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Introduction

Any commutative C∗-algebra A (i.e. Banach ∗-algebra with ‖a‖2 = ‖a∗a‖) is
isomorphic to an algebra of continuous functions vanishing at infinity on some
topological space P(A), Gelfand duality

A ' C0(P(A)), P(C0(X )) ' X .

P(A) is the set of pure states of A, i.e. the extremal points of the set S(A) of
normalized (I→ 1), positive (a∗a→ R+) linear map A → C:

S(C0(X )) 3 ϕ : f →
∫
X

f dµ, P(C0(X )) 3 δx : x → f (x).

Connes’ theory of spectral triples (A,H,D) extends Gelfand duality beyond
topology, so that to encompass differential, homological, metric (spin) aspects,

commutative spectral triple → noncommutative spectral triple

l ↓
Riemannian geometry non-commutative geometry

I Geometry without points, but the latter are retrieved as pure states of A.
I How does one retrieve the Riemannian distance on P(C0(M)) 'M a

Riemannian manifold, and extend it to P(A) for noncommutative A ?
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I. The metric aspect of noncommutative geometry

Optimal transport

Let X be a locally compact Polish space, c(x , y) a positive real function - the
“cost” - representing the work needed to move from x to y . The minimal work
W required to transport the probability measure µ1 to µ2 is

W (µ1, µ2)
.

= inf
π

∫
X×X

c(x , y) dπ

where the infimum is over all transportation plans, i.e. measures π on X × X
with marginals µ1, µ2.

When the cost function c is a distance d , then

W (µ1, µ2)
.

= inf
π

∫
X×X

d(x , y) dπ

is a distance (possibly infinite) on the space of probability measures on X , called
the Monge-Kantorovich or Wasserstein distance of order 1.



Spectral triple

An involutive algebra A, a faithful representation on H, an operator D on H such
that [D, a] is bounded and a[D − λI]−1 is compact for any a ∈ A and λ /∈ Sp D.

Furthermore, when a set of conditions (dimension, regularity, finitude, first order,
orientability, reality, Poincaré duality) is satisfied, then

Theorem Connes 1996-2008

M a compact Riemann manifold, then (C∞(M),Ω•(M), d + d†) is a spectral
triple.

When (A,H,D) is a spectral triple with A unital commutative, then there exists
a compact Riemannian manifold M such that A = C∞(M).

Whatever A, commutative or not, one defines on its state space S(A) the
spectral distance (possibly infinite)

dD(ϕ, ϕ̃) = sup
a∈A
{|ϕ(a)− ϕ̃(a)| / ‖[D, a]‖ ≤ 1}.



Proposition Rieffel 99, then D’Andrea, P.M. 2009

Let X =M be a complete, connected, without boundary, Riemannian manifold.
For any ϕ, ϕ̃ ∈ S(C0(M)),

W (ϕ, ϕ̃) = dD(ϕ, ϕ̃)

where W is the Monge-Kantorovich distance associated to the cost dgeo, while
dD is the spectral distance associated to

(
C∞0 (M) ,Ω•(M),D = d + d†

)
.

i. Kantorovich duality:

W (ϕ, ϕ̃) = sup
‖f ‖Lip≤1

(∫
X

f dµ−
∫
X

f dµ̃
)

(1)

with supremum on all real 1-Lipschitz f ∈ C (X ): |f (x)− f (y)| ≤ dgeo(x , y).

ii. For f = f ∗,
∥∥[d + d†, f ]2

∥∥ = ||[∂/, f ]||2 = 1
2 ‖[[∆, f ], f ]‖ = ‖f ‖2

Lip.

iii. Any 1-Lip. f non-vanishing at infinity can be approximated by the 1-Lip.

fn(x)
.

= f (x)e−dgeo(x0,x)/n ∈ C0(M);

and any fn is the uniform limit of a sequence of smooth 1-Lip. functions.



On the importance of being complete

Unknown to the speaker whether Kantorovich duality holds for non-complete
space, so one takes (1) as a definition of Kantorovich distance.
Let N be compact and M = N r {x0} .

N = S1 = [0, 1]
M = (0, 1)

ff
WN (x , y) = min{|x − y |, 1− |x − y |} 6= WM(x , y) = |x − y |.

N = S2, M = S2 r {x0} then WN = WM.

I Removing a point from a complete compact manifold may change or not W .
But it does not modify the spectral distance:

dND (ϕ1, ϕ2) = sup
f∈C∞(N )

{
|(ϕ1 − ϕ2)(f )|; ||f ||Lip ≤ 1

}
= sup

f∈C∞(N ),f (x0)=0

{
|(ϕ1 − ϕ2)(f )|; ||f ||Lip ≤ 1

}
= dMD (ϕ1, ϕ2)

since C∞0 (N ) = C∞(N ) has a unit and (C∞(N ), vanishing at x0) = C∞0 (M).

N = S1,M = (0, 1) : dMD = dS1 6= WM.

N = S2,M = S2 r {x0} : dMD = dS2 = WM.



Connected components

Proposition

For any x ∈M and any state ϕ of C0(M),

dD(ϕ, δx) = E
(
d(x , )̇;µ

)
=

∫
M

dgeo(x , y)dµ(y) .

In particular for two pure states δx , δy , one retrieves dD(δx , δy ) = dgeo(x , y).

Let
S1(C0(M))

.
= {ϕ ∈ S(C0(M)) ,E

(
d(x , .);µ

)
<∞}

and
Con(ϕ)

.
= {ϕ′ ∈ S(C0(M)), dD(ϕ,ϕ′) ≤ ∞}.

Corollary

ϕ ∈ S1(C0(M)) if and only if ϕ is at finite spectral distance from any pure state.
Moreover for any ϕ ∈ S1(C0(M)),

Con(ϕ) = S1(C0(M)).

I Two states not in S1(C0(M)) may be at finite distance from one another.



II. Towards a theory of optimal transport in noncommutative geometry ?

Let A be a separable C∗-algebra with unit and ϕ ∈ S(A). There exists a
(non-necessarily unique) probability measure µ ∈ Prob(P(A)) such that

ϕ(a) =

∫
P(A)

â(ω) dµ(ω) where â(ω)
.

= ω(a).

Define the Kantorovich distance on S(A),

WD(ϕ, ϕ̃)
.

= sup
a∈LipD (A)

{
|
∫
P(A)

â(ω) dµ(ω)−
∫
P(A)

â(ω) dµ̃(ω)|

}
,

with cost function the spectral distance on P(A),

LipD(A)
.

= {a ∈ A such that |ω1(a)− ω2(a)| ≤ dD(ω1, ω2) ∀ω1, ω2 ∈ P(A)}.

Proposition P.M. 2011

For any ϕ, ϕ̃ ∈ S(A), dD(ϕ, ϕ̃) ≤WD(ϕ, ϕ̃).

I Obvious because {a ∈ A, ‖D, a‖ ≤ 1} ⊂ LipD(A).
I If dD = WD , then Connes spectral distance is a problem of optimal transport,

and noncommutative geometry provides examples of cost functions.



A two-point space

A = C2, H = C2, D =

(
0 m
m̄ 0

)
where m ∈ C and representation

π(z1, z2) =

(
z1 0
0 z2

)
.

This is a two-point space

δ1(z1, z2)
.

= z1, δ2(z1, z2)
.

= z2

with distance

dD(δ1, δ2) =
1

|m|
.

I Discrete space (i.e. no geodesic) but finite distance.
I For non pure states, dD = WD since

LipD(C2) =

{
a ∈ C2, |z1 − z2| ≤

1

|m|

}
=
{
a ∈ C2, ‖[D, a]‖ ≤ 1

}
.



The sphere
A = M2(C), H = C2, D = D∗ ∈ M2(C).

Diagonalization of D fixes a base in H. Pure states space of M2(C) is CP1 = S2:

ωψ(a) = (ψ, aψ) ∀a ∈ A

where

ψ =

(
ψ1

ψ2

)
∈ CP1 ↔

 xψ = Re(ψ1ψ2)
yψ = Im(ψ1ψ2)
zψ = |ψ1|2 − |ψ2|2

∈ S2.

North

(
1
0

)
and south

(
0
1

)
poles are eigenvectors of D with eigenvalues D1,D2.

Proposition Iochum, Krajewski, P.M. 2001

dD(ωψ, ωψ̃) =

{
2

|D1−D2|

√
(xψ − xψ̃)2 + (yψ − yψ̃)2 if zψ = zψ̃,

+∞ if zψ 6= zψ̃.



Product of the continuum by the discrete

Product of a manifold M by

(
C2,C2,DI =

(
0 m
m̄ 0

))
, namely

A′ = C∞0 (M)⊗ C2, H′ = Ω•(M)⊗ C2, D ′ = (d + d†)⊗ I2 + Γ⊗ DI .

Proposition P.M., Wulkenhaar 2001

The spectral distance dD′ between pure states of A′ = C0(M)⊗ C2,

P(A′) 'M∪M =
{
xi
.

= (x , δi ), x ∈M, δi ∈ P(C2)
}
,

coincides with the geodesic distance in M′ =M× [0, 1] with Riemannian metric(
gµν 0

0 1
|m|

)
.

I Possible to make m a function on M: Higgs field in the standard model of
elementary particles.



S(A′) is the set of couples of measures (µ, ν) on M, normalized to∫
M

dµ+

∫
M

dν = 1,

whose evaluation on A′ 3 a = (f , g), with f , g ∈ C∞0 (M), is

ϕ(a) =

∫
M

f dµ+

∫
M

g dν.

I As before, dD′(ϕ, ϕ̃) ≤WD′(ϕ, ϕ̃) where WD′ is the Kantorovich distance on
M∪M associated to the cost dD′ .

I Equality holds - dD′ = dD = WD - for states localized on the same copy:

ϕ = (0, ν), ϕ̃ = (0, ν̃) or ϕ = (µ, 0), ϕ̃ = (µ̃, 0).

I For two states localized on distinct copies, one may project back the problem
on a single copy, using a cost function defined solely on M,

c(x , y)
.

= dD′(x1, y2)
.

=

√
d(x , y)2 +

1

|m|2
.

The Higgs field would then represent the cost to stay at the same point of
space-time, but jumping from one copy to the other: c(x , x) = 1

|m| 6= 0.



III. Translated states: Euclidean and Moyal planes

A = (S(R2), ?), H = L2(R2)⊗ C2, D = −i
2

Σ
µ=1

σµ∂µ

where

(f ? g)(x) =
1

(πθ)2

∫
d2s d2t f (x + s)g(x + t)e−i2sΘ−1t

with

sΘ−1t ≡ sµΘ−1
µν tν with Θµν = θ

(
0 1
−1 0

)
, θ ∈ R+∗,

and

D = −i
√

2

(
0 ∂̄
∂ 0

)
with ∂ =

1√
2

(∂1 − i∂2), ∂̄ =
1√
2

(∂1 + i∂2).

The Moyal algebra A acts on H as π(f )ψ =

(
f ? ψ1

f ? ψ2

)
.

I The evaluation at x is not a state for (f ∗ ? f )(x) may not be positive.

I The pure states of Ā = K are the vector states in an irreducible
representation.



For κ ∈ R2 ' C, we write (ακf )(x) = f (x + κ). The κ-translated of a state ϕ is

ακϕ(f )
.

= ϕ ◦ ακ(f ).

Theorem P.M., L. Tomassini 2011

dD(ϕ, ακϕ) = |κ|.

Let us call optimal element an element in A that attains the supremum in the
spectral distance formula or, in case the supremum is not attained, a sequence

an ∈ A, ‖[D, an]‖ ≤ 1, lim (ϕ̃(an)− ϕ(an)) = dD(ϕ̃, ϕ).

Then, given any state ϕ and κ = |κ|e iΞ,

f (z) =
1√
2

(
ze−iΞ + z̄e iΞ

)
is an optimal element both in the commutative case through pointwise action

f ψ =
√

2(z .
κ

|κ|
)ψ ψ ∈ L2(R2),

and in the Moyal noncommutative case through the ?-action:

f ? ψ =
1√
2

(
e−iΞz + e iΞz̄

)
? ψ ψ ∈ L2(R2).

I In fact f is made cancel at infinity : f e−
|z|
n or f ? e

− z̄?z
n

? .



IV Carnot-Carathéodory distance

A′ = C∞0 (M)⊗Mn(C), H′ = L2(M,S)⊗Mn(C),

D ′ = −i
∑m
µ=1 γ

µ∂µ ⊗ In + γµ ⊗ Aµ

Aµdxµ is a field of 1-form on M with value in u(n): a U(n)-connection 1-form.

P(A′) is a trivial bundle P
π→M with fiber CPn−1, that is

P 3 p = (x , ξ) = ξx with x ∈M, ξ ∈ CPn−1.

Evaluation of ξx ∈ P on a ∈ A,

ξx(a) = (ξ, a(x) ξ) = Tr(sξ a(x)).

I D ′ is the covariant Dirac operator −iγµ(∂µ + Aµ) on the bundle P,
associated to the connection Aµ.



The connection defines a spectral distance dD′ and an horizontal distance dH :

TpP = VpP ⊕ HpP =⇒ dH(p, q) = Inf
ċt∈HctP

∫ 1

0

‖ċt‖ dt.

For instance

t

M

ξ

ζ

x

x

x

C

dH(ξx , ζx) = 4π

Question: dD′ = dH ? Connes 96



Proposition P.M. 2006

dD ≤ dH .

Denoting Acc(ξx) the set of points at finite horizontal distance from ξx , and
Con(ξx) the set points at finite spectral distance,

Acc(ξx) ( Con(ξx).



Example: A = C (S1)⊗M2(C)

A1 = i

(
θ1 0
0 θ2

)
, ω

.
=

∫ 2π

0

θ1(t)− θ2(t) dt

2π
.

Proposition P.M. 2006

Fiberwise,

x

!
x

"

#

x 
dH(0, ϕ) = 2kπ if ϕ = k(2πω) mod [2π],

=∞ otherwise;

dD(0, ϕ) = C sin ϕ
2 with C = 4π|V1||V2|

|sinωπ| .

1 2

40

80

1 2

1

2

1 2

1

2



Conclusion

Connes spectral distance dD in noncommutative geometry coincides with the
Monge-Kantorovich metric in the commutative case, and offers a possible
generalization in the noncommutative framework.

dD = W commutative case → dD noncommutative case

↑ |
Kantorovich duality dD = WD?

↓ ↓
distance as shortest length noncommutative cost ?

• Translation isometries in the Moyal plane: spectral distance between coherent states,

P.M., L. Tomassini, arXiv:1111.6164.

• A view on optimal transport from noncommutative geometry, F. D’Andrea, P.M.,

SIGMA 6 (2010) 057.

• Spectral distance on the circle, J. Func. Anal. 255 (2008) 1575-1612.

• Carnot-Carathéodory metric from gauge fluctuation in noncommutative geometry,
Comm. Math. Phys. 265 (2006) 585-616.

• Discrete Kaluza-Klein from scalar fluctuations in noncommutative geometry,

R. Wulkenhaar,P.M., J. Math. Phys. 43 (2002) 182-204.



1. Dimension: D−1 is an infinitesimal of order 1
m .

2. Regularity: for any a ∈ A, a and [D, a] belong to the intersection of the
domains of all the powers δk of the derivation δ(b)

.
= [|D|, b], where b belongs to

the algebra generated by A and [D,A].

3. Finitude: A is a pre-C∗-algebra and the set H∞ .
= ∩

k∈N
Dom Dk of smooth

vectors of H is a finite projective module.

4. First order: the representation of A◦ commutes with [D,A]

[[D, a], Jb∗J−1] = 0 for all a, b ∈ A.

5. Orientability: there exists a Hochschild cycle c ∈ Zn(A,A⊗A◦) such that
π(c) = Γ.



6. Reality (A⊗A◦,H,D, Γ, J) is aKRn-cycle with [a, Jb∗J−1] = 0. J is called the
real structure. That is

I J is a anti-unitary bijection on H that implements the involution, i.e.
JaJ−1 = a∗ for all a ∈ A;

I if n is even, there is a graduation Γ of H that commutes with A and
anticommutes with D;

I the following table holds

n mod 8 0 1 2 3 4 5 6 7
J2 = ±I + + - - - - + +

JD = ±DJ + - + + + - + +
JΓ = ±ΓJ + - + -

For odd n, one sets Γ = I.

7. Poincaré duality: the additive coupling on K∗(A) coming from the index of the
Dirac operator is non-degenerated.
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