Kantorovich metric in noncommutative geometry

Pierre Martinetti
Università di Roma "Tor Vergata"

Monge-Kantorovich optimal transportation problem, transport metrics and their applications,
International conference dedicated to the centenary of L. V. Kantorovich,

Euler International Mathematical Institute
St. Petersburg, $6^{\text {th }}$ June 2012

Introduction

Any commutative C^{*}-algebra \mathcal{A} (i.e. Banach $*$-algebra with $\|a\|^{2}=\left\|a^{*} a\right\|$) is isomorphic to an algebra of continuous functions vanishing at infinity on some topological space $\mathcal{P}(\mathcal{A})$,

$$
\mathcal{A} \simeq C_{0}(\mathcal{P}(\mathcal{A})), \quad \mathcal{P}\left(C_{0}(\mathcal{X})\right) \simeq \mathcal{X} .
$$

$\mathcal{P}(\mathcal{A})$ is the set of pure states of \mathcal{A}, i.e. the extremal points of the set $\mathcal{S}(\mathcal{A})$ of normalized $(\mathbb{I} \rightarrow 1)$, positive $\left(a^{*} a \rightarrow \mathbb{R}^{+}\right)$linear map $\mathcal{A} \rightarrow \mathbb{C}$:

$$
S\left(C_{0}(\mathcal{X})\right) \ni \varphi: f \rightarrow \int_{\mathcal{X}} f \mathrm{~d} \mu, \quad \mathcal{P}\left(C_{0}(\mathcal{X})\right) \ni \delta_{x}: x \rightarrow f(x)
$$

Connes' theory of spectral triples $(\mathcal{A}, \mathcal{H}, D)$ extends Gelfand duality beyond topology, so that to encompass differential, homological, metric (spin) aspects,
commutative spectral triple \rightarrow noncommutative spectral triple

Riemannian geometry non-commutative geometry

- Geometry without points, but the latter are retrieved as pure states of \mathcal{A}.
- How does one retrieve the Riemannian distance on $\mathcal{P}\left(C_{0}(\mathcal{M})\right) \simeq \mathcal{M}$ a Riemannian manifold, and extend it to $\mathcal{P}(\mathcal{A})$ for noncommutative \mathcal{A} ?

Outline:

I. The metric aspect of noncommutative geometry

- Monge-Kantorovich distance in optimal transport theory
- spectral distance in noncommutative geometry
- commutative case: $\mathcal{A}=C_{0}(\mathcal{M})$
II. Towards a theory of optimal transport in noncommutative geometry?
- spectral distance on pure states as a cost function
- finite dimensional example: $\mathcal{A}=M_{n}(\mathbb{C})$
- product of the continuum by the discrete: $\mathcal{A}=C_{0}(\mathcal{M}) \otimes \mathbb{C}^{2}$
III. Translated states in the Euclidean and the Moyal planes: $\mathcal{A}=\mathbb{K}$
- optimal element
IV. Carnot-Carathéodory distance: $\mathcal{A}=C_{0}\left(S^{1}\right) \otimes M_{2}(\mathbb{C})$

I. The metric aspect of noncommutative geometry

Optimal transport

Let \mathcal{X} be a locally compact Polish space, $c(x, y)$ a positive real function - the "cost" - representing the work needed to move from x to y. The minimal work W required to transport the probability measure μ_{1} to μ_{2} is

$$
W\left(\mu_{1}, \mu_{2}\right) \doteq \inf _{\pi} \int_{\mathcal{X} \times \mathcal{X}} c(x, y) \mathrm{d} \pi
$$

where the infimum is over all transportation plans, i.e. measures π on $\mathcal{X} \times \mathcal{X}$ with marginals μ_{1}, μ_{2}.

When the cost function c is a distance d, then

$$
W\left(\mu_{1}, \mu_{2}\right) \doteq \inf _{\pi} \int_{\mathcal{X} \times \mathcal{X}} d(x, y) \mathrm{d} \pi
$$

is a distance (possibly infinite) on the space of probability measures on \mathcal{X}, called the Monge-Kantorovich or Wasserstein distance of order 1.

Spectral triple

An involutive algebra \mathcal{A}, a faithful representation on \mathcal{H}, an operator D on \mathcal{H} such that $[D, a]$ is bounded and $a[D-\lambda \mathbb{I}]^{-1}$ is compact for any $a \in \mathcal{A}$ and $\lambda \notin \operatorname{Sp} D$.

Furthermore, when a set of conditions (dimension, regularity, finitude, first order, orientability, reality, Poincaré duality) is satisfied, then

Theorem

\mathcal{M} a compact Riemann manifold, then $\left(C^{\infty}(\mathcal{M}), \Omega^{\bullet}(\mathcal{M}), d+d^{\dagger}\right)$ is a spectral triple.

When $(\mathcal{A}, \mathcal{H}, D)$ is a spectral triple with \mathcal{A} unital commutative, then there exists a compact Riemannian manifold \mathcal{M} such that $\mathcal{A}=\mathcal{C}^{\infty}(\mathcal{M})$.

Whatever \mathcal{A}, commutative or not, one defines on its state space $\mathcal{S}(\mathcal{A})$ the spectral distance (possibly infinite)

$$
d_{D}(\varphi, \tilde{\varphi})=\sup _{a \in \mathcal{A}}\{|\varphi(a)-\tilde{\varphi}(a)| /\|[D, a]\| \leq 1\}
$$

Let $\mathcal{X}=\mathcal{M}$ be a complete, connected, without boundary, Riemannian manifold. For any $\varphi, \tilde{\varphi} \in \mathcal{S}\left(C_{0}(\mathcal{M})\right)$,

$$
W(\varphi, \tilde{\varphi})=d_{D}(\varphi, \tilde{\varphi})
$$

where W is the Monge-Kantorovich distance associated to the cost $d_{\text {geo }}$, while d_{D} is the spectral distance associated to $\left(C_{0}^{\infty}(\mathcal{M}), \Omega^{\bullet}(\mathcal{M}), D=d+d^{\dagger}\right)$.
i. Kantorovich duality:

$$
\begin{equation*}
W(\varphi, \tilde{\varphi})=\sup _{\|f\|_{\text {Lip }} \leq 1}\left(\int_{\mathcal{X}} f \mathrm{~d} \mu-\int_{\mathcal{X}} f \mathrm{~d} \tilde{\mu}\right) \tag{1}
\end{equation*}
$$

with supremum on all real 1-Lipschitz $f \in C(\mathcal{X}):|f(x)-f(y)| \leq d_{\text {geo }}(x, y)$.
ii. For $f=f^{*},\left\|\left[d+d^{\dagger}, f\right]^{2}\right\|=\|[\not \partial, f]\|^{2}=\frac{1}{2}\|[[\Delta, f], f]\|=\|f\|_{\text {Lip }}^{2}$.
iii. Any 1-Lip. f non-vanishing at infinity can be approximated by the 1-Lip.

$$
f_{n}(x) \doteq f(x) e^{-d_{g e 0}\left(x_{0}, x\right) / n} \in C_{0}(\mathcal{M}) ;
$$

and any f_{n} is the uniform limit of a sequence of smooth 1-Lip. functions.

On the importance of being complete

Unknown to the speaker whether Kantorovich duality holds for non-complete space, so one takes (1) as a definition of Kantorovich distance. Let \mathcal{N} be compact and $\mathcal{M}=\mathcal{N} \backslash\left\{x_{0}\right\}$.

$$
\begin{aligned}
& \mathcal{N}=S^{1}=[0,1] \\
& \mathcal{M}=(0,1) \\
& \mathcal{N}=S^{2}, \mathcal{M}=S^{2} \backslash\left\{x_{0}\right\} \quad \text { then } \quad W_{\mathcal{N}}(x, y)=W_{\mathcal{M}} .
\end{aligned}
$$

- Removing a point from a complete compact manifold may change or not W. But it does not modify the spectral distance:

$$
\begin{aligned}
d_{D}^{\mathcal{N}}\left(\varphi_{1}, \varphi_{2}\right) & =\sup _{f \in C^{\infty}(\mathcal{N})}\left\{\left|\left(\varphi_{1}-\varphi_{2}\right)(f)\right| ;\|f\|_{\text {Lip }} \leq 1\right\} \\
& =\sup _{f \in C^{\infty}(\mathcal{N}), f\left(x_{0}\right)=0}\left\{\left|\left(\varphi_{1}-\varphi_{2}\right)(f)\right| ;\|f\|_{\text {Lip }} \leq 1\right\}=d_{D}^{\mathcal{M}}\left(\varphi_{1}, \varphi_{2}\right)
\end{aligned}
$$

since $C_{0}^{\infty}(\mathcal{N})=C^{\infty}(\mathcal{N})$ has a unit and $\left(C^{\infty}(\mathcal{N})\right.$, vanishing at $\left.x_{0}\right)=C_{0}^{\infty}(\mathcal{M})$.

$$
\begin{array}{ll}
\mathcal{N}=S^{1}, \mathcal{M}=(0,1): & d_{D}^{\mathcal{M}}=d_{S^{1}} \neq W_{\mathcal{M}} . \\
\mathcal{N}=S^{2}, \mathcal{M}=S^{2} \backslash\left\{x_{0}\right\}: & d_{D}^{\mathcal{M}}=d_{S^{2}}=W_{\mathcal{M}} .
\end{array}
$$

Connected components

Proposition

For any $x \in \mathcal{M}$ and any state φ of $C_{0}(\mathcal{M})$,

$$
d_{D}\left(\varphi, \delta_{x}\right)=\mathbb{E}\left(d(x, \dot{)} ; \mu)=\int_{\mathcal{M}} d_{\operatorname{geo}}(x, y) \mathrm{d} \mu(y) .\right.
$$

In particular for two pure states δ_{x}, δ_{y}, one retrieves $d_{D}\left(\delta_{x}, \delta_{y}\right)=d_{\text {geo }}(x, y)$.
Let

$$
S_{1}\left(C_{0}(\mathcal{M})\right) \doteq\left\{\varphi \in \mathcal{S}\left(C_{0}(\mathcal{M})\right), \mathbb{E}(d(x, .) ; \mu)<\infty\right\}
$$

and

$$
\operatorname{Con}(\varphi) \doteq\left\{\varphi^{\prime} \in \mathcal{S}\left(C_{0}(\mathcal{M})\right), d_{D}\left(\varphi, \varphi^{\prime}\right) \leq \infty\right\}
$$

Corollary

$\varphi \in S_{1}\left(C_{0}(\mathcal{M})\right)$ if and only if φ is at finite spectral distance from any pure state. Moreover for any $\varphi \in S_{1}\left(C_{0}(\mathcal{M})\right)$,

$$
\operatorname{Con}(\varphi)=S_{1}\left(C_{0}(\mathcal{M})\right)
$$

- Two states not in $S_{1}\left(C_{0}(\mathcal{M})\right)$ may be at finite distance from one another.

II. Towards a theory of optimal transport in noncommutative geometry ?

Let \mathcal{A} be a separable C^{*}-algebra with unit and $\varphi \in \mathcal{S}(\mathcal{A})$. There exists a (non-necessarily unique) probability measure $\mu \in \operatorname{Prob}(\mathcal{P}(\mathcal{A}))$ such that

$$
\varphi(a)=\int_{\mathcal{P}(\mathcal{A})} \hat{a}(\omega) \mathrm{d} \mu(\omega) \quad \text { where } \quad \hat{a}(\omega) \doteq \omega(a)
$$

Define the Kantorovich distance on $\mathcal{S}(\mathcal{A})$,

$$
\left.W_{D}(\varphi, \tilde{\varphi}) \doteq \sup _{a \in \operatorname{Lip}}^{D}(\mathcal{A})=\left|\int_{\mathcal{P}(\mathcal{A})} \hat{a}(\omega) \mathrm{d} \mu(\omega)-\int_{\mathcal{P}(\mathcal{A})} \hat{a}(\omega) \mathrm{d} \tilde{\mu}(\omega)\right|\right\},
$$

with cost function the spectral distance on $\mathcal{P}(\mathcal{A})$,

$$
\operatorname{Lip}_{D}(\mathcal{A}) \doteq\left\{a \in \mathcal{A} \text { such that }\left|\omega_{1}(a)-\omega_{2}(a)\right| \leq d_{D}\left(\omega_{1}, \omega_{2}\right) \forall \omega_{1}, \omega_{2} \in \mathcal{P}(\mathcal{A})\right\}
$$

Proposition

For any $\varphi, \tilde{\varphi} \in \mathcal{S}(\mathcal{A}), d_{D}(\varphi, \tilde{\varphi}) \leq W_{D}(\varphi, \tilde{\varphi})$.

- Obvious because $\{a \in \mathcal{A},\|D, a\| \leq 1\} \subset \operatorname{Lip}_{D}(\mathcal{A})$.
- If $d_{D}=W_{D}$, then Connes spectral distance is a problem of optimal transport, and noncommutative geometry provides examples of cost functions.

A two-point space

$$
\mathcal{A}=\mathbb{C}^{2}, \quad \mathcal{H}=\mathbb{C}^{2}, \quad D=\left(\begin{array}{cc}
0 & m \\
\bar{m} & 0
\end{array}\right)
$$

where $m \in \mathbb{C}$ and representation

$$
\pi\left(z_{1}, z_{2}\right)=\left(\begin{array}{cc}
z_{1} & 0 \\
0 & z_{2}
\end{array}\right)
$$

This is a two-point space

$$
\delta_{1}\left(z_{1}, z_{2}\right) \doteq z_{1}, \quad \delta_{2}\left(z_{1}, z_{2}\right) \doteq z_{2}
$$

with distance

$$
d_{D}\left(\delta_{1}, \delta_{2}\right)=\frac{1}{|m|} .
$$

- Discrete space (i.e. no geodesic) but finite distance.
- For non pure states, $d_{D}=W_{D}$ since

$$
\operatorname{Lip}_{D}\left(\mathbb{C}^{2}\right)=\left\{a \in \mathbb{C}^{2},\left|z_{1}-z_{2}\right| \leq \frac{1}{|m|}\right\}=\left\{a \in \mathbb{C}^{2},\|[D, a]\| \leq 1\right\}
$$

The sphere

$$
\mathcal{A}=M_{2}(\mathbb{C}), \quad \mathcal{H}=\mathbb{C}^{2}, \quad D=D^{*} \in M_{2}(\mathbb{C}) .
$$

Diagonalization of D fixes a base in \mathcal{H}. Pure states space of $M_{2}(\mathbb{C})$ is $\mathbb{C} P^{1}=S^{2}$:

$$
\omega_{\psi}(a)=(\psi, a \psi) \quad \forall a \in \mathcal{A}
$$

where

$$
\psi=\binom{\psi_{1}}{\psi_{2}} \in \mathbb{C} P^{1} \leftrightarrow\left\{\begin{array}{l}
x_{\psi}=\operatorname{Re}\left(\overline{\psi_{1}} \psi_{2}\right) \\
y_{\psi}=\operatorname{Im}\left(\overline{\psi_{1}} \psi_{2}\right) \\
z_{\psi}=\left|\psi_{1}\right|^{2}-\left|\psi_{2}\right|^{2}
\end{array} \in S^{2} .\right.
$$

North $\binom{1}{0}$ and south $\binom{0}{1}$ poles are eigenvectors of D with eigenvalues D_{1}, D_{2}.

Proposition

$$
d_{D}\left(\omega_{\psi}, \omega_{\tilde{\psi}}\right)= \begin{cases}\frac{2}{\left|D_{1}-D_{2}\right|} \sqrt{\left(x_{\psi}-x_{\tilde{\psi}}\right)^{2}+\left(y_{\psi}-y_{\tilde{\psi}}\right)^{2}} & \text { if } z_{\psi}=z_{\tilde{\psi}} \\ +\infty & \text { if } z_{\psi} \neq z_{\tilde{\psi}}\end{cases}
$$

Product of the continuum by the discrete

Product of a manifold \mathcal{M} by $\left(\mathbb{C}^{2}, \mathbb{C}^{2}, D_{I}=\left(\begin{array}{cc}0 & m \\ \bar{m} & 0\end{array}\right)\right)$, namely

$$
\mathcal{A}^{\prime}=C_{0}^{\infty}(\mathcal{M}) \otimes \mathbb{C}^{2}, \mathcal{H}^{\prime}=\Omega^{\bullet}(\mathcal{M}) \otimes \mathbb{C}^{2}, D^{\prime}=\left(d+d^{\dagger}\right) \otimes \mathbb{I}_{2}+\Gamma \otimes D_{l} .
$$

Proposition

The spectral distance $d_{D^{\prime}}$ between pure states of $\overline{\mathcal{A}^{\prime}}=C_{0}(\mathcal{M}) \otimes \mathbb{C}^{2}$,

$$
\mathcal{P}\left(\overline{\mathcal{A}^{\prime}}\right) \simeq \mathcal{M} \cup \mathcal{M}=\left\{x_{i} \doteq\left(x, \delta_{i}\right), x \in \mathcal{M}, \delta_{i} \in \mathcal{P}\left(\mathbb{C}^{2}\right)\right\},
$$

coincides with the geodesic distance in $\mathcal{M}^{\prime}=\mathcal{M} \times[0,1]$ with Riemannian metric

$$
\left(\begin{array}{cc}
g_{\mu \nu} & 0 \\
0 & \frac{1}{|m|}
\end{array}\right) .
$$

- Possible to make m a function on \mathcal{M} : Higgs field in the standard model of elementary particles.
$\mathcal{S}\left(\overline{\mathcal{A}^{\prime}}\right)$ is the set of couples of measures (μ, ν) on \mathcal{M}, normalized to

$$
\int_{\mathcal{M}} d \mu+\int_{\mathcal{M}} d \nu=1
$$

whose evaluation on $\mathcal{A}^{\prime} \ni a=(f, g)$, with $f, g \in C_{0}^{\infty}(\mathcal{M})$, is

$$
\varphi(a)=\int_{\mathcal{M}} f d \mu+\int_{\mathcal{M}} g d \nu
$$

- As before, $d_{D^{\prime}}(\varphi, \tilde{\varphi}) \leq W_{D^{\prime}}(\varphi, \tilde{\varphi})$ where $W_{D^{\prime}}$ is the Kantorovich distance on $\mathcal{M} \cup \mathcal{M}$ associated to the cost $d_{D^{\prime}}$.
- Equality holds $-d_{D^{\prime}}=d_{D}=W_{D}$ - for states localized on the same copy:

$$
\varphi=(0, \nu), \tilde{\varphi}=(0, \tilde{\nu}) \quad \text { or } \quad \varphi=(\mu, 0), \tilde{\varphi}=(\tilde{\mu}, 0) .
$$

- For two states localized on distinct copies, one may project back the problem on a single copy, using a cost function defined solely on \mathcal{M},

$$
c(x, y) \doteq d_{D^{\prime}}\left(x_{1}, y_{2}\right) \doteq \sqrt{d(x, y)^{2}+\frac{1}{|m|^{2}}}
$$

The Higgs field would then represent the cost to stay at the same point of space-time, but jumping from one copy to the other: $c(x, x)=\frac{1}{|m|} \neq 0$.

III. Translated states: Euclidean and Moyal planes

$$
\mathcal{A}=\left(\mathcal{S}\left(\mathbb{R}^{2}\right), \star\right), \quad \mathcal{H}=L^{2}\left(\mathbb{R}^{2}\right) \otimes \mathbb{C}^{2}, \quad D=-i \sum_{\mu=1}^{2} \sigma^{\mu} \partial_{\mu}
$$

where

$$
(f \star g)(x)=\frac{1}{(\pi \theta)^{2}} \int d^{2} s d^{2} t f(x+s) g(x+t) e^{-i 2 s \Theta^{-1} t}
$$

with

$$
s \Theta^{-1} t \equiv s^{\mu} \Theta_{\mu \nu}^{-1} t^{\nu} \quad \text { with } \Theta_{\mu \nu}=\theta\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \theta \in \mathbb{R}^{+*}
$$

and

$$
D=-i \sqrt{2}\left(\begin{array}{cc}
0 & \bar{\partial} \\
\partial & 0
\end{array}\right) \quad \text { with } \quad \partial=\frac{1}{\sqrt{2}}\left(\partial_{1}-i \partial_{2}\right), \quad \bar{\partial}=\frac{1}{\sqrt{2}}\left(\partial_{1}+i \partial_{2}\right) .
$$

The Moyal algebra \mathcal{A} acts on \mathcal{H} as $\pi(f) \psi=\binom{f \star \psi_{1}}{f \star \psi_{2}}$.

- The evaluation at x is not a state for $\left(f^{*} \star f\right)(x)$ may not be positive.
- The pure states of $\overline{\mathcal{A}}=\mathbb{K}$ are the vector states in an irreducible representation.

For $\kappa \in \mathbb{R}^{2} \simeq \mathbb{C}$, we write $\left(\alpha_{\kappa} f\right)(x)=f(x+\kappa)$. The κ-translated of a state φ is

$$
\alpha_{\kappa} \varphi(f) \doteq \varphi \circ \alpha_{\kappa}(f) .
$$

Theorem

$$
d_{D}\left(\varphi, \alpha_{\kappa} \varphi\right)=|\kappa|
$$

Let us call optimal element an element in \mathcal{A} that attains the supremum in the spectral distance formula or, in case the supremum is not attained, a sequence

$$
a_{n} \in \mathcal{A}, \quad\left\|\left[D, a_{n}\right]\right\| \leq 1, \quad \lim \left(\tilde{\varphi}\left(a_{n}\right)-\varphi\left(a_{n}\right)\right)=d_{D}(\tilde{\varphi}, \varphi)
$$

Then, given any state φ and $\kappa=|\kappa| e^{i \equiv}$,

$$
f(z)=\frac{1}{\sqrt{2}}\left(z e^{-i \equiv}+\bar{z} e^{i \equiv}\right)
$$

is an optimal element both in the commutative case through pointwise action

$$
f \psi=\sqrt{2}\left(z \cdot \frac{\kappa}{|\kappa|}\right) \psi \quad \psi \in L^{2}\left(\mathbb{R}^{2}\right)
$$

and in the Moyal noncommutative case through the \star-action:

$$
f \star \psi=\frac{1}{\sqrt{2}}\left(e^{-i \bar{E}_{z}}+e^{i \bar{\Xi}_{\bar{z}}}\right) \star \psi \quad \psi \in L^{2}\left(\mathbb{R}^{2}\right) .
$$

- In fact f is made cancel at infinity : $f e^{-\frac{|z|}{n}}$ or $f \star e_{\star}^{-\frac{\bar{z} * z}{n}}$.

IV Carnot-Carathéodory distance

$$
\begin{gathered}
\mathcal{A}^{\prime}=C_{0}^{\infty}(\mathcal{M}) \otimes M_{n}(\mathbb{C}), \mathcal{H}^{\prime}=L^{2}(\mathcal{M}, S) \otimes M_{n}(\mathbb{C}) \\
D^{\prime}=-i \sum_{\mu=1}^{m} \gamma^{\mu} \partial_{\mu} \otimes \mathbb{I}_{n}+\gamma^{\mu} \otimes A_{\mu}
\end{gathered}
$$

$A_{\mu} d x^{\mu}$ is a field of 1 -form on \mathcal{M} with value in $\mathfrak{u}(n)$: a $U(n)$-connection 1-form.
$\mathcal{P}\left(\overline{\mathcal{A}^{\prime}}\right)$ is a trivial bundle $P \xrightarrow{\pi} \mathcal{M}$ with fiber $\mathbb{C} P^{n-1}$, that is

$$
P \ni p=(x, \xi)=\xi_{x} \text { with } x \in \mathcal{M}, \xi \in \mathbb{C} P^{n-1} .
$$

Evaluation of $\xi_{x} \in P$ on $a \in \mathcal{A}$,

$$
\xi_{x}(a)=(\xi, a(x) \xi)=\operatorname{Tr}\left(s_{\xi} a(x)\right) .
$$

- D^{\prime} is the covariant Dirac operator $-i \gamma^{\mu}\left(\partial_{\mu}+A_{\mu}\right)$ on the bundle P, associated to the connection A_{μ}.

The connection defines a spectral distance $d_{D^{\prime}}$ and an horizontal distance d_{H} :

$$
T_{p} P=V_{p} P \oplus H_{p} P \Longrightarrow d_{H}(p, q)=\operatorname{lnf}_{\dot{c}_{t} \in H_{t} P} \int_{0}^{1}\left\|\dot{c}_{t}\right\| d t
$$

For instance

$$
d_{H}\left(\xi_{x}, \zeta_{X}\right)=4 \pi
$$

$$
d_{D^{\prime}}=d_{H} ?
$$

Proposition

$$
d_{D} \leq d_{H} .
$$

Denoting $\operatorname{Acc}\left(\xi_{x}\right)$ the set of points at finite horizontal distance from ξ_{x}, and Con $\left(\xi_{x}\right)$ the set points at finite spectral distance,

$$
\operatorname{Acc}\left(\xi_{x}\right) \subsetneq \operatorname{Con}\left(\xi_{x}\right) .
$$

Example: $\mathcal{A}=C\left(S^{1}\right) \otimes M_{2}(\mathbb{C})$

$$
A_{1}=i\left(\begin{array}{cc}
\theta_{1} & 0 \\
0 & \theta_{2}
\end{array}\right), \quad \omega \doteq \int_{0}^{2 \pi} \frac{\theta_{1}(t)-\theta_{2}(t) d t}{2 \pi} .
$$

Proposition

Fiberwise,

$$
\left\{\begin{aligned}
d_{H}(0, \varphi) & =2 k \pi & & \text { if } & & \varphi=k(2 \pi \omega) \bmod [2 \pi], \\
& =\infty & & \text { otherwise; } & & \\
d_{D}(0, \varphi) & =C \sin \frac{\varphi}{2} & & \text { with } & & C=\frac{4 \pi\left|V_{1}\right|\left|V_{2}\right|}{|\sin \omega \pi|} .
\end{aligned}\right.
$$

Conclusion

Connes spectral distance d_{D} in noncommutative geometry coincides with the Monge-Kantorovich metric in the commutative case, and offers a possible generalization in the noncommutative framework.

- Translation isometries in the Moyal plane: spectral distance between coherent states, P.M., L. Tomassini, arXiv:1111.6164.
- A view on optimal transport from noncommutative geometry, F. D'Andrea, P.M., SIGMA 6 (2010) 057.
- Spectral distance on the circle, J. Func. Anal. 255 (2008) 1575-1612.
- Carnot-Carathéodory metric from gauge fluctuation in noncommutative geometry, Comm. Math. Phys. 265 (2006) 585-616.
- Discrete Kaluza-Klein from scalar fluctuations in noncommutative geometry,
R. Wulkenhaar,P.M., J. Math. Phys. 43 (2002) 182-204.

1. Dimension: D^{-1} is an infinitesimal of order $\frac{1}{m}$.
2. Regularity: for any $a \in \mathcal{A}, a$ and $[D, a]$ belong to the intersection of the domains of all the powers δ^{k} of the derivation $\delta(b) \doteq[|D|, b]$, where b belongs to the algebra generated by \mathcal{A} and $[D, \mathcal{A}]$.
3. Finitude: \mathcal{A} is a pre- C^{*}-algebra and the set $\mathcal{H}^{\infty} \doteq \bigcap_{k \in \mathbb{N}}$ Dom D^{k} of smooth vectors of \mathcal{H} is a finite projective module.
4. First order: the representation of \mathcal{A}° commutes with $[D, \mathcal{A}]$

$$
\left[[D, a], J b^{*} J^{-1}\right]=0 \text { for all } a, b \in \mathcal{A} .
$$

5. Orientability: there exists a Hochschild cycle $c \in Z_{n}\left(\mathcal{A}, \mathcal{A} \otimes \mathcal{A}^{\circ}\right)$ such that $\pi(c)=\Gamma$.
6. Reality $\left(\mathcal{A} \otimes \mathcal{A}^{\circ}, \mathcal{H}, D, \Gamma, J\right)$ is a $K R^{n}$-cycle with $\left[a, J b^{*} J^{-1}\right]=0$. J is called the real structure. That is

- J is a anti-unitary bijection on \mathcal{H} that implements the involution, i.e. $\mathrm{Ja}^{-1}=a^{*}$ for all $a \in \mathcal{A}$;
- if n is even, there is a graduation Γ of \mathcal{H} that commutes with \mathcal{A} and anticommutes with D;
- the following table holds

$\mathrm{n} \bmod 8$	0	1	2	3	4	5	6	7
$J^{2}= \pm \mathbb{I}$	+	+	-	-	-	-	+	+
$J D= \pm D J$	+	-	+	+	+	-	+	+
$J \Gamma= \pm \Gamma J$	+		-		+		-	

For odd n, one sets $\Gamma=\mathbb{I}$.
7. Poincaré duality: the additive coupling on $K_{*}(\mathcal{A})$ coming from the index of the Dirac operator is non-degenerated.

