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Example (Ehrenfests’s paradox, 1907) 

 
             Dog 1 (  1n t  fleas) 

 
          Dog 2 (  2n t  fleas) 

 

There are 2 1M n   fleas. At the beginning whole the fleas are situated on the 

Dog 1. However, it isn't important! At each time step (described Markov process is 

discrete on time) with the probability equals 1 M  a random flea is choosing. This 

flea is jump to another dog. The process is repeated in time. 

Microstate (2
M ) is a way of distribution M  different fleas onto 2 different dogs. 

Macrostate ( 1M  ) is a way of distribution M  identical fleas onto 2 different dogs. 
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Denote by P  the matrix (size 2 2
M M
 ) of transitional probabilities of Markov chain 

described above on a microscopically level. Since this dynamic is reversible on 

time => T
P P . Thus, since P  – stochastic matrix, we have 

   1, ...,1 1, ...,1
T

P    1, ...,1 1, ...,1 P . 

Therefore we have that all the microstates are equally probable in stationary 

(invariant) distribution of this chain. That is mean the following 

Probability of macrostate  ,k M k  in stationary distribution equals 2
k M

MC
 . 

From the Ergodic theorem and Central Limit Theorem (Moivre–Laplace, 1738): 

 1
2

1 5
0.99

2

n t
t M P

M M
   

 
  

 
 

. 

Later we’ll show why in this case we have mixing time equals  M . 

Loschmidt’s paradox (1986) for the A. Poincare theorem of return. 

Mathematical expectation of time     1 1inf 0 : 0, 0T t n t n n     

asymptotically (on M ) equals 2M M . 
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Google problem (L. Page and S. Brin, 1998). Goal: to find a way of ranging web-pages 
*p


. 

Directed Internet web-graph  ,G V E  (vertexes are web-pages, edges are 

references),  1M V   – the total number of users (const),  1P E P     , 

where   
1

: , ,ijp k i k E i j


   , else = 0. Let  in t  to be the number of users of 

the web-page i at the moment of time t. For the unit of time each user independently 

go forward one of the possible references  ,i j  with probability  ijp . We assume 

stochastic matrix P  to be irreducible. Then it can be shown that: 

  0, ..., 0, :q q qq V T Poly M t T         

 
*

1 , 0, ..., 0.99,
qi

i

n t M
P i q

p M V

 
    




 

where 
* *TP p p
 

 ( *p


 – is a unique solutions in class of probability distributions). 

For the purpose of convenience we assume, that * *

1 2 ...p p   
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Kinetic of social inequality (V. Pareto model, 1896) 

 

r-th inhabitant, k-rubles 

 

l-th inhabitant, m-rubles 

 
 

There are 1M   (for example, 10 000) numbered inhabitants in the city. 

Inhabitant with the number i has  0is  rubles at the moment of time 0t  . 

Inhabitants are arbitrary randomly play with each other. More precisely: 

 1N t o t    
 
( 0  ) is probability of inhabitants with the arbitrary numbers r  и 

l  (1 r l M   ) try to play one ruble according to the following rule: with 

probability ½ inhabitant number l give (if he is not a bankrupt) one ruble to the 

opponent and similarly on the contrary. 
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Let  sc t  is the portion of inhabitants, that have exactly s rubles at the moment of 

time t  (note, that  sc t  is a random variable). Let 

 
1

0
M

i

i

S s


 , s S M . 

Then 

 0, ..., 0, :q q qq S T M t T         

 
1 , 0, ..., 0.99

qs

s s

c t
P s q

Ce M




 
    



, 

where C  is determinate from the following condition: 

0

1
S

s s

s

Ce



 , that is 1C s . 

 

Now we are ready to consider a general case. 
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Assume that some macrosystem can stay at different states, characterized by the 

vector n

 with nonnegative integer components. Let us assume that in the system 

there are the following (also called “chemical”) reactions: 

n n    
 
,  , J  


. 

Following to the Leontovich (1934), let us introduce intensity of the reaction: 

         
1

, ,
: 0

... 1 ,
i

i

i

i i i

i

n n n M K n n




   


    





        


  

  
 

where 0K





  is a constant of reaction. Note that in application it is always 

assume that 

 ii
n t M  (M  is often called scaling parameter). 

Thus 
   

,
n

 
 


 – is a probability of the reaction n n    

 
 take place in the 

unit of time. On the macro level this is corresponds to the law of the operating 

mass of Guldberg–Vaage (1864). 

The following theorem reflect some results of the works а) [Vedenyapin, 2000], 

b) and c) [Malyshev, Pirogov, Rybco, 2004]. 
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Theorem 1. a)    , , 0n t n 
   

    
 ,

Lin
J 

  


  


.                  (inv) 

b) Let us assume that the following condition (unitarity) is take place: 

0 :    
  

   : , : ,

j j

j j

j jJ J

K K
  


     

 
 

  


 
    

.                (U) 

Then the measure   !i in

i ii
n e n

  



, where *

i i M   and *


 arbitrary solution 

of (U), is invariant (stationary) measure of Markov dynamic introduced above. 

This measure on the set (inv) will be exponentially concentrated in a small vicinity 

of the most probable macrostate (which is called equilibrium of macrosystem), 

when parameter M  is growth. To find this most probable state we have to 

maximize the following entropy functional on the affine set (inv): 

    ln 1i i i

i

E n n n    


. 

Note that (U) condition is a generalization of the detailed balance condition (well 

known in physics):  0 : , j j

j j

j j

J K K
  


          


 

  
. 
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c) Let us assume that J  doesn’t depend on M , for the moment of time 0t   and 

for any i  there exist the following limits:    0 lim 0i i
M

c n M


 . Than for arbitrary 

moment of time 0t   and for any i  there exist the following limits: 

   
a.s.

limi i
M

c t n t M


 . The described above limits is also called canonical scaling 

limits. Moreover the deterministic functions (concentrations)  ic t  satisfy to the 

following system of ODE: 

   
 ,

i
i i

J

dc
K c c

dt

 


 

 


 
 




 
, j

j

j

c c
 


                        (DE) 

It can be shown [Batischeva, Vedenyapin, 2000], that if (U) condition is take 

place than all the trajectories of the system (DE) starting at (inv) converge to the 

unique fixed point, satisfying (U) condition. To show this it is introduced the 

minus entropy function:     ln 1i i i

i

H c c c   


 and it is shown that this 

function has proved to be a Lyapunov function for the dynamic (DE). This 

supervision was recently generalized in collaboration with Gasnikova E. V. 
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Theorem 2. Let invariant measure has the following representation: 

       exp 1n M M H n M    
 

, 1M  , 

where  H c


 is strictly concave function. Then  H c


 – is Lyapunov function for 

the dynamic (DE). 

 

Prove scheme. Following to the work [Kalinkin, 2002], let us introduce the 

generating function: 

    , n

n

F t s P n t n s  




   
, 1s 


, 1 2

1 2 ...
n nns s s  


, 

which satisfies the following partial differential equation: 

 
 

 

 1 2

1 2

...1

, 1 2

, ,

...

i

i

J

F t s F t s
s s K M

t s s

 
  

 
 

 



 
 

   


  




 
 

.               (PDE) 

Note [Kalinkin, 2002], that if we take is   from the both side of the (PDE), 

assuming  1,...,1
T

s 


, than in the limit M  (assuming the existence of the 

limits  lim i
M

n t M


, see c) Theorem 1) we obtain (DE). 
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Since 

 
  ln ,

,
M s H

F s M e d
 




  
   

, 

than 

     
 

1 2

1 2

1 2

...

...

1 2

,
,

...

F s s
M C s M

s s s

 
 

  

 

    


  





 


 , 

where  s
 

 is uniquely determinate by the system 

 ln grads H 
 

, 

where   0C    doesn’t depend on 


. Hence, 

 
 

    

 
 

, grad

, ,

0 1
H s

J J

s
s s K e K s

s


      

 
   






 

      
 

 


      

 
  

    
  

  
 

 
 

 ,

, grad
J c s

dH c
H s K s

dt




  

   
 

  



  

    
 

– full derivative of the function  H c


 owing to the system (DE) in the point  s
 

. □ 
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Theorem 3. Let us consider a macrosystem under conditions of c) Theorem 1. Then 

if the system (DE) has a unique globally exponentially stable fixed point *c


 than: 

 invariant measure is exponentially concentrated in a small vicinity of *Mc


; 

 elements of correlation matrix of vector  n t


 is uniformly bounded in time; 

 the limits is permutable: lim lim lim lim
M t t M   

  ; 

 mixing time is   Poly M . 

 

Counterexample. The model predator–victim (Nicolas, Prigogine, 1977): 

1

2
K

V V , 
2

2
K

V P P  , 
3

0
K

P . 

 

Hypothesis. The attractor of the system (DE) (it can be as a complex set as it 

possible in principle) is such a set in a small vicinity of which the considered 

macrosystem will stay with high probability at the large values of time. 



13 
 

Cheeger’s isoperimetric inequality approach (Fan Chung, 2005) 

Let us considered the Cheeger’s isoperimetric inequality for the case of irreversible 

Markov chains, with transition probability matrix ijP p  and invariant measure  , 

corresponds to the random walks on the directed graph  ,G GG V E : 

 
 

 
 

 
 

 
, : ,

: 1 2 : 1 2
inf inf G

G G

ij

i j E i S j S

S V S S V S

i p

h G P S S S
S 





  

   
  


, (Cheeger’s constant) 

          1 1 1, ln lnT i h G i  
     , (Mixing time) 

   , , ,t

G TV
t T i i V P i         . 

This result can be generalized to the continuous time Markov process and as a 

consequence it can be applied to estimation of mixing time to equilibrium in the 

described above dynamic of macrosystem. Moreover, if macrosystem is fulfilled the 

detailed balance condition, then    1h G M   . 
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Coarse Ricci curvature approach (A. Joulin and Y. Ollivier, 2007) 

Kantorovich–Rubinstein distance: 

 
   

   

   1
0: ,

,

, inf , ,
y

x

d x y d x

d x y d y

W d x y d x y
  

 

  
 








 . 

  – Coarse Ricci curvature iff 

        0 0

0 10, 0 : , , , , 1 ,
t t

Gt i j V W P i P j d i j           . 

         01

1 , , , , 1
t tt

y
W P i d i y P i dy      

   . 

For the Ehrenfests’s paradox if we put 

 1 1 1 1

1 1 2 2 1 1

2 2 2 2

1
,

2
TV

n n n n
d n n n n n n

n n n n

        
               

        

 
  

 
 

then 1M   ( 0 1t  ). This fact can be generalized for the macrosystems which are 

fulfilled the detailed balance condition. 
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