Transport problems with gradient penalization

Jean Louet
International conference
Monge-Kantorovich optimal transportation problem, transport metrics and their applications
June 7, 2012

Outline

Introduction

The one-dimensional and uniform case

Introduction to the general case

Perspectives

Introduction

The one－dimensional and uniform case

Introduction to the general case

Perspectives

The more general formulation

Let be $\Omega \subset \mathbb{R}^{d}$ a bounded open set, $\mu \in \mathcal{P}(\Omega), \nu \in \mathcal{P}\left(\mathbb{R}^{d}\right)$; we investigate the problem

$$
\inf \left\{\int_{\Omega} c(x, T(x), \nabla T(x)) \mathrm{d} \mu(x)\right\}
$$

among the functions $T: \Omega \rightarrow \mathbb{R}^{d}, \nabla T$ being the Jacobian matrix of T, such that $T_{\#} \mu=\nu$.

Motivations:

Jean Louet

Transport problems with gradient penalization

Motivations :

- this problem starts from the classical optimal transportation theory (Monge, 1781) :

$$
\inf \left\{\int_{\Omega} c(x, T(x)) \mathrm{d} \mu(x): T_{\#} \mu=\nu\right\}
$$

Motivations :

- this problem starts from the classical optimal transportation theory (Monge, 1781) :

$$
\inf \left\{\int_{\Omega} c(x, T(x)) \mathrm{d} \mu(x): T_{\#} \mu=\nu\right\}
$$

- link with the incompressible elasticity :
- minimization of the stress tensor, quatratic in ∇T
- the constraint involves $|\operatorname{det} \nabla T|$, which is equivalent to conditions on the image measure $T_{\#} \mu$ for regular and injective T

The quadratic case, if μ has a density f :

$$
\begin{equation*}
\inf \left\{\int_{\Omega}\left(|T(x)-x|^{2}+|\nabla T(x)|^{2}\right) f(x) \mathrm{d} x\right\} \tag{1}
\end{equation*}
$$

If $0<c \leq f \leq C<+\infty$, the constraint is

$$
T \in H^{1}(\Omega) \text { and } T_{\#} \mu=\nu
$$

The quadratic case, if μ has a density f :

$$
\begin{equation*}
\inf \left\{\int_{\Omega}\left(|T(x)-x|^{2}+|\nabla T(x)|^{2}\right) f(x) \mathrm{d} x\right\} \tag{1}
\end{equation*}
$$

If $0<c \leq f \leq C<+\infty$, the constraint is

$$
T \in H^{1}(\Omega) \text { and } T_{\#} \mu=\nu
$$

Let $\left(T_{n}\right)_{n}$ be a minimizing sequence ; there exists $T \in H^{1}(\Omega)$ and $\left(n_{k}\right)_{k}$ such that

$$
T_{n_{k}} \rightarrow T \text { a.e. on } \Omega
$$

and T satisfies the constraint on the image measure.

The quadratic case, if μ has a density f :

$$
\begin{equation*}
\inf \left\{\int_{\Omega}\left(|T(x)-x|^{2}+|\nabla T(x)|^{2}\right) f(x) \mathrm{d} x\right\} \tag{1}
\end{equation*}
$$

If $0<c \leq f \leq C<+\infty$, the constraint is

$$
T \in H^{1}(\Omega) \text { and } T_{\#} \mu=\nu
$$

Let $\left(T_{n}\right)_{n}$ be a minimizing sequence ; there exists $T \in H^{1}(\Omega)$ and $\left(n_{k}\right)_{k}$ such that

$$
T_{n_{k}} \rightarrow T \text { a.e. on } \Omega
$$

and T satisfies the constraint on the image measure.
\Rightarrow The problem (1) admits at least one solution.

Introduction

The one－dimensional and uniform case

Introduction to the general case

Perspectives

It is well-known (Brenier, 1987) that for the quadratic cost $c(x, y)=|y-x|^{2}$ and $\mu \ll \mathcal{L}^{1}$, the Monge problem admits a unique solution, which has the form $T=\nabla \phi$ where ϕ is convex.

It is well-known (Brenier, 1987) that for the quadratic cost $c(x, y)=|y-x|^{2}$ and $\mu \ll \mathcal{L}^{1}$, the Monge problem admits a unique solution, which has the form $T=\nabla \phi$ where ϕ is convex.

In dimension one, this means that T is nondecreasing.

It is well-known (Brenier, 1987) that for the quadratic cost $c(x, y)=|y-x|^{2}$ and $\mu \ll \mathcal{L}^{1}$, the Monge problem admits a unique solution, which has the form $T=\nabla \phi$ where ϕ is convex.

In dimension one, this means that T is nondecreasing.

For the problem with gradient $c(x, T, \nabla T)=|x-T|^{2}+|\nabla T|^{2}$:

- the nondecreasing T such that $T_{\#} \mu=\nu$ is not optimal in general ;

It is well-known (Brenier, 1987) that for the quadratic cost $c(x, y)=|y-x|^{2}$ and $\mu \ll \mathcal{L}^{1}$, the Monge problem admits a unique solution, which has the form $T=\nabla \phi$ where ϕ is convex.

In dimension one, this means that T is nondecreasing.

For the problem with gradient $c(x, T, \nabla T)=|x-T|^{2}+|\nabla T|^{2}$:

- the nondecreasing T such that $T_{\#} \mu=\nu$ is not optimal in general ;
- it is optimal if $\mu=\mathcal{L}^{1}$.

If $\mu=\mathcal{L}^{1}$, the optimality of the monotone T comes from the following result :

If $\mu=\mathcal{L}^{1}$, the optimality of the monotone T comes from the following result :

Theorem (L.-Santambrogio '11)

Let $I \subset \mathbb{R}$ be a bounded interval. Let $f: \mathbb{R}^{+} \rightarrow \mathbb{R}$ be convex, nondecreasing, nonnegative. Let $U, T \in W^{1,1}(I)$ such that

- $\int_{I} f\left(\left|U^{\prime}(x)\right|\right) \mathrm{d} x<+\infty$
- T is nondecreasing and $T_{\#} \mathcal{L}^{1}=U_{\#} \mathcal{L}^{1}$

If $\mu=\mathcal{L}^{1}$, the optimality of the monotone T comes from the following result :

Theorem (L.-Santambrogio '11)

Let $I \subset \mathbb{R}$ be a bounded interval. Let $f: \mathbb{R}^{+} \rightarrow \mathbb{R}$ be convex, nondecreasing, nonnegative. Let $U, T \in W^{1,1}(I)$ such that

- $\int_{I} f\left(\left|U^{\prime}(x)\right|\right) \mathrm{d} x<+\infty$
- T is nondecreasing and $T_{\#} \mathcal{L}^{1}=U_{\#} \mathcal{L}^{1}$

Then $\int_{I} f\left(T^{\prime}(x)\right) \mathrm{d} x<+\infty$ with the inequality

$$
\begin{equation*}
\int_{I} f\left(\left|U^{\prime}(x)\right|\right) \mathrm{d} x \geq \int_{I} f\left(n(x) T^{\prime}(x)\right) \mathrm{d} x \tag{2}
\end{equation*}
$$

where $n(x)=\# U^{-1}(T(x)), x \in I$.

Inequality (2) : sketch of the proof

The proof is elementary if U is piecewise C^{1} and monotone, using the formula

$$
\frac{1}{T^{\prime}(x)}=\sum_{y: U(y)=T(x)} \frac{1}{\left|U^{\prime}(y)\right|}
$$

Inequality (2) : sketch of the proof

The proof is elementary if U is piecewise C^{1} and monotone, using the formula

$$
\frac{1}{T^{\prime}(x)}=\sum_{y: U(y)=T(x)} \frac{1}{\left|U^{\prime}(y)\right|}
$$

We generalize to the case $T, U \in W^{1,1}(I)$ considering a sequence $\left(U_{k}\right)_{k}$ of such functions, verifying more :

- $U_{k} \rightarrow U$ in $W^{1,1}(I)$ and $f \circ\left|U_{k}^{\prime}\right| \rightarrow f \circ\left|U^{\prime}\right|$ in $L^{1}(I)$
- the sequence of corresponding monotone transport maps T_{k} (i.e. such that $\left.\left(T_{k}\right)_{\#} \mathcal{L}^{1}=\left(U_{k}\right)_{\#} \mathcal{L}^{1}\right)$ is uniformly convergent to T.

Inequality (2) : sketch of the proof

The proof is elementary if U is piecewise C^{1} and monotone, using the formula

$$
\frac{1}{T^{\prime}(x)}=\sum_{y: U(y)=T(x)} \frac{1}{\left|U^{\prime}(y)\right|}
$$

We generalize to the case $T, U \in W^{1,1}(I)$ considering a sequence $\left(U_{k}\right)_{k}$ of such functions, verifying more :

- $U_{k} \rightarrow U$ in $W^{1,1}(I)$ and $f \circ\left|U_{k}^{\prime}\right| \rightarrow f \circ\left|U^{\prime}\right|$ in $L^{1}(I)$
- the sequence of corresponding monotone transport maps T_{k} (i.e. such that $\left.\left(T_{k}\right)_{\#} \mathcal{L}^{1}=\left(U_{k}\right)_{\#} \mathcal{L}^{1}\right)$ is uniformly convergent to T.
We take the limit of the inequality at the rank k by semi-continuity and Γ-convergence techniques.

A counter-example in the non-Lebesgue case

We would like to get $\mu \in \mathcal{P}([0,1])$ and U, T with T nondecreasing, U non-injective, $T_{\#} \mu=U_{\#} \mu$ and the inequality (2) false.

A counter-example in the non-Lebesgue case

We would like to get $\mu \in \mathcal{P}([0,1])$ and U, T with T nondecreasing, U non-injective, $T_{\#} \mu=U_{\#} \mu$ and the inequality (2) false.

We take for U the triangle function :

$$
U(x)=2 x \text { on }[0,1 / 2], 1-2 x \text { on }[1 / 2,1]
$$

and to each μ, we associate the unique T nondecreasing such that $T_{\#} \mu=U_{\#} \mu$.

A counter-example in the non-Lebesgue case

We would like to get $\mu \in \mathcal{P}([0,1])$ and U, T with T nondecreasing, U non-injective, $T_{\#} \mu=U_{\#} \mu$ and the inequality (2) false.

We take for U the triangle function :

$$
U(x)=2 x \text { on }[0,1 / 2], 1-2 x \text { on }[1 / 2,1]
$$

and to each μ, we associate the unique T nondecreasing such that $T_{\#} \mu=U_{\#} \mu$.

We take $\mu \ll \mathcal{L}^{1}$ with

$$
\frac{\mathrm{d} \mu}{\mathrm{~d} \mathcal{L}^{1}}=\left\{\begin{array}{l}
\alpha \text { on }[0,1 / 4] \cup[3 / 4,1] \\
1 \text { otherwise }
\end{array}\right.
$$

(α will be fixed later, and μ has to be renormalized)

We compute $\nu=U_{\#} \mu$ and T. This gives $T^{\prime}=\alpha$ on $\left[1-\frac{1}{2 \alpha}, 1\right]$, thus

$$
\int_{I} T^{\prime p} \mathrm{~d} \mu \geq \frac{\alpha^{p}}{2}
$$

while $\int_{I}\left|U^{\prime}\right|^{p} \mathrm{~d} \mu=2^{p}(\alpha+1)$. Taking α large enough, the inequality (2) becomes false.
(This stays true if we consider $U \mapsto \int_{I} f\left(\left|U^{\prime}\right|\right)$ with $f(x) / x \rightarrow+\infty)$.

Introduction

The one－dimensional and uniform case

Introduction to the general case

Perspectives

Introduction to the general case

We consider the functional

$$
J: T \mapsto \int_{I}\left((T(x)-x)^{2}+T^{\prime}(x)^{2}\right) \mathrm{d} \mu(x)
$$

Problem : which is the suitable functional space X to consider the problem

$$
\inf \left\{J(T): T \in X, T_{\#} \mu=\nu\right\} ?
$$

Introduction to the general case

We consider the functional

$$
J: T \mapsto \int_{I}\left((T(x)-x)^{2}+T^{\prime}(x)^{2}\right) \mathrm{d} \mu(x)
$$

Problem : which is the suitable functional space X to consider the problem

$$
\inf \left\{J(T): T \in X, T_{\#} \mu=\nu\right\} ?
$$

- If we do not assume μ to be regular, the condition $T \in L_{\mu}^{2}(I)$ does not guarantee the existence of T^{\prime} even at the weak sense
- We should ideally get the implication

$$
\left(T_{n}\right)_{n} \text { bounded in } X \Rightarrow \exists T,\left(n_{k}\right)_{k}, T_{n_{k}} \rightarrow T \mu \text {-a.e. }
$$

Notion of tangential gradient

In any dimension, let $u \in L_{\mu}^{2}(\Omega)$.
Definition (Bouchitté-Buttazzo-Seppecher, Zhikov)
We say $v \in L_{\mu}^{2}(\Omega)^{d}$ to be a gradient of u if :

$$
\exists\left(u_{n}\right)_{n} \in \mathcal{D}(\Omega)^{\mathbb{N}}:\left\{\begin{array}{l}
u_{n} \rightarrow u \\
\nabla u_{n} \rightarrow v
\end{array} \quad \text { in } L_{\mu}^{2}\right.
$$

We denote by $\Gamma(u)$ these set.

Notion of tangential gradient

In any dimension, let $u \in L_{\mu}^{2}(\Omega)$.
Definition (Bouchitté-Buttazzo-Seppecher, Zhikov)
We say $v \in L_{\mu}^{2}(\Omega)^{d}$ to be a gradient of u if :

$$
\exists\left(u_{n}\right)_{n} \in \mathcal{D}(\Omega)^{\mathbb{N}}:\left\{\begin{array}{l}
u_{n} \rightarrow u \\
\nabla u_{n} \rightarrow v
\end{array} \quad \text { in } L_{\mu}^{2}\right.
$$

We denote by $\Gamma(u)$ these set. We call tangential gradient of u, and we denote by $\nabla_{\mu} u$, the element of $\Gamma(u)$ with minimal L_{μ}^{2}-norm. We denote by H_{μ}^{1} the space of $u \in L_{\mu}^{2}$ such that $\Gamma(u) \neq \emptyset$.

Definition

There exists $x \mapsto T_{\mu}(x)$ a multifunction, called tangent space to μ such that, for $v \in\left(L_{\mu}^{2}\right)^{d}$, we have the equivalence :

$$
v \in \Gamma(0) \Leftrightarrow v(x) \perp T_{\mu}(x) \text { for } \mu \text {-a.e. } x
$$

Definition

There exists $x \mapsto T_{\mu}(x)$ a multifunction, called tangent space to μ such that, for $v \in\left(L_{\mu}^{2}\right)^{d}$, we have the equivalence :

$$
v \in \Gamma(0) \Leftrightarrow v(x) \perp T_{\mu}(x) \text { for } \mu \text {-a.e. } x
$$

Then for $u \in H_{\mu}^{1}$ and $v \in \Gamma(u)$ we have:

$$
\nabla_{\mu} u(x)=p_{T_{\mu}(x)}(v(x)) \text { for } \mu \text {-a.e. } x
$$

Definition

There exists $x \mapsto T_{\mu}(x)$ a multifunction, called tangent space to μ such that, for $v \in\left(L_{\mu}^{2}\right)^{d}$, we have the equivalence :

$$
v \in \Gamma(0) \Leftrightarrow v(x) \perp T_{\mu}(x) \text { for } \mu \text {-a.e. } x
$$

Then for $u \in H_{\mu}^{1}$ and $v \in \Gamma(u)$ we have:

$$
\nabla_{\mu} u(x)=p_{T_{\mu}(x)}(v(x)) \text { for } \mu \text {-a.e. } x
$$

Examples:

- if μ is uniform on $[0,1] \times\{0\}^{d-1}, \nabla_{\mu} u=\left(\frac{\partial u}{\partial x_{1}}, 0, \ldots, 0\right)$
- if M is a k-dimensional manifold and $\mu=\left.\mathcal{H}^{k}\right|_{M}$, then $T_{\mu}=T_{M}$.

Caracterization in dimension 1

Let $\mu=\mu_{a}+\mu_{\mathrm{s}}$ be the Lebesgue decomposition of μ, and :

- A a Lebesgue-negligible set on which is concentrated μ_{s};

Caracterization in dimension 1

Let $\mu=\mu_{a}+\mu_{\mathrm{s}}$ be the Lebesgue decomposition of μ, and :

- A a Lebesgue-negligible set on which is concentrated μ_{s};
- f the density of μ_{a}, and

$$
M=\left\{x \in I: \forall \varepsilon>0, \int_{I \cap] x-\varepsilon, x+\varepsilon[} \frac{1}{f}=+\infty\right\}
$$

Caracterization in dimension 1

Let $\mu=\mu_{a}+\mu_{s}$ be the Lebesgue decomposition of μ, and :

- A a Lebesgue-negligible set on which is concentrated μ_{s};
- f the density of μ_{a}, and

$$
M=\left\{x \in I: \forall \varepsilon>0, \int_{I \cap] x-\varepsilon, x+\varepsilon[} \frac{1}{f}=+\infty\right\}
$$

We show that :

$$
T_{\mu}(x)=\left\{\begin{array}{l}
\{0\} \text { if } x \in M \cup A \\
\mathbb{R} \text { otherwise }
\end{array}\right.
$$

Arguments for the caracterization

$$
\begin{aligned}
& T_{\mu}=\mathbb{R} \text { outside of } M \cup A \text { : we want : } \\
& \qquad\binom{u_{n} \rightarrow 0}{u_{n}^{\prime} \rightarrow v} \quad \Rightarrow \quad v=0 \quad \mathcal{L}^{1} \text { - a.e. outside of } M
\end{aligned}
$$

Arguments for the caracterization

$T_{\mu}=\mathbb{R}$ outside of $M \cup A$: we want :

$$
\binom{u_{n} \rightarrow 0}{u_{n}^{\prime} \rightarrow v} \quad \Rightarrow \quad v=0 \quad \mathcal{L}^{1} \text { - a.e. outside of } M
$$

If J verifies $\int_{J}(1 / f)<+\infty$ and $\phi \in \mathcal{D}(J)$:

$$
\left|\int_{J} u_{n}^{\prime} \phi\right| \leq\left(\int_{J} u_{n}^{2} f\right)^{1 / 2}\left(\int_{J} \frac{\left(\phi^{\prime}\right)^{2}}{f}\right)^{1 / 2} \rightarrow 0
$$

Arguments for the caracterization

$$
\begin{aligned}
& T_{\mu}=\{0\} \text { on } M \text { : we want : } \\
& \qquad\left(\begin{array}{lll}
\left.\forall u \in H_{\mu}^{1}\right) & \left(\exists v,\left(u_{n}\right)_{n}\right) & \left(\begin{array}{c}
u_{n} \rightarrow u \\
u_{n}^{\prime} \rightarrow v \\
\left.v\right|_{M}=0
\end{array}\right.
\end{array}\right)
\end{aligned}
$$

Arguments for the caracterization

$$
\begin{aligned}
& T_{\mu}=\{0\} \text { on } M \text { : we want: } \\
& \qquad\left(\begin{array}{ll}
\left(\forall u \in H_{\mu}^{1}\right) \quad\left(\exists v,\left(u_{n}\right)_{n}\right) & \left(\begin{array}{c}
u_{n} \rightarrow u \\
u_{n}^{\prime} \rightarrow v \\
\left.v\right|_{M}=0
\end{array}\right)
\end{array}\right.
\end{aligned}
$$

For any interval J containing an element of M, we have $\int_{J} 1 / f=+\infty$ and the injection $L_{\mu}^{2} \hookrightarrow L^{1}$ is false; thus

$$
\inf \left\{\int_{J}\left|v^{\prime}\right|^{2} f: v=u \text { at the bounds of } J\right\}=0 ;
$$

we use this proprety to approach u in L_{μ}^{2} by regular functions which the derivatives on M are arbitrary small (for the L_{μ}^{2}-norm).

Corollary

The problem
$\inf \left\{\int_{I}\left((T(x)-x)^{2}+\left(\nabla_{\mu} T(x)\right)^{2}\right) \mathrm{d} \mu(x): T \in H_{\mu}^{1}(I), T_{\#} \mu=\nu\right\}$
has at least one solution.

Corollary

The problem
$\inf \left\{\int_{I}\left((T(x)-x)^{2}+\left(\nabla_{\mu} T(x)\right)^{2}\right) \mathrm{d} \mu(x): T \in H_{\mu}^{1}(I), T_{\#} \mu=\nu\right\}$
has at least one solution.
Idea : let $\left(T_{n}\right)_{n}$ be a minimizing sequence.

- Outside of $M \cup A$, we have the injection $L_{\mu}^{2} \hookrightarrow L_{\text {loc }}^{1}$ and thus $H_{\mu}^{1} \hookrightarrow B V \Rightarrow$ convergence μ-a.e.
- On $M \cup A, \nabla_{\mu} T=0$. We substitute T_{n} by the nondecreasing map which maps $\left.\mu\right|_{M \cup A}$ on the same measure.
- We verify that the limit function satisfies $T_{\#} \mu=\nu$.

Partial results in any dimension

- We still have $T_{\mu}=\mathbb{R}^{d}$, a.e. for the regular part of μ, outside of the set

$$
M=\left\{x \in \Omega: \forall \varepsilon>0, \int_{B(x, \varepsilon) \cap \Omega} \frac{1}{f}=+\infty\right\}
$$

Partial results in any dimension

- We still have $T_{\mu}=\mathbb{R}^{d}$, a.e. for the regular part of μ, outside of the set

$$
M=\left\{x \in \Omega: \forall \varepsilon>0, \int_{B(x, \varepsilon) \cap \Omega} \frac{1}{f}=+\infty\right\}
$$

- We can build f with $\int 1 / f=+\infty$ on any open set, but

$$
\inf \left\{\int_{\Omega}|\nabla u|^{2} f: u=\phi \text { on } \partial \Omega\right\}>0
$$

The construction that we performed in the one-dimensional case to get $T_{\mu}=0$ on M does not work if $d \geq 2$ in that case

- However, it is possible to show that $T_{\mu}=\{0\}$ on each atom of the measure μ

Introduction

The one－dimensional and uniform case

Introduction to the general case

Perspectives

More or less short term :

- precise description of T_{μ} in any dimension;
- result of "pointwise compactness" in H_{μ}^{1};
- extension to a power $p \neq 2$

More or less short term :

- precise description of T_{μ} in any dimension;
- result of "pointwise compactness" in H_{μ}^{1};
- extension to a power $p \neq 2$

More longer term :

- optimality conditions on T;
- behavior with respect to the measure μ; link between

$$
\inf \left\{\|T(x)-x\|_{H_{\mu}^{1}}: T_{\#} \mu=\nu\right\}
$$

and a "Benamou-Brenier" formulation

$$
\inf \left\{\int_{0}^{1}\left\|v_{t}\right\|_{H^{1}\left(\rho_{t}\right)}^{2} \mathrm{~d} t: \rho_{0}=\mu, \rho_{1}=\nu, \partial_{t} \rho_{t}+\operatorname{div}\left(\rho_{t} v_{t}\right)=0\right\}
$$

Thank you for your attention!

Спасибо за внимание!

Jean Louet
Transport problems with gradient penalization

