э

Transport problems with gradient penalization

Jean LOUET

International conference Monge-Kantorovich optimal transportation problem, transport metrics and their applications

June 7, 2012

Jean LOUET

Outline

Introduction

The one-dimensional and uniform case

Introduction to the general case

Perspectives

▲口 > ▲ □ > ▲ 三 > ▲ 三 > ● ▲ ○ ● ●

Introduction

The one-dimensional and uniform case

Introduction to the general case

Perspectives

(日)

The more general formulation

Let be $\Omega \subset \mathbb{R}^d$ a bounded open set, $\mu \in \mathcal{P}(\Omega)$, $\nu \in \mathcal{P}(\mathbb{R}^d)$; we investigate the problem

$$\inf\left\{\int_{\Omega} c(x, T(x), \nabla T(x)) \mathrm{d}\mu(x)\right\}$$

among the functions $T : \Omega \to \mathbb{R}^d$, ∇T being the Jacobian matrix of T, such that $T_{\#}\mu = \nu$.

Jean LOUET

Motivations :

æ

Motivations :

this problem starts from the classical optimal transportation theory (Monge, 1781) :

$$\inf\left\{\int_{\Omega} c(x, T(x)) \mathrm{d}\mu(x) : T_{\#}\mu = \nu\right\}$$

Motivations :

this problem starts from the classical optimal transportation theory (Monge, 1781) :

$$\inf\left\{\int_{\Omega} c(x,T(x)) \mathrm{d}\mu(x): T_{\#}\mu =
u
ight\}$$

- Ink with the incompressible elasticity :
 - minimization of the stress tensor, quatratic in ∇T
 - ► the constraint involves | det \(\nabla T\)|, which is equivalent to conditions on the image measure \(T_{\#}\mu\) for regular and injective \(T\)

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Ξ.

The quadratic case, if μ has a density f :

$$\inf\left\{\int_{\Omega} \left(|T(x) - x|^2 + |\nabla T(x)|^2\right) f(x) \mathrm{d}x\right\}$$
(1)

If $0 < c \le f \le C < +\infty$, the constraint is

 $T \in H^1(\Omega)$ and $T_{\#}\mu = \nu$

3

The quadratic case, if μ has a density f :

$$\inf\left\{\int_{\Omega} \left(|T(x) - x|^2 + |\nabla T(x)|^2\right) f(x) \mathrm{d}x\right\}$$
(1)

If $0 < c \leq f \leq C < +\infty$, the constraint is

$$T \in H^1(\Omega)$$
 and $T_{\#}\mu = \nu$

Let $(T_n)_n$ be a minimizing sequence; there exists $T \in H^1(\Omega)$ and $(n_k)_k$ such that

$$T_{n_k} \to T$$
 a.e. on Ω

and T satisfies the constraint on the image measure.

Jean LOUET

The quadratic case, if μ has a density f :

$$\inf\left\{\int_{\Omega} \left(|T(x) - x|^2 + |\nabla T(x)|^2\right) f(x) \mathrm{d}x\right\}$$
(1)

If $0 < c \leq f \leq C < +\infty$, the constraint is

$$T \in H^1(\Omega)$$
 and $T_{\#}\mu = \nu$

Let $(T_n)_n$ be a minimizing sequence; there exists $T \in H^1(\Omega)$ and $(n_k)_k$ such that

$$T_{n_k} \to T$$
 a.e. on Ω

and T satisfies the constraint on the image measure.

 \Rightarrow The problem (1) admits at least one solution.

Introduction

The one-dimensional and uniform case

Introduction to the general case

Perspectives

<ロ>

(日) (同) (三) (三)

э

It is well-known (Brenier, 1987) that for the quadratic cost $c(x, y) = |y - x|^2$ and $\mu \ll \mathcal{L}^1$, the Monge problem admits a unique solution, which has the form $T = \nabla \phi$ where ϕ is convex.

(日) (同) (三) (三)

э

It is well-known (Brenier, 1987) that for the quadratic cost $c(x, y) = |y - x|^2$ and $\mu \ll \mathcal{L}^1$, the Monge problem admits a unique solution, which has the form $T = \nabla \phi$ where ϕ is convex.

In dimension one, this means that T is nondecreasing.

It is well-known (Brenier, 1987) that for the quadratic cost $c(x, y) = |y - x|^2$ and $\mu \ll \mathcal{L}^1$, the Monge problem admits a unique solution, which has the form $T = \nabla \phi$ where ϕ is convex.

In dimension one, this means that T is nondecreasing.

For the problem with gradient $c(x, T, \nabla T) = |x - T|^2 + |\nabla T|^2$:

the nondecreasing T such that T_#μ = ν is not optimal in general;

ヘロト 人間ト 人造ト 人造トー

э.

It is well-known (Brenier, 1987) that for the quadratic cost $c(x, y) = |y - x|^2$ and $\mu \ll \mathcal{L}^1$, the Monge problem admits a unique solution, which has the form $T = \nabla \phi$ where ϕ is convex.

In dimension one, this means that T is nondecreasing.

For the problem with gradient $c(x, T, \nabla T) = |x - T|^2 + |\nabla T|^2$:

- ► the nondecreasing T such that T_#µ = ν is not optimal in general;
- it is optimal if $\mu = \mathcal{L}^1$.

Jean LOUET

If $\mu = \mathcal{L}^1$, the optimality of the monotone \mathcal{T} comes from the following result :

イロン イヨン イヨン イヨン

э.

If $\mu = \mathcal{L}^1$, the optimality of the monotone \mathcal{T} comes from the following result :

Theorem (L.-Santambrogio '11)

Let $I \subset \mathbb{R}$ be a bounded interval. Let $f : \mathbb{R}^+ \to \mathbb{R}$ be convex, nondecreasing, nonnegative. Let $U, T \in W^{1,1}(I)$ such that

•
$$\int_I f(|U'(x)|) \mathrm{d}x < +\infty$$

• T is nondecreasing and $T_{\#}\mathcal{L}^1 = U_{\#}\mathcal{L}^1$

If $\mu = \mathcal{L}^1$, the optimality of the monotone \mathcal{T} comes from the following result :

Theorem (L.-Santambrogio '11)

Let $I \subset \mathbb{R}$ be a bounded interval. Let $f : \mathbb{R}^+ \to \mathbb{R}$ be convex, nondecreasing, nonnegative. Let $U, T \in W^{1,1}(I)$ such that

•
$$\int_{I} f(|U'(x)|) \mathrm{d}x < +\infty$$

• T is nondecreasing and $T_{\#}\mathcal{L}^1 = U_{\#}\mathcal{L}^1$

Then $\int_I f(T'(x)) dx < +\infty$ with the inequality

$$\int_{I} f(|U'(x)|) \mathrm{d}x \ge \int_{I} f(n(x)T'(x)) \mathrm{d}x \qquad (2)$$

э.

where $n(x) = \# U^{-1}(T(x)), x \in I$.

Ξ.

Inequality (2) : sketch of the proof

The proof is elementary if U is piecewise C^1 and monotone, using the formula

$$\frac{1}{T'(x)} = \sum_{y:U(y)=T(x)} \frac{1}{|U'(y)|}$$

Inequality (2) : sketch of the proof

The proof is elementary if U is piecewise C^1 and monotone, using the formula

$$\frac{1}{T'(x)} = \sum_{y:U(y)=T(x)} \frac{1}{|U'(y)|}$$

We generalize to the case T, $U \in W^{1,1}(I)$ considering a sequence $(U_k)_k$ of such functions, verifying more :

- $U_k \to U$ in $W^{1,1}(I)$ and $f \circ |U'_k| \to f \circ |U'|$ in $L^1(I)$
- ► the sequence of corresponding monotone transport maps T_k (i.e. such that (T_k)_#L¹ = (U_k)_#L¹) is uniformly convergent to T.

Inequality (2) : sketch of the proof

The proof is elementary if U is piecewise C^1 and monotone, using the formula

$$\frac{1}{T'(x)} = \sum_{y:U(y)=T(x)} \frac{1}{|U'(y)|}$$

We generalize to the case T, $U \in W^{1,1}(I)$ considering a sequence $(U_k)_k$ of such functions, verifying more :

- ▶ $U_k \to U$ in $W^{1,1}(I)$ and $f \circ |U'_k| \to f \circ |U'|$ in $L^1(I)$
- ► the sequence of corresponding monotone transport maps T_k (i.e. such that (T_k)_#L¹ = (U_k)_#L¹) is uniformly convergent to T.

We take the limit of the inequality at the rank k by semi-continuity and Γ -convergence techniques.

A counter-example in the non-Lebesgue case

We would like to get $\mu \in \mathcal{P}([0, 1])$ and U, T with T nondecreasing, U non-injective, $T_{\#}\mu = U_{\#}\mu$ and the inequality (2) false.

<ロト < 課 > < 語 > < 語 > < 語 > の < 0</p>

3

A counter-example in the non-Lebesgue case We would like to get $\mu \in \mathcal{P}([0, 1])$ and U, T with T

nondecreasing, U non-injective, $T_{\#}\mu = U_{\#}\mu$ and the inequality (2) false.

We take for U the triangle function :

$$U(x) = 2x$$
 on $[0, 1/2], 1 - 2x$ on $[1/2, 1]$

and to each $\mu,$ we associate the unique ${\cal T}$ nondecreasing such that ${\cal T}_{\#}\mu={\cal U}_{\#}\mu.$

A counter-example in the non-Lebesgue case We would like to get $\mu \in \mathcal{P}([0, 1])$ and U, T with T

nondecreasing, U non-injective, $T_{\#\mu} = U_{\#\mu}$ and the inequality (2) false.

We take for U the triangle function :

$$U(x) = 2x$$
 on $[0, 1/2], 1 - 2x$ on $[1/2, 1]$

and to each μ , we associate the unique T nondecreasing such that $T_{\#}\mu = U_{\#}\mu$.

We take $\mu \ll \mathcal{L}^1$ with $\frac{d\mu}{d\mathcal{L}^1} = \begin{cases} \alpha \text{ on } [0,1/4] \cup [3/4,1]\\ 1 \text{ otherwise} \end{cases}$

(α will be fixed later, and μ has to be renormalized)

Jean LOUET

・ロト ・聞ト ・ヨト ・ヨト

э.

We compute $\nu = U_{\#}\mu$ and *T*. This gives $T' = \alpha$ on $[1 - \frac{1}{2\alpha}, 1]$, thus

$$\int_{I} T'^{p} \mathrm{d}\mu \geq \frac{\alpha^{p}}{2}$$

while $\int_{I} |U'|^{\rho} d\mu = 2^{\rho} (\alpha + 1)$. Taking α large enough, the inequality (2) becomes false.

(This stays true if we consider $U \mapsto \int_I f(|U'|)$ with $f(x)/x \to +\infty$).

Jean LOUET

Introduction

The one-dimensional and uniform case

Introduction to the general case

Perspectives

<ロ>

æ

Introduction to the general case

We consider the functional

$$J: \mathcal{T} \mapsto \int_I \left((\mathcal{T}(x) - x)^2 + \mathcal{T}'(x)^2 \right) \mathrm{d}\mu(x)$$

Problem : which is the suitable functional space X to consider the problem

$$\inf\{J(T) : T \in X, T_{\#}\mu = \nu\}?$$

Introduction to the general case

We consider the functional

$$J: T \mapsto \int_I \left((T(x) - x)^2 + T'(x)^2 \right) \mathrm{d}\mu(x)$$

Problem : which is the suitable functional space X to consider the problem

$$\inf\{J(T): T \in X, T_{\#}\mu = \nu\}?$$

- If we do not assume µ to be regular, the condition T ∈ L²_µ(I) does not guarantee the existence of T' even at the weak sense
- We should ideally get the implication

 $(T_n)_n$ bounded in $X \Rightarrow \exists T, (n_k)_k, T_{n_k} \to T\mu - a.e.$

3

Notion of tangential gradient

In any dimension, let $u \in L^2_{\mu}(\Omega)$.

Definition (Bouchitté-Buttazzo-Seppecher, Zhikov) We say $v \in L^2_{\mu}(\Omega)^d$ to be a gradient of u if :

$$\exists (u_n)_n \in \mathcal{D}(\Omega)^{\mathbb{N}} : \left\{ egin{array}{c} u_n
ightarrow u \
abla u_n
ightarrow v \end{array} egin{array}{c} in \ \mathcal{L}^2_\mu \
abla u_n
ightarrow v \end{array}
ight.$$

We denote by $\Gamma(u)$ these set.

Notion of tangential gradient

In any dimension, let $u \in L^2_{\mu}(\Omega)$.

Definition (Bouchitté-Buttazzo-Seppecher, Zhikov) We say $v \in L^2_{\mu}(\Omega)^d$ to be a gradient of u if :

$$\exists (u_n)_n \in \mathcal{D}(\Omega)^{\mathbb{N}} : \begin{cases} u_n \to u \\ \nabla u_n \to v \end{cases} \text{ in } L^2_{\mu}$$

We denote by $\Gamma(u)$ these set. We call tangential gradient of u, and we denote by $\nabla_{\mu}u$, the element of $\Gamma(u)$ with minimal L^2_{μ} -norm. We denote by H^1_{μ} the space of $u \in L^2_{\mu}$ such that $\Gamma(u) \neq \emptyset$.

Ξ.

Definition

There exists $x \mapsto T_{\mu}(x)$ a multifunction, called tangent space to μ such that, for $v \in (L^2_{\mu})^d$, we have the equivalence :

 $v \in \Gamma(0) \Leftrightarrow v(x) \perp T_{\mu}(x)$ for μ -a.e. x

3

Definition

There exists $x \mapsto T_{\mu}(x)$ a multifunction, called tangent space to μ such that, for $v \in (L^2_{\mu})^d$, we have the equivalence :

 $v \in \Gamma(0) \Leftrightarrow v(x) \perp T_{\mu}(x)$ for μ -a.e. x

Then for $u \in H^1_{\mu}$ and $v \in \Gamma(u)$ we have :

 $abla_{\mu}u(x) = p_{T_{\mu}(x)}(v(x))$ for μ -a.e. x

Definition

There exists $x \mapsto T_{\mu}(x)$ a multifunction, called tangent space to μ such that, for $v \in (L^2_{\mu})^d$, we have the equivalence :

$$v \in \Gamma(0) \Leftrightarrow v(x) \perp T_{\mu}(x)$$
 for μ -a.e. x

Then for $u \in H^1_{\mu}$ and $v \in \Gamma(u)$ we have :

 $abla_{\mu}u(x) = p_{T_{\mu}(x)}(v(x))$ for μ -a.e. x

Examples :

• if μ is uniform on $[0,1] \times \{0\}^{d-1}$, $\nabla_{\mu} u = \left(\frac{\partial u}{\partial x_1}, 0, ..., 0\right)$

• if *M* is a *k*-dimensional manifold and $\mu = \mathcal{H}^k|_M$, then $T_\mu = T_M$.

Jean LOUET

æ

Caracterization in dimension 1

Let $\mu=\mu_{\textit{a}}+\mu_{\textit{s}}$ be the Lebesgue decomposition of $\mu_{\textrm{r}}$ and :

• A a Lebesgue-negligible set on which is concentrated μ_s ;

Ξ.

Caracterization in dimension 1

Let $\mu=\mu_{\textit{a}}+\mu_{\textit{s}}$ be the Lebesgue decomposition of $\mu,$ and :

- A a Lebesgue-negligible set on which is concentrated μ_s ;
- f the density of μ_a , and

$$M = \left\{ x \in I : \forall \varepsilon > 0, \int_{I \cap]x - \varepsilon, x + \varepsilon[} \frac{1}{f} = +\infty \right\}$$

æ

Caracterization in dimension 1

Let $\mu=\mu_{\textit{a}}+\mu_{\textit{s}}$ be the Lebesgue decomposition of $\mu,$ and :

- A a Lebesgue-negligible set on which is concentrated μ_s ;
- f the density of μ_a , and

$$M = \left\{ x \in I : \forall \varepsilon > 0, \int_{I \cap]x - \varepsilon, x + \varepsilon[} \frac{1}{f} = +\infty \right\}$$

We show that :

$$T_{\mu}(x) = \begin{cases} \{0\} \text{ if } x \in M \cup A \\ \mathbb{R} \text{ otherwise} \end{cases}$$

Jean LOUET

Ξ.

Arguments for the caracterization

 $T_{\mu} = \mathbb{R}$ outside of $M \cup A$: we want :

$$\left(egin{array}{c} u_n
ightarrow 0 \ u'_n
ightarrow v \end{array}
ight) \qquad \Rightarrow \qquad v=0 \quad \mathcal{L}^1-{\sf a.e.} \ {\sf outside of} \ M$$

æ

Arguments for the caracterization

 $T_{\mu} = \mathbb{R}$ outside of $M \cup A$: we want :

$$\left(egin{array}{c} u_n
ightarrow 0 \\ u_n'
ightarrow v \end{array}
ight) \qquad \Rightarrow \qquad v=0 \quad \mathcal{L}^1-{\sf a.e.} \ {\sf outside of} \ M$$

If J verifies $\int_J (1/f) < +\infty$ and $\phi \in \mathcal{D}(J)$:

$$\left|\int_{J} u'_{n} \phi\right| \leq \left(\int_{J} u_{n}^{2} f\right)^{1/2} \left(\int_{J} \frac{(\phi')^{2}}{f}\right)^{1/2} \to 0$$

Jean LOUET

Transport problems with gradient penalization

Arguments for the caracterization

 $T_{\mu} = \{0\}$ on M : we want :

$$(orall u \in H^1_\mu) \quad (\exists v, (u_n)_n) \quad \left(egin{array}{c} u_n
ightarrow u \ u'_n
ightarrow v \ v|_M = 0 \end{array}
ight)$$

Arguments for the caracterization

 $T_{\mu} = \{0\}$ on M : we want :

$$(\forall u \in H^1_\mu) \quad (\exists v, (u_n)_n) \quad \left(egin{array}{c} u_n
ightarrow u \ u'_n
ightarrow v \ v|_M = 0 \end{array}
ight)$$

For any interval J containing an element of M, we have $\int_J 1/f = +\infty$ and the injection $L^2_{\mu} \hookrightarrow L^1$ is false; thus

$$\inf\left\{\int_{J}|v'|^{2}f:v=u ext{ at the bounds of }J
ight\}=0;$$

we use this proprety to approach u in L^2_{μ} by regular functions which the derivatives on M are arbitrary small (for the L^2_{μ} -norm).

Jean LOUET

Transport problems with gradient penalization

æ

Corollary

The problem

$$\inf\left\{\int_I \left((T(x)-x)^2+(\nabla_\mu T(x))^2\right)\mathsf{d}\mu(x):\,T\in H^1_\mu(I),\,T_\#\mu=\nu\right\}$$

has at least one solution.

Corollary

The problem

$$\inf\left\{\int_{I} \left((T(x) - x)^{2} + (\nabla_{\mu}T(x))^{2} \right) d\mu(x) : T \in H^{1}_{\mu}(I), T_{\#}\mu = \nu \right\}$$

has at least one solution.

Idea : let $(T_n)_n$ be a minimizing sequence.

- Outside of $M \cup A$, we have the injection $L^2_{\mu} \hookrightarrow L^1_{loc}$ and thus $H^1_{\mu} \hookrightarrow BV \Rightarrow$ convergence μ -a.e.
- ▶ On $M \cup A$, $\nabla_{\mu}T = 0$. We substitute T_n by the nondecreasing map which maps $\mu|_{M \cup A}$ on the same measure.
- We verify that the limit function satisfies $T_{\#}\mu = \nu$.

Ξ.

Partial results in any dimension

• We still have $T_{\mu} = \mathbb{R}^d$, a.e. for the regular part of μ , outside of the set

$$M = \left\{ x \in \Omega : \forall \varepsilon > 0, \int_{B(x,\varepsilon) \cap \Omega} \frac{1}{f} = +\infty \right\}$$

Partial results in any dimension

• We still have $T_{\mu} = \mathbb{R}^d$, a.e. for the regular part of μ , outside of the set

$$M = \left\{ x \in \Omega : \forall \varepsilon > 0, \int_{B(x,\varepsilon) \cap \Omega} \frac{1}{f} = +\infty \right\}$$

▶ We can build f with $\int 1/f = +\infty$ on any open set, but

$$\inf\left\{\int_{\Omega}|\nabla u|^{2}f:u=\phi \text{ on }\partial\Omega\right\}>0$$

The construction that we performed in the one-dimensional case to get $T_{\mu} = 0$ on M does not work if $d \ge 2$ in that case

However, it is possible to show that T_μ = {0} on each atom of the measure μ

Introduction

The one-dimensional and uniform case

Introduction to the general case

Perspectives

▲ロト ▲圖 ト ▲ ヨト ▲ ヨト ― ヨー めんの

イロト イヨト イヨト イヨト

Ξ.

More or less short term :

- precise description of T_{μ} in any dimension;
- result of "pointwise compactness" in H^1_{μ} ;
- extension to a power $p \neq 2$

イロト イ団ト イヨト イヨト

3

More or less short term :

- precise description of T_{μ} in any dimension;
- result of "pointwise compactness" in H^1_{μ} ;
- extension to a power $p \neq 2$

More longer term :

- optimality conditions on T;
- behavior with respect to the measure μ ; link between

$$\inf\{||T(x) - x||_{H^1_{\mu}} : T_{\#}\mu = \nu\}$$

and a "Benamou-Brenier" formulation

$$\inf\left\{\int_0^1 ||\mathbf{v}_t||^2_{H^1(\rho_t)} \mathrm{d}t : \rho_0 = \mu, \rho_1 = \nu, \partial_t \rho_t + \mathrm{div}(\rho_t \mathbf{v}_t) = 0\right\}$$

Jean LOUET

Transport problems with gradient penalization

Ξ.

Thank you for your attention !

Спасибо за внимание!