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We model (material) shapes as Radon probability measures on
compact subsets X , Y ⊂ R

N . and study a variational model to
the aim of quantifying how a target shape ν on Y differs from
an isometric copy of µ on X . Two shapes X , Y ⊂ R

N are
isometric if there exists u : X → Y such that u(X ) = Y and

|u(x) − u(y)| = |x − y |, ∀x , y ∈ X .

Equivalently the map u has bi-Lipschitz constant L = 1.
Where

1

L
|x − y | ≤ |u(x) − u(y)| ≤ L|x − y |, ∀x , y ∈ X .

Therefore, the two shapes X , Y could be considered close to
be isometric as the bi-Lipschitz constant L is close to one, so
assuming the bi-Lipschitz constant as a quantifier of the
closeness to the isometry.



This global approach has some disadvtanges. For instance, the
shapes below

1
n

looks very close to be isometric but the bi-Lipschitz constant
is quite large and far from L = 1, whatever the size of the
bending part.
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We need a localization procedure.
An isometry u is of course an affine map u(x) = Ax + b and
∇u = A is an orthogonal matrix.
Actually, under some regularity assumptions, by Liouville
Rigidity Theorem the orthogonality of the Jacobian matrix
characterizes the isometric maps.
Hence, a reasonable way to quantify how two shapes are
isometric is that of measuring how ∇u is close to be an
orthogonal matrix.
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A Variational Approach

We may select a matrix function W (A) reaching its minimal
value at the orthogonal matrices. Then the isometries
characterize the minimal possible value of the functional

I (u) =

∫

Ω

W (∇u) dx .

This approach is pursued in

G. Wolansky, Incompressible, Quasi-Isometric Deformations of
2-Dimensional Domains, SIAM J. Imaging Sciences, 2, No. 4

(2009), 1031-1048

where the admissible maps are incompressible
diffeomorphisms, i.e. u such that det (∇u) = 1.
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In order to characterize the isometries, a polyconvex function
W having minimal value at orthogonal matrices is selected.
Therefore, to quantify how two domains Ω1, Ω2 ⊂ R

N are
close to be isometric one considers the variational problem

minimize

{
∫

Ω1

W (∇u) dx | u(Ω1) = Ω2, u ∈ D
}

,

where D denotes the set of incompressible diffeomorphisms.
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This approach has of course many restrictions. For instance,
to compare a connected domain to a disconnected one, or for
non-smooth domains, many regularity questions arise.
A main goal of our approach relies in exploiting possible
extensions of this variational scheme of elasticity in order to
compare more general shapes also allowing fragmentations.
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Figure: An isometric fractured reformation.
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As a first step we discuss notions of weak reformations.The
weaker’s one is just measurability, i.e. transport map

u : X → Y , s.t. u#µ = ν. (1)

The mass conservation property (1) is a generalized version of
incompressibility and it can be always satisfied (provided µ has
no atom) by some measurable map u. Actually, condition (1)
is equivalent to the following change of variable formula

∫

X

f (u(x)) dµ =

∫

Y

f (y) dν, (2)

for every continuous function f : Y → R.



Measurable is too weak

un

Figure: A piece-wise isometric map for the circle into a square.
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A metric Formulation

The Lipschitz constant can be localized by

eu(x0) := Lip(u)(x0) = lim sup
x→x0

|u(x) − u(x0)|
|x − x0|

. (3)

for differentiable maps we have eu(x0) = ‖∇u(x0)‖.
Observe that Wolansky’s approach cannot be pursued in a
metric framework. Indeed the mapping A 7→ ϕ(‖A‖) is
polyconvex only if ϕ is a positive convex and strictly increasing
function, therefore the minimal value cannot be reached at
orthogonal matrices A, since they have ‖A‖ = 1.
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Reformation Maps

Similarly, we introduce the pointwise contraction energy of u
at x0 defined by

cu(x0) := lim sup
x→x0

|x − x0|
|u(x) − u(x0)|

. (4)

The pointwise reformation energy of u at x0 is defined by

ru(x0) = eu(x0) + cu(x0). (5)



Definition (Reformation maps)

We shall call reformation map any map u : X → Y such that
the following conditions hold true:

u#µ = ν, (6)

∀x ∈ X ∃ H , K , r > 0 s.t. eu(y) ≤ K , cu(y) ≤ H (7)

∀y ∈ B(x , r) ∩ X .
We shall denote by Ref(µ; ν) the set of reformation maps
between µ and ν.
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Stepanov Theorem, for X = Ω, it is a.e. differentiable in Ω. In
particular, it turns out that reformation maps are locally
Lipschitz on Ω.
In a mechanical perspective, the constraints stated in (7)
could be considered as a bound on the maximum expansion or
contraction experienced by the material Ω. In this setting, the
assumption that of the constants H , K do not depend on the
map u in (7) corresponds to a constitututive property of the
material under consideration.
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We point out that some bounds as in (7) are in some sense
necessary to control the geometry of the reformations. For
instance, in the case of ν = δy0 we have eu = 0, cu = +∞ for
any map u satisfying (6).

b bx0 u(x0)

u1

u2

On the other hand, mapping a bar into a bended one (see Fig.
16) by two piecewise isometries u1, u2, we have eu(x0) = +∞
at the discontinuity point.
Therefore, roughly speaking, the bound cu ≤ H means no
collapsing, while eu ≤ K means no fractures.
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The constraint cu ≤ H in (7) is related to inversion properties,
both local or global, of reformation maps.
This point is related with inversion Theorem for Sobolev maps,
maps with bounded distortion, quasi-isometries, etc..
in a purely metric framework, such pointwise conditions are
not enough to guarantee inversion properties. Consider for
instance the map u : R → R, u(x) = |x | having eu = cu = 1 at
every point.
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We have the following inversion results

Theorem (Small reformations are invertible)

Let u ∈ Ref(µ; ν) be such that eu < N
√

2. Then u is globally
invertible.

Theorem (J. Gevirtz, Metric conditions that imply local
invertibility, Communications in Pure and Applied
Mathematics 23 (1969), 243-264.)

Let u ∈ Ref(µ; ν) be an open map such that HK < 2. Then
u|Ω is locally invertible.

Key tools: area formula and degree theory for maps in R
N .



The Variational problem of Elastic

Reformation

We define the total reformation energy R(u) of a reformation
map u of µ into ν as follows

R(u) :=

∫

X

ru(x) dµ.
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we get R(u) ≥ 2.
Actually, this definition is motivated by the trivial fact that the
real function f (x) = x + 1/x reaches its minimum value at
f (1) = 2.
Moreover, we have that ru(x) reaches its minimum value if
u : X → Y is an isometric mapping. Therefore R(u) can be
viewed as a measure detecting how u is far from being an
isometric map.
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so

eu(x0)+
1

eu(x0)
= 2 ⇒ (eu(x0)−1)2 = 0 ⇒ eu(x0) = cu(x0) = 1.

taking x = x0 + δv and sending δ → 0, we get

cu(x0) = eu(x0) = 1 ⇒ |∇u(x0) · v |
|v | = 1 ⇒ ∇u(x0) ∈ O(N).

Therefore, a Rigidity theorem (in Sobolev spaces) could be
applied
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We define the elastic reformation energy between µ and ν as

E(µ, ν) := inf{R(u) | u ∈ Ref(µ; ν)}.

We expect to characterize isometric maps as those having the
smallest reformation energy. The question is now to establish
conditions in order the infimum is attained.



Theorem
Let µ ∈ P(Ω) and ν ∈ P(Y ) so that µ = LN Ω,
ν = LN Y . Then the variational problem

minimize{R(u) | u ∈ Ref(µ; ν), eu <
N
√

2} (8)

admits solutions whenever {u ∈ Ref(µ; ν), eu < N
√

2} 6= ∅.
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extract a subsequence converging, uniformly on compact
subsets of Ω, to a continuous map u. For this continuous limit
map u : Ω → R

N it is easily seen that u#µ = ν. By global
invertibility, u−1

n is also equi-Lipschitz and converges to u−1.



Sketch of the proof

Let (un)n∈N be a minimizing sequence. Given x0 ∈ Ω, let
K , H , r > 0 as provided by definition of reformation maps. It
follows that the sequence (un)n∈N is locally equi-Lipschitz on
B(x0, r).Therefore, the sequence un is pointwise
equicontinuous on Ω. By the Ascoli-Arzelá Theorem we
extract a subsequence converging, uniformly on compact
subsets of Ω, to a continuous map u. For this continuous limit
map u : Ω → R

N it is easily seen that u#µ = ν. By global
invertibility, u−1

n is also equi-Lipschitz and converges to u−1.
We have that u ∈ {u ∈ Ref(µ; ν), eu < N

√
2}.



Since cu(x) = eu−1(u(x)), we compute



Since cu(x) = eu−1(u(x)), we compute

R(u) =

∫

X

(eu + cu) dµ =

∫

X

(eu(x) + eu−1(u(x))) dµ =



Since cu(x) = eu−1(u(x)), we compute

R(u) =

∫

X

(eu + cu) dµ =

∫

X

(eu(x) + eu−1(u(x))) dµ =

∫

X

Lip(u)(x)dµ +

∫

X

Lip(u−1)(u(x)) dµ =

∫

X

Lip(u)(x)dµ +

∫

Y

Lip(u−1)(y) dν ≤



Since cu(x) = eu−1(u(x)), we compute

R(u) =

∫

X

(eu + cu) dµ =

∫

X

(eu(x) + eu−1(u(x))) dµ =

∫

X

Lip(u)(x)dµ +

∫

X

Lip(u−1)(u(x)) dµ =

∫

X

Lip(u)(x)dµ +

∫

Y

Lip(u−1)(y) dν ≤

lim inf
n→+∞

(
∫

X

Lip(un)(x)dµ +

∫

Y

Lip(u−1
n )(y) dν

)

= lim inf
n→+∞

R(un).



Since cu(x) = eu−1(u(x)), we compute

R(u) =

∫

X

(eu + cu) dµ =

∫

X

(eu(x) + eu−1(u(x))) dµ =

∫

X

Lip(u)(x)dµ +

∫

X

Lip(u−1)(u(x)) dµ =

∫

X

Lip(u)(x)dµ +

∫

Y

Lip(u−1)(y) dν ≤

lim inf
n→+∞

(
∫

X

Lip(un)(x)dµ +

∫

Y

Lip(u−1
n )(y) dν

)

= lim inf
n→+∞

R(un).

We also obtain existence for the variational problem over the
set {u ∈ Ref(µ; ν), u incompressible} or the set
{u ∈ Ref(µ; ν), u open s.t. HK < 2}.



Since cu(x) = eu−1(u(x)), we compute

R(u) =

∫

X

(eu + cu) dµ =

∫

X

(eu(x) + eu−1(u(x))) dµ =

∫

X

Lip(u)(x)dµ +

∫

X

Lip(u−1)(u(x)) dµ =

∫

X

Lip(u)(x)dµ +

∫

Y

Lip(u−1)(y) dν ≤

lim inf
n→+∞

(
∫

X

Lip(un)(x)dµ +

∫

Y

Lip(u−1
n )(y) dν

)

= lim inf
n→+∞

R(un).

We also obtain existence for the variational problem over the
set {u ∈ Ref(µ; ν), u incompressible} or the set
{u ∈ Ref(µ; ν), u open s.t. HK < 2}.
This proof could be considered also in a metric framework.



We then characterize isometric measures by the following

Theorem
Let µ ∈ P(Ω) and ν ∈ P(Y ), so that µ = LN Ω,
ν = LN Y , for a given bounded set Y . Then, E(µ, ν) = 2 if
and only if there exists an isometry u such that u#µ = ν.
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Generalized Reformations

The notion of reformation map corresponds to the notion of
the so-called transport map, i.e. u : X → Y such that
u#µ = ν. A natural generalization of the transport map is
given by the notion of transport plan. A transport plan
between two probability measures µ ∈ P(X ) and ν ∈ P(Y ) is
a measure γ ∈ P(X ×Y ) such that π1

#γ = µ, π2
#γ = ν, where

πi , i = 1, 2 denote the projections of X × Y on its factors. A
transport map u corresponds to the the transport plan
γu := (I × u)#µ, where I is the identity map of X . The set of
transport plans with marginals µ and ν, denoted by Π(µ, ν), is
never empty since it always contains the transport plan
µ ⊗ ν.We shall call generalized reformation, or reformation
plan, of µ into ν any transport plan γ with marginals µ and ν.



Disintegrations

The key tool is the following

Theorem (Disintegration theorem)

Let γ ∈ P(X × Y ) be given and let π1 : X × Y → X be the
first projection map of X × Y , we set µ = (π1)#γ. Then for
µ − a.e. x ∈ X there exists νx ∈ P(Y ) such that

(i) the map x 7→ νx is Borel,

(ii) ∀ϕ ∈ Cb(X × Y ) :
∫

X×Y
ϕ(x , y)dγ =

∫

X

(∫

Y
ϕ(x , y)dνx(y)

)

dµ(x).

Moreover the measures νx are uniquely determined up to a
negligible set with respect to µ.
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As usual we will write γ = νx ⊗ µ, assuming that νx satisfy the
condition (i) and (ii) of Disintegration Theorem. Obviously
the transport plan µ ⊗ ν corresponds to the constant map
x 7→ νx = ν. For the transport plan γu := (I × u)#µ, the
Disintegration Theorem yields γu = δu(x) ⊗ µ. We call
Disintegration map the function f (x) = νx .

f : X → P(Y ).

We endow P(Y ) with the Wasserstein metric.

Definition

Let µ, ν ∈ P(X ), the 1-Wasserstein distance between µ and ν
is defined by

W (µ, ν) = inf
γ∈Π(µ,ν)

∫

X

d(x , y) dγ(x , y). (9)



Finding reformation plans
In the following examples we show that it is possible to
compare shapes with regular disintegration maps despite no
regular transport map does exist.
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Figure: A disconnected target reformation
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|det(∇u2)| = LN(B).
Let νx = LN(A)δu1(x) +LN(B)δu2(x), then the reformation plan
γ := νx ⊗ µ has µ = LN X and ν = LN Y as marginals.
The function f (x) = νx is, at least locally, bi-Lipschitz.

W (νx , νx0) = LN(A)|u1(x) − u1(x0)| + LN(B)|u2(x) − u2(x0)|.

Since u1, u2 are diffeomorphisms, we find constants
K1,2, H1,2, H , K such that

1

H
|x − x0| ≤

LN(A)
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LN(B)

H2

|x − x0| ≤

LN(A)|u1(x) − u1(x0)| + LN(B)|u2(x) − u2(x0)| =

W (νx , νx0) ≤ LN(A)K1|x −x0|+LN(B)K2|x −x0| ≤ K |x −x0|.
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Generalized Reformations

It makes sense to compare shapes through Disintegration
maps. We define

eγ(x) = ef (x), cγ(x) = cf (x). (10)

Namely, for any reformation plan γ = νx ⊗ µ of µ into ν we
define the pointwise expansion energy

eγ(x0) := lim sup
x→x0

W (νx , νx0)

|x − x0|
, (11)

and the pointwise compression energy

cγ(x0) = lim sup
x→x0

|x − x0|
W (νx , νx0)

. (12)
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Since W (δx , δy ) = d(x , y), for γ = (I × u)#µ we have

eγ(x) = eu(x), cγ(x) = cu(x).

We define the reformation energy of γ as follows

R(γ) =

∫

X

(eγ + cγ) dµ. (13)
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Working on a metric space setting some restriction arise. The
notion of generalized reformation involves the Lipschitz
pointwise constant of maps in a metric space framework. For
the associated integral energies it is natural to consider some
notion of Sobolev spaces in a metric setting. There exist
different notions of such metric Sobolev spaces, due to
Hajlasz, Shanmugalingam, Cheeger, etc., which coincide
provided some mild assumptions such as a doubling condition,
a Poincarè inequality and a power of integrability 1 < p < +∞
are satisfied. In particular the requirement on the power 1 < p
will be important to state a general existence result for the
variational problem related to generalized reformations.
Actually, these kind of assumptions seem to form a natural
context to work with in the setting of metric analysis.
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We prove the following

Theorem
Let γ = f (x) ⊗ µ ∈ GRef(µ; ν) be such that R(γ) = 2, µ
absolutely continuous with respect to the Lebesgue measure.
Then there exists an open dense subset of X on which the
disintegration map f is a local isometry (with respect to the
Wasserstein distance).

The open dense subset is obtained by a Baire Category
argument. This restriction on invertibility is due to the absence
of degree theory. Key tools: Transport continuity equation to
handle with Lipschitz curve ρ : [0, 1] → (P(Y ), W ),
(Ambrosio-Gigli-Savarè) and Kantorovich duality.
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The invertibility restriction can be avoid by taking small
reformations.

Definition

We define the set GRef(µ; ν) ⊂ Π(µ, ν) as the subset of
reformation plans γ of µ into ν satisfying

∀x0 ∈ X : ∃ r > 0, H , K s.t. eγ(x) ≤ K , cγ(x) ≤ H (14)

for every x ∈ X ∩ B(x0, r).

Definition

Let us define the set of small reformation plans between µ and
ν as follows

GRef0(µ, ν) = {γ ∈ Π(µ, ν) | eγ ≤ K , cγ ≤ H , HK <
N
√

2}.
(15)
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By the metric area formula, small reformations yields globally
invertible disintegration maps. Let us introduce the notation

EG (µ, ν) = inf{R(γ) | γ ∈ GRef0(µ; ν)}. (16)

We prove the following

Theorem
If EG (µ, ν) = 2, with µ absolutely continuous with respect to
the Lebesgue measure, then the infimum is attained at a local
isometric reformation plan.
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A natural question concerns the validity of an existence result
as done for transport maps. However, we observe that the
approach pursued in the proof of such result involve the
push-forward of the transport map. Therefore, for generalized
reformations, the push-forward of the disintegrations maps is
involved. Disintegration maps produce naturally a measure
f#µ over the space (P(Y ), W ). By the following lemma we
see that this point of view is equivalent to fix the second
marginal of transport plans correspondent to transport maps.
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f , g : X → P(Y ) defined by f (x) = δu(x), g(x) = δv(x). Then

u#µ = v#µ ⇔ f#µ = g#µ. (17)

Corollary

Let u, v : X → Y be two given Borel maps, µ ∈ P(X ), let
f , g : X → P(Y ) defined by f (x) = δu(x), g(x) = δv(x) and let
γ = f (x) ⊗ µ, η = g(x) ⊗ µ. Then

π2
#γ = π2

#η ⇔ f#µ = g#µ. (18)



part of the proof of the above Lemma works for general
transport plans γ = f (x) ⊗ µ, η = g(x) ⊗ µ, yielding the
following



part of the proof of the above Lemma works for general
transport plans γ = f (x) ⊗ µ, η = g(x) ⊗ µ, yielding the
following

Lemma
Let µ ∈ P(X ), f , g : X → P(Y ), γ = f (x)⊗ µ, η = g(x)⊗ µ
be given. Then the following implication holds true

f#µ = g#µ ⇒ π2
#γ = π2

#η. (19)



part of the proof of the above Lemma works for general
transport plans γ = f (x) ⊗ µ, η = g(x) ⊗ µ, yielding the
following

Lemma
Let µ ∈ P(X ), f , g : X → P(Y ), γ = f (x)⊗ µ, η = g(x)⊗ µ
be given. Then the following implication holds true

f#µ = g#µ ⇒ π2
#γ = π2

#η. (19)

Therefore, also for transport plans, the second marginal can be
fixed by fixing the push forward of disintegration maps.



part of the proof of the above Lemma works for general
transport plans γ = f (x) ⊗ µ, η = g(x) ⊗ µ, yielding the
following

Lemma
Let µ ∈ P(X ), f , g : X → P(Y ), γ = f (x)⊗ µ, η = g(x)⊗ µ
be given. Then the following implication holds true

f#µ = g#µ ⇒ π2
#γ = π2

#η. (19)

Therefore, also for transport plans, the second marginal can be
fixed by fixing the push forward of disintegration maps.in
general the converse of (19) is not true as for



part of the proof of the above Lemma works for general
transport plans γ = f (x) ⊗ µ, η = g(x) ⊗ µ, yielding the
following

Lemma
Let µ ∈ P(X ), f , g : X → P(Y ), γ = f (x)⊗ µ, η = g(x)⊗ µ
be given. Then the following implication holds true

f#µ = g#µ ⇒ π2
#γ = π2

#η. (19)

Therefore, also for transport plans, the second marginal can be
fixed by fixing the push forward of disintegration maps.in
general the converse of (19) is not true as for
f : X → P(Y ) defined by f (x) = ν and γ = f (x) ⊗ µ. Let
η = g(x) ⊗ µ where g(x) = δu(x) for a given transport map
u : X → Y with u#µ = ν
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This discussions allow to distinguish transport plans through
the push forward of disintegration maps. We introduce the
following notion of transport class.

Definition (Transport classes)

Let γ, η ∈ Π(µ, ν) with γ = f (x) ⊗ µ, η = g(x) ⊗ µ be given.
We shall say that γ and η are equivalent (by disintegration), in
symbols γ ≈ η, if f#µ = g#µ.
For any η ∈ Π(µ, ν) with η = g(x) ⊗ µ, we shall call transport
class any equivalence class of a transport plan η and it will be
denoted by [η], i.e.

[η] = {γ = f (x) ⊗ µ | f#µ = g#µ}. (20)

it follows that all transport plans induced by transport maps
belong to the same transport class.
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To better explain the notion of transport class, consider the
case of a discrete first marginal µ =

∑

i αiδxi
. For any

disintegration map it is easily seen that

f#µ =
∑

i

αiδf (xi ).

Therefore, transport classes are fixed by the range of f .
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The Above transport plans belong to the same transport class
since

f (x1) = 3(aδy1+bδy2), f (x2) = δy2 , f (x3) = δy2 , a = b =
1

6
.

g(x1) = δy2 , g(x2) = 3(aδy1+bδy2), g(x3) = δy2 , a = b =
1

6
.

Hence, all the transport plans with one mass splitted belong to
the same transport class.
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Maintaining fixed the number of splitting, the transport class
may be changed by modifying the amount of traveling masses.

k(x1) = 3(a′′δy1+b′′δy2), k(x2) = 3(c ′′δy1+d ′′δy2), k(x3) = δy2 ,

a′′ =
1

30
, b′ =

9
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, c ′ =

4
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, d ′ =

6
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Therefore, fixing a transport class means to consider a
constrained transport problem, with respect to splitting masses
or traveling ones.
Since the transport maps are dense in Π(µ, ν) we can state
the following

Proposition

Let u : X → Y , be a transport map, i.e. such that u#µ = ν,
with µ non-atomic, and let η = (I × u)#µ = δu(x) ⊗ µ. If
γ ∈ [η] then there exists a transport map v : X → Y such
that γ = δv(x) ⊗ µ, i.e. the transport plan γ is concentrated on
the graph of v .
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Minimize

{
∫

X

c(x , u(x))dµ : u#µ = ν

}

=

Minimize

{
∫

X×Y

c(x , y)dγ : γ ∈ [δv ⊗ µ]

}

,

for a transport map v .By density of transport maps, the
Kantorovich transport problem can be seen as

Minimize

{
∫

X×Y

c(x , y))dγ : γ ∈ Π(µ, ν)

}

=

Minimize

{
∫

X×Y

c(x , y)dγ : γ ∈ [δv ⊗ µ]
W

}

,

for a transport map v . Therefore, Monge problem correspond
to minimization of the functional

∫

c dγ in a fixed transport
class of Π(µ, ν), while the Kantorovich one corresponds to the
minimization on the whole Π(µ, ν).
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Monge-Kantorovich problems over transport

classes

Monge problem could be seen as a particular case of
minimization on a transport class. Since the transport classes
corresponds to the push forward of disintegration maps, they
can be assigned by considering probability measures Λ over
(P(Y ), W ). Consider f ⊗ µ ∈ Π(µ, ν) and Λ = f#µ. Since
(π2)#(f ⊗ µ) = ν, for every ϕ ∈ C(Y ) we have

∫

Y

ϕ(y) dν =

∫

X

(
∫

Y

ϕ(y) df (x)

)

dµ =

∫

X

Iϕ(f (x)) dµ =

∫

P(Y )

Iϕ(λ) dΛ(λ) =

∫

P(Y )

(
∫

Y

ϕ(y) dλ

)

dΛ.
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Therefore, the measure Λ has to satisfy the constraint

∫

P(Y )

λ dΛ = ν. (21)

Every probability measure Λ over (P(Y ), W ) satisfying (21)
define a transport class [η] = {f ⊗ µ : f#µ = Λ}. In this
perspective, transport plan in the transport class Λ can be
seen as transport map between µ and Λ. It is then natural to
consider the Monge-Kantorovich problem in the class Λ
defined as follows

MKΛ(c , µ, ν) := inf
γ

{
∫

X×Y

c(x , y)dγ : γ = f ⊗ µ, f#µ = Λ

}

(22)
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The notion of transport class leads naturally to consider an
abstract Monge problem between the space X and P(Y ).
Consider the following transport cost

∀(x , λ) ∈ X × P(Y ) : c̃(x , λ) =

∫

Y

c(x , y)dλ. (23)

We have the following

Proposition

For every transport class Λ we have

M(c̃ , µ, Λ) = MKΛ(c , µ, ν).
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Proof.

It suffices to observe that for any disintegration map
f : X → P(Y ) such that f#µ = Λ it results

∫

X

c̃(x , f (x))dµ =

∫

X

(
∫

Y

c(x , y)df (x)

)

dµ =

∫

X×Y

c(x , y)d(f ⊗ µ).

Observe that by the above proof it follows that f is a solution
of M(c̃ , µ, Λ) if and only if f ⊗ µ is a solution of MKΛ(c , µ, ν).
Therefore, every existence result for the Monge problem
M(c̃ , µ, Λ) in the abstract setting corresponds to an existence
result for the Monge-Kantorovich problem in the transport
class Λ
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Coming back to the reformation problem we have the following

Theorem
(Existence of optimal reformation plans) Let η ∈ GRef0(µ; ν)
be given. Then, for every p > 1 the variational problem

minimizeGRef0(µ;ν)

{

R
p(γ) :=

∫

X

(cp
γ

+ ep
γ
)dµ | γ ∈ [η]

}

(24)
admits solutions.
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Sketch of the proof

Consider
∫

X

cp
γ
(x)dµ =

∫

X

Lipp(f −1)(f (x)) dµ (25)

Since X satisfies the doubling condition and the Poincaré
inequality, we can apply the theory of Sobolev spaces over the
metric space (P(Y ), W , f#µ). Moreover, for p > 1 the
pointwise Lipschitz constant Lip(g) is the minimal generalized
upper gradient of the locally Lipschitz map g and coincides
with the Cheeger p-energy which is lower semicontinuous with
respect to Lp convergence.
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Hence
∫

X

cp
γ
(x)dµ =

∫

P(Y )

Lipp(f −1)(y) d(f#µ) ≤

lim inf
n→+∞

∫

P(Y )

Lipp(f −1
n )(y) d(f#µ).

By taking into account the condition (fn)#µ = f#µ ∀n ∈ N,
we get

∫

X

cp
γ
(x)dµ ≤ lim inf

n→+∞

∫

P(Y )

Lipp(f −1
n )(y) d((fn)#µ) =

= lim inf
n→+∞

∫

X

cp
γn

(x)dµ.
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