = \nu$, then $\nu \preccurlyeq \mu$, with equality iff $||X_n - Y||_1 \to 0$

Proof.

If f is convex and continuous:

$$\int_{\mathbb{R}^{d}} f(x) d\mu = \int_{\Omega} f(X_{n}) dP \ge \int_{\Omega} f(Y) dP = \int_{\mathbb{R}^{d}} f(x) d\nu$$

so $\nu \preccurlyeq \mu$. Suppose $\mu = \nu$. Taking $f = |x|^p$, we find $||X_n||_p \rightarrow ||Y||_p$.

Corollary

$$\overline{\mathrm{co}}M\left(\mu\right)=\overline{M\left(\mu\right)}^{w}=C\left(\mu\right)$$

Compare with relaxation theory and chattering solutions in the calculus of variations (see Ekeland-Temam)

lvar Ekeland, www.ceremade.dauphine.fr/~ek

Law invariant subsets

June 4, 2012 7 / 17

Take some $Z \in L^{\infty}(\mathbb{R}^d)$ with law ν . The three following problems yield the same value (Kantorovitch) called maximal correlation between ν and μ

$$\max\left\{\left\langle Z, X\right\rangle \mid X \in M\left(\mu\right)\right\}$$
$$\max\left\{\int_{R^{d} \times R^{d}} z \cdot x \ d\pi \mid \pi \in \Pi\left(\nu, \mu\right)\right\}$$
$$\max\left\{\int_{R^{d}} z \cdot T\left(z\right) \ d\nu \mid \mu = T \sharp\nu\right\}$$

If ν is ac wrt Lebesgue. We get a unique solution T so the last problem.

Setting $X = T \circ Z$, we find the following:

Theorem

Let $Z \in L^{\infty}(\mathbb{R}^d)$ with law ν , ac wrt Lebesgue measure. Then Z strongly exposes some point X in $C(\mu)$, and in fact $X \in M(\mu)$.

Theorem

Suppose μ and ν both are ac wrt Lebesgue measure, with $\mu \in \mathcal{P}_1(\mathbb{R}^d)$ and ν compact support. Then every point $X \in M(\mu)$ can be strongly exposed in $C(\mu)$ by some Z with law ν . Given a convex, law invariant subset A of L^1 , we consider:

$$K := \{ (X, X \circ \sigma) \mid X \in A, \ \sigma \in \Sigma \} \subset A \times A$$

Definition

We shall say that A is minimal if:

$$A \times A = \overline{\mathrm{co}}(K)$$

Example

If
$$A = C(\mu)$$
, then $A = \overline{\{X \circ \sigma \mid \sigma \in \Sigma\}}^{w}$ for any X with law μ , so:

$$A \times A = \overline{\{(X, X \circ \sigma) \mid \sigma \in \Sigma\}}$$

Is there anything else ?

Theorem

If a convex law-invariant set A is minimal and weakly compact, then there is some $\mu \in \mathcal{P}_1(\mathbb{R}^d)$ such that $A = C(\mu)$

Since A is weakly compact, it is the closed convex hull of its set of strongly exposed points. Let $X \in A$ be such a point and μ its law. We claim that $A = C(\mu)$.

Proof (cont'd)

By definition, there is some $Z \in L^{\infty}(\mathbb{R}^d)$ such that $\sup_{Y \in A} - \langle Y, Z \rangle = - \langle X, Z \rangle$ and if $X_n \in A$ is a maximizing sequence, then $X_n \to X$ strongly in $L^1(\mathbb{R}^d)$. Since A is minimal we have, for every $Z' \in L^{\infty}(\mathbb{R}^d)$:

$$\sup_{Y \in A} \langle -Y, Z \rangle + \sup_{Y \in A} \langle -Y, Z' \rangle = \sup \left\{ \langle -Y, Z \rangle + \langle -Y \circ \sigma, Z' \rangle \mid Y \in A, \sigma \in \mathcal{F} \right\}$$

Let (Y_n, σ_n) be a maximizing sequence. Since we have = instead of \geq , the sequence Y_n must be maximizing for Z and the sequence $Y_n \circ \sigma_n$ for Z'. So $Y_n \to X$ in L^1 and:

$$\sup_{Y \in \mathcal{A}} \langle -Y, Z' \rangle = \sup_{\tau} \langle -X \circ \sigma, Z' \rangle = \sup\left\{ \langle -\widetilde{X}, Z' \rangle \mid \widetilde{X} \in C(\mu) \right\}$$

Since A is convex and closed, $A = C(\mu)$

Risk measures

A d-dimensional risk measure (d-r.m.) is a function $\rho: L^{p}(\Omega, \mathcal{F}, P; \mathbb{R}^{d}) \to \mathbb{R} , 1 \leq p \leq \infty, \text{ such that:}$ • $\rho(0) = 0$ • $X \geq Y \Longrightarrow \rho(X) \leq \rho(Y)$ • $\rho(X + me) = \rho(X) - m \text{ for } m \in \mathbb{R} \text{ and } e = (1, ..., 1)$

- lt is
 - *law-invariant* if $X \sim Y$ implies that $\rho(X) = \rho(Y)$
 - convex if ρ is a convex function
 - strongly coherent if positively homogeneous and:

$$ho\left(X
ight) +
ho\left(Y
ight) =\sup\left\{
ho\left(X+\widetilde{Y}
ight) \ | \ Y\sim\widetilde{Y}
ight\}$$

Examples of strongly coherent risk measures

• Let $F = (F_1, ..., F_d) \in L^1(\mathbb{R}^d)$ satisfy $F_i \ge 0, 1 \le i \le d$, and $\sum_i E[F_i] = 1$. Define

$$\rho_{F} := \sup \left\{ \mathbb{E}\left[-F \widetilde{\cdot X} \right] \mid \widetilde{X} \sim X \right\} = \sup \left\{ \sum_{i} \mathbb{E}\left[-F_{i} \widetilde{X}_{i} \right] \mid \widetilde{X} \sim X \right\}$$

(*p* = ∞) Denote by *S^d* the unit simplex in *R^d* and let $\xi \in S^d$, so that $\xi_i \ge 0$ and $\sum \xi_i = 1$. Define

$$ho_{\xi}\left(X
ight):=\mathrm{ess}\,\mathrm{sup}\,{-}X\cdot\xi=\mathrm{ess}\,\mathrm{sup}\,{-}\sum X_{i}\xi_{i}$$

($p = \infty$ **)** Let π be a probability on S^d . Set:

$$\rho_{\pi}(X) := \int_{S^{d}} \rho_{\xi}(X) \, d\pi(\xi)$$

Theorem

 ρ is a strongly coherent d-r.m. if and only if there is some $F \in L^1_+(\mathbb{R}^d)$ with $\sum_i E[F_i] = 1$, a probability π on S^d and a number s with $0 \le s \le 1$ such that:

$$orall X\in \mathit{L}^{\infty}$$
, $ho\left(X
ight)=\mathit{s}
ho_{\pi}\left(X
ight)+\left(1-\mathit{s}
ight)
ho_{\mathit{F}}\left(X
ight)$

This result is due to:

- Kusuoka (2001) in the case d = 1
- IE, Galichon and Henry in the case $d>1, p<\infty$
- IE and Schachermayer in the case d > 1, $p < \infty$

If $\rho: L^{\infty}(\mathbb{R}^d) \to \mathbb{R}$ is a convex and law-invariant, it is lower semi-continuous wrt $\sigma(L^{\infty}, L^1)$ (Jouini, Schachermayer, Touzi, 2006). It follows that ρ is coherent (homogeneous) if and only if there exists a closed, convex, law-invariant subset C of $L^1(\mathbb{R}^d)$ such that.

$$\rho\left(X\right) = \sup_{F \in C} \langle F, X \rangle$$

Lemma

 ρ is strongly coherent iff C is minimal

Suppose $\rho = \rho_C$ and $C \times C$ is the closed convex hull of K. Then:

$$\begin{split} \rho_{C}\left(X\right) + \rho_{C}\left(Y\right) &= \sup\left\{-\langle F, X \rangle - \langle G, Y \rangle \mid (F, G) \in C \times C\right\} \\ &= \sup\left\{-\langle F, X \rangle - \langle F \circ \tau, Y \rangle \mid F \in C, \ \tau \in T\right\} \\ &= \sup\left\{-\langle F, X + Y \circ \tau^{-1} \rangle \mid F \in C, \ \tau \in T\right\} \\ &\leq \sup\left\{-\langle F, X + \widetilde{Y} \rangle \mid \widetilde{Y} \sim Y\right\} = \rho_{C}\left(X + \widetilde{Y}\right) \end{split}$$

and the reverse inequality is always true