A Benamou-Brenier approach to branched transport

Lorenzo Brasco
Dipartimento di Matematica e Applicazioni "R. Caccioppoli"
Università di Napoli "Federico II"

May 14, 2009

References

Some results of this talk are contained in

- L. B., G. Buttazzo, F. Santambrogio, A Benamou-Brenier approach to branched transport, submitted (http://cvgmt.sns.it/people/brasco)
(1) Branched transport: introduction and models
(2) An Eulerian point of view on branched transport
(3) The variational setting
(4) Equivalences with other models

Some notations

- $\Omega \subset \mathbb{R}^{N}$ compact and convex
- $\mathcal{P}(\Omega)=$ Borel probability measures over Ω
- $\mathcal{M}\left(\Omega ; \mathbb{R}^{N}\right)=\mathbb{R}^{N}$-valued Radon measures over Ω
- $w_{p}=p-$ Wasserstein distance
$w_{p}\left(\rho_{0}, \rho_{1}\right)=\min \left\{\left(\int_{\Omega \times \Omega}|x-y|^{p} d \gamma(x, y)\right)^{1 / p}: \gamma \in \Pi\left(\rho_{0}, \rho_{1}\right)\right\}$
- $\mathcal{W}_{p}(\Omega)=p-$ Wasserstein space over Ω, i.e. $\mathcal{P}(\Omega)$ equipped with w_{p}
- $\left|\mu_{t}^{\prime}\right|_{w_{p}}=\lim _{h \rightarrow 0} \frac{w_{p}\left(\mu_{t+h}, \mu_{t}\right)}{|h|}$ metric derivative
- $\alpha=$ exponent between 0 and 1

Branched transport: what's this?

Transport problems where the cost has a subadditive dependence on the mass, i.e. moving a mass m for a distance ℓ costs

$$
\varphi(m) \ell
$$

with $\varphi\left(m_{1}+m_{2}\right)<\varphi\left(m_{1}\right)+\varphi\left(m_{2}\right) \Longrightarrow$ total cost $=\sum \varphi(m) \ell$

$$
\text { typical choice } \varphi(t)=t^{\alpha}, \alpha \in[0,1]
$$

Due to concavity, grouping the mass during the transport could lower the total cost \Longrightarrow typical optimal structures are tree-shaped

Remark

Many natural and artificial transportation systems satisfy this cost saving requirement (root systems in a tree, blood vessels...)

Example: a power supply station

- $\rho_{0}=\delta_{x_{0}}$ power supply station
- $\rho_{1}=\sum_{i=1}^{k} m_{i} \delta_{x_{k}}$ houses $\left(\sum_{i=1}^{k} m_{i}=1\right)$

Comment

it is better to construct an optimal network of wires (right) to save cost; this is not possible by looking at Monge-Kantorovich (left)

Some models: Gilbert's weighted oriented graphs

This is only suitable for discrete measures

$$
\rho_{0}=\sum_{i=1}^{k} a_{i} \delta_{x_{i}} \in \mathcal{P}(\Omega) \text { and } \rho_{1}=\sum_{j=1}^{m} b_{j} \delta_{y_{j}} \in \mathcal{P}(\Omega)
$$

Transport path between ρ_{0} and ρ_{1}
\mathfrak{g} weigthed oriented graph consisting of:

- $\left\{v_{s}\right\}_{s \in V}$ vertices (comprising x_{i} sources and y_{j} sinks)
- $\left\{e_{h}\right\}_{h \in H}$ edges
- $\left\{\overrightarrow{\tau_{h}}\right\}_{h \in H}$ orientations of the edges
- $\left\{m_{h}\right\}_{h \in H}$ weigths (i.e. transiting mass on the edge e_{h}) + Kirchhoff's Law for circuits

Interior vertices

$$
\mathrm{m}_{1}+\mathrm{m}_{2}+\mathrm{m}_{3}=\mathrm{m}_{4}
$$

"Boundary" vertices

Total cost

$$
M_{\alpha}(\mathfrak{g})=\sum_{h \in H} m_{h}^{\alpha} \mathcal{H}^{1}\left(e_{h}\right) \text { (Gilbert-Steiner energy) }
$$

Some models: Xia's transport path model I

Idea: for the discrete case...

- $\mathfrak{g} \rightsquigarrow \phi_{\mathfrak{g}}$ vector measure $\left\langle\phi_{\mathfrak{g}}, \vec{\varphi}\right\rangle=\sum_{h \in H} m_{h} \int_{e_{h}} \vec{\varphi} \cdot \overrightarrow{\tau_{h}} d \mathcal{H}^{1}$
- Kirchhoff's Law $\rightsquigarrow \operatorname{div} \phi_{\mathfrak{g}}=\rho_{0}-\rho_{1}$
...for the general case
ϕ transport path between ρ_{0} and ρ_{1} if $\exists\left\{\mathfrak{g}_{\mathfrak{n}}, \rho_{0}^{n}, \rho_{1}^{n}\right\}_{n \in \mathbb{N}}$ s.t.

$$
\phi_{\mathfrak{g}_{n}} \rightharpoonup \phi, \rho_{i}^{n} \rightharpoonup \rho_{i}, i=0,1
$$

Total cost

$$
\begin{gathered}
M_{\alpha}^{*}:=\text { relaxation of } M_{\alpha} \\
M_{\alpha}^{*}(\phi)=\left\{\begin{array}{cc}
\int_{\Sigma} m(x)^{\alpha} d \mathcal{H}^{1}(x), & \text { if } \phi=m \vec{\tau} \mathcal{H}^{1}\llcorner\Sigma, \\
+\infty, & \text { otherwise }
\end{array}\right.
\end{gathered}
$$

Some models: Xia's transport path model II

Theorem (Xia, Morel-Santambrogio)

Let $\alpha \in(1-1 / N, 1]$ and $\rho_{0}, \rho_{1} \in \mathcal{P}(\Omega)$, then

$$
d_{\alpha}\left(\rho_{0}, \rho_{1}\right):=\min \left\{M_{\alpha}^{*}(\phi): \operatorname{div} \phi=\rho_{0}-\rho_{1}\right\}<+\infty
$$

Moreover d_{α} defines a distance on $\mathcal{P}(\Omega)$, equivalent to w_{1} (and thus to any w_{p}, with $1 \leq p<\infty$)

$$
w_{1}\left(\rho_{0}, \rho_{1}\right) \leq d_{\alpha}\left(\rho_{0}, \rho_{1}\right) \leq C w_{1}\left(\rho_{0}, \rho_{1}\right)^{N(\alpha-1)+1}
$$

Remark

- the exponent $N(\alpha-1)+1$ can not be improved
- the lower bound is not optimal, actually we have $w_{1 / \alpha} \leq d_{\alpha}$ (Devillanova-Solimini)

Some models: a Lagrangian approach I

Transportation is described through Q probability measures on

 Lipschitz paths (parametrized on $[0,1]$, let us say)
Constraints

$$
\begin{aligned}
& \left(e_{0}\right)_{\sharp} Q=\rho_{0},\left(e_{1}\right)_{\sharp} Q=\rho_{1} \\
& \text { (where } \left.e_{t}(\sigma)=\sigma(t) \text { evaluation at } t\right)
\end{aligned}
$$

Multiplicity (i.e. "transiting mass")

$$
[x]_{Q}=Q(\{\widetilde{\sigma}: x \in \widetilde{\sigma}([0,1])\}) \leq 1
$$

Energy (Bernot-Caselles-Morel)

$$
E_{\alpha}(Q)=\int_{\operatorname{Lip}([0,1] ; \Omega)} \int_{0}^{1}[\sigma(t)]_{Q}^{\alpha-1}\left|\sigma^{\prime}(t)\right| d t d Q(\sigma)
$$

Some models: a Lagrangian approach II

If $E_{\alpha}(Q)<+\infty$ and Q gives full mass to injective curves...
Gilbert-Steiner energy, again!

$$
E_{\alpha}(Q)=\int_{\Omega}[x]_{Q}^{\alpha} d \mathcal{H}^{1}(x)
$$

Theorem (Bernot-Caselles-Morel)
For every ρ_{0}, ρ_{1}, this Lagrangian model is equivalent to Xia's one (i.e. same optimal structures, different description of the same energy)

There exist other Lagrangian models (Maddalena-Morel-Solimini ${ }^{a}$, Bernot-Figalli) that we are neglecting, differing for the definition of the multiplicity: the one chosen here is not local in time
${ }^{a}$ This was actually the first!

Aim of the talk

We want to present a model for branched transport of the type

Energy

$$
\mathcal{G}(\mu, v)=\int_{0}^{1} G_{\alpha}\left(\mu_{t}, v_{t}\right) d t \quad \text { with } \quad \begin{gathered}
t \mapsto \mu_{t} \text { curve in } \mathcal{P}(\Omega) \\
t \mapsto v_{t} \text { velocity field }
\end{gathered}
$$

Constraints: the continuity equation

$$
\left\{\begin{array}{c}
\partial_{t} \mu_{t}+\operatorname{div}_{x}\left(v_{t} \mu_{t}\right)=0 \quad \text { in } \Omega, \\
\mu_{0}=\rho_{0}, \quad \mu_{1}=\rho_{1}
\end{array}\right.
$$

Remark

This is Eulerian and dynamical, i.e. an optimal μ provides the evolution in time of the branched transport with its velocity field v, not just the optimal ramified structure

The Benamou-Brenier formula I

First of all, recall the dynamical formulation for $w_{p}(p>1)$

Benamou-Brenier [Numer. Math. 84 (2000)]

$w_{p}\left(\rho_{0}, \rho_{1}\right)=\min \left\{\int_{0}^{1} \int_{\Omega}\left|v_{t}(x)\right|^{p} d \mu_{t}(x) d t: \begin{array}{c}\partial_{t} \mu_{t}+\operatorname{div}_{x}\left(v_{t} \mu_{t}\right)=0 \\ \mu_{0}=\rho_{0}, \mu_{1}=\rho_{1}\end{array}\right\}$

Important

It can be reformulated as a convex optimization + linear constraints, introducing

$$
\phi_{t}:=v_{t} \cdot \mu_{t}(\text { momentum }) \Longrightarrow\left|v_{t}\right|^{p} \mu_{t}=\left|\phi_{t}\right|^{p} \mu_{t}^{1-p} \text { convex }
$$

Thanks to the Disintegration Theorem...
(μ, ϕ) can be thought as measures on $[0,1] \times \Omega$ disintegrating as

$$
\mu=\int \mu_{t} d t \text { and } \phi=\int \phi_{t} d t
$$

The Benamou-Brenier formula II

$$
f_{p}(x, y)=\left\{\begin{array}{cc}
|y|^{p} x^{1-p}, & \text { if } x>0, y \in \mathbb{R}^{N}, \\
0, & \text { if } x=0, y=0, \\
+\infty, & \text { otherwise }
\end{array}\right.
$$

is jointly convex and 1 -homogeneous
The functional can be rewritten as follows

Benamou-Brenier functional

$$
\mathcal{F}_{p}(\mu, \phi)=\int_{[0,1] \times \Omega} f_{p}\left(\frac{d \mu}{d m}, \frac{d \phi}{d m}\right) d m
$$

Comment

\mathcal{F}_{p} l.s.c. and does not depend on the choice of m

$$
w_{p}\left(\rho_{0}, \rho_{1}\right)=\min \left\{\mathcal{F}_{p}(\mu, \phi): \quad \partial_{t} \mu+\operatorname{div}_{x} \phi=\delta_{0} \otimes \rho_{0}-\delta_{1} \otimes \rho_{1}\right\}
$$

The Benamou-Brenier formula III

Remark

By its very definition

$$
\mathcal{F}_{p}(\mu, \phi)<+\infty \Longrightarrow \phi \ll \mu
$$

and in this case

$$
\mathcal{F}_{p}(\mu, \phi)=\int_{[0,1] \times \Omega}\left|\frac{d \phi}{d \mu}\right|^{p} d \mu
$$

If moreover $\mu=\int \mu_{t} d t$, then $\phi=\int \phi_{t} d t$ with $\phi_{t}=v_{t} \cdot \mu_{t}$ and

$$
\mathcal{F}_{p}(\mu, \phi)=\int_{0}^{1} \int_{\Omega}\left|\frac{d \phi_{t}}{d \mu_{t}}\right|^{p} d \mu_{t} d t=\int_{0}^{1} \int_{\Omega}\left|v_{t}\right|^{p} d \mu_{t} d t
$$

A possible variant for branched transport: heuristics

We consider the local and I.s.c. functional on measures

$$
g_{\alpha}(\lambda)=\left\{\begin{array}{cc}
\int_{\Omega}|\lambda(\{x\})|^{\alpha} d \#(x), & \text { if } \lambda \text { is atomic } \\
+\infty, & \text { otherwise }
\end{array}\right.
$$

Energy?

For $\mu=\int \mu_{t} d t$ and $\phi=\int \phi_{t} d t$ with $\phi_{t} \ll \mu_{t}$

$$
\mathcal{G}_{\alpha}(\mu, \phi)=\int_{0}^{1} g_{\alpha}\left(\left|\frac{d \phi_{t}}{d \mu_{t}}\right|^{1 / \alpha} \mu_{t}\right) d t=\int_{0}^{1} g_{\alpha}\left(\left|v_{t}\right|^{1 / \alpha} \mu_{t}\right) d t
$$

This is a Gilbert-Steiner energy!

$$
\mathcal{G}_{\alpha}(\mu, \phi)=\int_{0}^{1} \sum_{k \in \mathbb{N}}\left|v_{t}\left(x_{k, t}\right)\right| \mu_{t}\left(\left\{x_{k, t}\right\}\right)^{\alpha} d t
$$

A possible variant for branched transport: setting

$\mathfrak{D}=$ admissible pairs (μ, ϕ)

$$
\begin{array}{ll}
\mu \in C([0,1] ; \mathcal{P}(\Omega)) \\
\phi \in L^{1}\left([0,1] ; \mathcal{M}\left(\Omega ; \mathbb{R}^{N}\right)\right)
\end{array} \quad \partial_{t} \mu_{t}+\operatorname{div}_{x} \phi_{t}=0 \text { in } \Omega
$$

Dynamical branched energy

$$
\begin{gathered}
G_{\alpha}\left(\mu_{t}, \phi_{t}\right)=\left\{\begin{array}{cc}
\int_{\Omega}\left|v_{t}(x)\right| \mu_{t}(\{x\})^{\alpha} d \#(x) & \text { if } \phi_{t}=v_{t} \cdot \mu_{t}, \\
+\infty & \text { if } \phi_{t} \nless \mu_{t}
\end{array}\right. \\
\mathcal{G}_{\alpha}(\mu, \phi)=\int_{0}^{1} G_{\alpha}\left(\mu_{t}, \phi_{t}\right) d t,(\mu, \phi) \in \mathfrak{D}
\end{gathered}
$$

Important remark

$$
\begin{aligned}
\mathcal{G}_{\alpha}(\mu, \phi)<+\infty & \not \Longrightarrow \mu_{t} \text { atomic } \forall t \\
& \Longrightarrow \phi \ll \mu \text { and } \mu_{t} \text { atomic on }\left\{\left|v_{t}(x)\right|>0\right\}
\end{aligned}
$$

Main result

Theorem (B.-Buttazzo-Santambrogio)
For every $\rho_{0}, \rho_{1} \in \mathcal{P}(\Omega)$, the minimization problem

$$
\mathfrak{B}_{\alpha}\left(\rho_{0}, \rho_{1}\right)=\min _{(\mu, \phi) \in \mathfrak{D}}\left\{\mathcal{G}_{\alpha}(\mu, \phi): \mu_{0}=\rho_{0}, \mu_{1}=\rho_{1}\right\}
$$

admits a solution

Remark 1

The proof uses Direct Methods...l.s.c.? coercivity? As always, it is a matter of choosing the right topology

Remark 2

Observe that the problem is not convex, but rather concave

Choice of the topology

Proposal: pointwise convergence

What about " $\mu_{t}^{n} \rightharpoonup \mu_{t}$ for every t and $\phi_{t}^{n} \rightharpoonup \phi_{t}$ for a.e. t "?

Answer: NO

Good for I.s.c. (you simply apply Fatou Lemma, because G_{α} is I.s.c) but not so good for coercivity (how can we infer compactness from $\mathcal{G}_{\alpha} \leq C$?)

Choice: weak topology
$\left(\mu^{n}, \phi^{n}\right) \rightharpoonup(\mu, \phi)($ as measures on $[0,1] \times \Omega)$

The basic inequalities

$$
\text { If }(\mu, \phi) \in \mathfrak{D} \text { such that } \phi \ll \mu \text { and } \phi_{t}=v_{t} \cdot \mu_{t}
$$

(B.I.) $)_{1}$

$$
\begin{aligned}
G_{\alpha}\left(\mu_{t}, \phi_{t}\right) & =\sum_{i} \mu_{t}\left(\left\{x_{i}\right\}\right)^{\alpha}\left|v_{t}\left(x_{i}\right)\right|=\sum_{i}\left(\mu_{t}\left(\left\{x_{i}\right\}\right)\left|v_{t}\left(x_{i}\right)\right|^{1 / \alpha}\right)^{\alpha} \\
& \geq\left(\sum_{i} \mu_{t}\left(\left\{x_{i}\right\}\right)\left|v_{t}\left(x_{i}\right)\right|^{1 / \alpha}\right)^{\alpha}=\left\|v_{t}\right\|_{L^{1 / \alpha}\left(\mu_{t}\right)} \geq\left|\mu_{t}^{\prime}\right|_{w_{1 / \alpha}}
\end{aligned}
$$

(B.I.) ${ }_{2}$

$$
\mathcal{G}_{\alpha}(\mu, \phi)=\int_{0}^{1} G_{\alpha}\left(\mu_{t}, \phi_{t}\right) d t \geq \int_{0}^{1}\left|\phi_{t}\right|(\Omega) d t=|\phi|([0,1] \times \Omega)
$$

Remark
$\sup _{t} G_{\alpha} \leq C \Longrightarrow|\phi|([0,1] \times \Omega) \leq C$ and μ_{t} Lipschitz in $\mathcal{W}_{1 / \alpha}$

Proof of the main result I

Stage 1 - Exctraction of a subsequence

- $\left\{\left(\mu^{n}, \phi^{n}\right)\right\} \subset \mathfrak{D}$ minimizing sequence
- we can assume $\mathcal{G}_{\alpha}\left(\mu^{n}, \phi^{n}\right) \leq C$ for every n
- $\mathcal{G}_{\alpha} 1$-homogeneous w.r.t. v_{t} (i.e. reparametrization invariant)
- $\left(\mu^{n}, \phi^{n}\right) \rightsquigarrow\left(\tilde{\mu}^{n}, \tilde{\phi}^{n}\right)$, with $\tilde{\mu}_{s}^{n}=\mu_{\mathfrak{t}(s)}^{n}$ and $\tilde{\phi}_{s}^{n}=\mathfrak{t}^{\prime}(s) \cdot \phi_{\mathfrak{t}(s)}^{n}$
- choose \mathfrak{t} s.t. $G_{\alpha}\left(\tilde{\mu}_{s}^{n}, \tilde{\phi}_{s}^{n}\right) \equiv \mathcal{G}_{\alpha}\left(\tilde{\mu}^{n}, \tilde{\phi}^{n}\right)=\mathcal{G}_{\alpha}\left(\mu^{n}, \phi^{n}\right) \leq C$
- $\Longrightarrow \tilde{\mu}^{n} \rightharpoonup \mu$ and $\tilde{\phi}^{n} \rightharpoonup \phi$ (thanks to $(\text { B.I. })_{1}$ and $\left.(B . I .)_{2}\right)$

Proof of the main result II

Stage 2 - Admissibility of the limit

- clearly $\mu=\int \mu_{t} d t$ (uniform limit of continuous curves)
- to show that $\phi=\int \phi_{t} d t$, we use I.s.c. of Benamou-Brenier functional

$$
\mathcal{F}_{1 / \alpha}(\mu, \phi) \leq \liminf _{n \rightarrow \infty} \mathcal{F}_{1 / \alpha}\left(\tilde{\mu}^{n}, \tilde{\phi}^{n}\right) \stackrel{\left(B . I_{1}\right)_{1}}{\leq} C
$$

$\Longrightarrow \phi \ll \mu$ and $\phi=\int \phi_{t} d t$

- (μ, ϕ) still solves the continuity equation $\Longrightarrow(\mu, \phi) \in \mathfrak{D}$
- $\mu_{0}=\rho_{0}$ and $\mu_{1}=\rho_{1}$

Proof of the main result III (conclusion)

Stage 3 - I.s.c. along a minimizing sequence

- remember that $\tilde{\phi}^{n}=\tilde{v}^{n} \cdot \tilde{\mu}^{n}$ and $\mathcal{G}_{\alpha}\left(\tilde{\mu}^{n}, \tilde{\phi}^{n}\right) \leq C$
- define $\mathfrak{m}^{n}=\int \sum_{i}\left|\tilde{v}_{t}^{n}\left(x_{i, t}\right)\right| \tilde{\mu}_{t}^{n}\left(\left\{x_{i, t}\right\}\right)^{\alpha} \delta_{x_{i, t}} d t \in \mathcal{M}([0,1] \times \Omega)$
- $\mathfrak{m}^{n}([0,1] \times \Omega)=\mathcal{G}_{\alpha}\left(\tilde{\mu}^{n}, \tilde{\phi}^{n}\right) \leq C$
- $\Longrightarrow \mathfrak{m}^{n} \rightharpoonup \mathfrak{m}$ and $\mathfrak{m}=\int \mathfrak{m}_{t} d t$
- $\mathfrak{m}^{n}([0,1] \times \Omega) \rightarrow \mathfrak{m}([0,1] \times \Omega) \Longrightarrow \mathcal{G}_{\alpha}\left(\tilde{\mu}^{n}, \tilde{\phi}^{n}\right) \rightarrow \int_{0}^{1} \mathfrak{m}_{t}(\Omega) d t$
- show $\mathfrak{m}_{t}(\Omega) \geq G_{\alpha}\left(\mu_{t}, \phi_{t}\right)$ (a little bit delicate)
- $\Longrightarrow \mathcal{G}_{\alpha}(\mu, \phi) \leq \lim \inf _{n \rightarrow \infty} \mathcal{G}_{\alpha}\left(\tilde{\mu}^{n}, \tilde{\phi}^{n}\right)=\inf \mathcal{G}_{\alpha}$

Equivalences with other models

Theorem (B.-Buttazzo-Santambrogio)

$$
\mathfrak{B}_{\alpha}\left(\rho_{0}, \rho_{1}\right)=\min \left\{E_{\alpha}(Q):\left(e_{i}\right)_{\sharp} Q=\rho_{i}\right\}=d_{\alpha}\left(\rho_{0}, \rho_{1}\right)
$$

As always, we have equivalence of the problems, not just equality of the minima

Recall that

$$
E_{\alpha}(Q)=\int_{\operatorname{Lip}([0,1] ; \Omega)} \int_{0}^{1}[\sigma(t)]_{Q}^{\alpha-1}\left|\sigma^{\prime}(t)\right| d t d Q(\sigma)
$$

Remark

In order to compare the two models, we need to switch from curves of measures to measures on curves (and back!)

Some preliminary comments

Alert!

- Transiting mass in our model $\Longrightarrow \mu_{t}(\{x\})$ (local in space/time)
- Transiting mass in E_{α} model $\Longrightarrow[x]_{Q}$ (not local in time)

We will need the following
Theorem (Superposition principle (AGS, Theorem 8.2.1))
Let (μ, v) solve the continuity equation, with $\left\|v_{t}\right\|_{L^{p}\left(\mu_{t}\right)}^{p}$ integrable in time. Then $\mu_{t}=\left(e_{t}\right)_{\sharp} Q$ with Q concentrated on solutions of the ODE $\sigma^{\prime}(t)=v_{t}(\sigma(t))$

Comment

This is a probabilistic version of the method of characteristics

Sketch of the proof: $\mathfrak{B}_{\alpha}\left(\rho_{0}, \rho_{1}\right) \geq \boldsymbol{d}_{\alpha}\left(\rho_{0}, \rho_{1}\right)$

Step 1

(μ, ϕ) optimal $\stackrel{(B . I .)_{1}}{\Longrightarrow} \phi=v \cdot \mu$ and $\int_{0}^{1}\left\|v_{t}\right\|_{L^{1 / \alpha}\left(\mu_{t}\right)} d t \leq \mathfrak{B}_{\alpha}\left(\rho_{0}, \rho_{1}\right)$
Step 2 - superposition principle $\exists Q$ s.t. $\mu_{t}=\left(e_{t}\right)_{\#} Q$ and $\sigma^{\prime}(t)=v_{t}(\sigma(t))$ for Q-a.e. σ

Step 3 - comparison of the multiplicities

$$
\mu_{t}=\left(e_{t}\right)_{\sharp} Q \Longrightarrow[x]_{Q} \geq Q(\{\widetilde{\sigma}: \widetilde{\sigma}(t)=x\})=\mu_{t}(\{x\})
$$

$$
\begin{aligned}
\int[\sigma(t)]_{Q}^{\alpha-1}\left|\sigma^{\prime}(t)\right| d Q(\sigma) & \stackrel{\text { Step } 2}{=} \int[x]_{Q}^{\alpha-1}\left|v_{t}(x)\right| d \mu_{t}(x) \\
& \stackrel{\text { Step } 3}{\leq} \int \mu_{t}(\{x\})^{\alpha-1}\left|v_{t}(x)\right| d \mu_{t}(x)
\end{aligned}
$$

Sketch of the proof: $\mathfrak{B}_{\alpha}\left(\rho_{0}, \rho_{1}\right) \leq d_{\alpha}\left(\rho_{0}, \rho_{1}\right)$

Step 0 - approximation

Approximate (ρ_{0}, ρ_{1}) with ($\rho_{0}^{n}, \rho_{1}^{n}$) (finite sums of Dirac masses)
s.t. $d_{\alpha}\left(\rho_{0}^{n}, \rho_{1}^{n}\right) \rightarrow d_{\alpha}\left(\rho_{0}, \rho_{1}\right)$

Remark: why approximation?
$\exists Q$ optimal s.t.

$$
[\sigma(t)]_{Q}=Q(\{\widetilde{\sigma}(t)=\sigma(t)\}) \text { the mass is synchronized }
$$

(this is true if ρ_{0} is finitely atomic)

Step 1 - curve in $\mathcal{P}(\Omega)$
$\mu_{t}:=\left(e_{t}\right)_{\sharp} Q$ and disintegrate $Q=\int Q_{x}^{t} d \mu_{t}(x)$ (i.e. Q_{x}^{t} is concentrated on $\{\sigma: \sigma(t)=x\}$)

Sketch of the proof: $\mathfrak{B}_{\alpha}\left(\rho_{0}, \rho_{1}\right) \leq d_{\alpha}\left(\rho_{0}, \rho_{1}\right)$

Step 2 - velocity field
$v_{t}(x):=\int_{\{\sigma: \sigma(t)=x\}} \sigma^{\prime}(t) d Q_{x}^{t}(\sigma)$ (average velocity)

Step 3

$(\mu, v \cdot \mu) \in \mathfrak{D}$ and $\mathcal{G}_{\alpha}(\mu, v \cdot \mu) \leq E_{\alpha}(Q)=d_{\alpha}\left(\rho_{0}^{n}, \rho_{1}^{n}\right)$, with $\mu_{0}=\rho_{0}^{n}$ and $\mu_{1}=\rho_{1}^{n}$

Step 4

Putting all together, we have

$$
\mathfrak{B}_{\alpha}\left(\rho_{0}, \rho_{1}\right) \leq \liminf _{n \rightarrow \infty} \mathfrak{B}_{\alpha}\left(\rho_{0}^{n}, \rho_{1}^{n}\right) \leq \lim _{n \rightarrow \infty} d_{\alpha}\left(\rho_{0}^{n}, \rho_{1}^{n}\right)=d_{\alpha}\left(\rho_{0}, \rho_{1}\right)
$$

A final remark: comparison of d_{α} and $w_{1 / \alpha}$

Taking (μ, ϕ) optimal for $\mathfrak{B}_{\alpha}\left(\rho_{0}, \rho_{1}\right)$

$$
\int_{0}^{1}\left|\mu_{t}^{\prime}\right|_{w_{1 / \alpha}} d t \stackrel{(B . I .)_{1}}{\leq} \mathfrak{B}_{\alpha}\left(\rho_{0}, \rho_{1}\right) \stackrel{\text { equivalence }}{=} d_{\alpha}\left(\rho_{0}, \rho_{1}\right)
$$

i.e. we have another proof of

$$
w_{1 / \alpha}\left(\rho_{0}, \rho_{1}\right) \leq d_{\alpha}\left(\rho_{0}, \rho_{1}\right)
$$

Remark

d_{α} and $w_{1 / \alpha}$ have exactly the same scaling

$$
d_{\alpha}=\sum m^{\alpha} \ell \quad w_{1 / \alpha}=\left(\sum m \ell^{1 / \alpha}\right)^{\alpha}
$$

Further readings

- Standard reference on branched transport
- M. Bernot, V. Caselles, J.-M. Morel Optimal transportation networks - Models and theory, Springer Lecture Notes (2009)
- Other models employing curves in Wasserstein spaces (but avoiding the use of the continuity equation) have been studied
- A. Brancolini, G. Buttazzo, F. Santambrogio, Path functionals over Wasserstein spaces, JEMS (2006)
- L. B., F. Santambrogio, An equivalent path functional formulation of branched transportation problems, accepted

