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Curvature flow
Shrinking family of (convex) surfaces 0 A;, where every point z € dA;
is moving in the direction of the normal n with the speed depending

on the curvature of 0A at x
Tt =—K(z) n(x).

Here K (z) is the (Gauss) curvature of 0A; at .

Approaches to the curvature flows

e 1) Solving a parabolic nonlinear equation with smooth data
( R.S. Hamilton, R. Huisken ... )
e 2) Consider surfaces as level sets of a potential function (, satis-
fying a nonlinear parabolic equation in viscosity sence
(L.C. Evans, J. Spruck, Y.G. Chen, Yo. Giga, S. Goto ...)
e 3) Singular limits
(H.M. Soner, L. Ambrosio ...)



Transportational approach

The Gauss flows can be obtained from the optimal transportation by
a certain scaling procedure. One has to construct a ”parabolic” version
of the optimal transportation.

(V. Bogachev, A. Kolesnikov) Let

1t = po dx be a probability measure on convex set A,

v = p1dx be a probability measure on Bp = {z: |z| < R}.

There exist a function ¢ with convex sublevel sets {¢ < t} and a

mapping T': A — Bp such that v = o T~ and T has the form

The level sets of ¢ are moving according to a (generalized) Gauss
curvature flow

&= —t"1 MK(CL’) -n(z), (1)

po()
where t = ¢(z).

Scaling:

For every n consider another measure
v, =voS t with S,(z)=xlz|"

Let VW, be the optimal transportation pushing forward p to v,.
Set T, = S ! o VIW,. Define a new potential function ¢,, by

Wn . 1 gOn—i—2 .

n+42

Then T' is the limit of T},, where
_ V¢
N

and T;, pushes forward p to v.

Remark: There exist a unique mapping of this type.
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Motivation for this study:

Two different ways of proving the classical isoperimetric inequality
1) Transportation proof (M. Gromov)

ACR
B, = {z :|z| <7} — ball in R? with vol(A) = vol(B,)
T =VV :A— B, — optimal transportation of H%| 4 to H%|p,

Change of variables formula
det D*V =1

Arithmetic-geometric inequality:

AV
1< —.
—d

1
vol(A) = / det D*V dx < y / AV dz
A A

1
-2 /a (4 TV < S (04).

The isoperimetric inequality follows from

vol(A) = vol(B,) = cyr’.



2) Geometric flows (P. Topping)
Let A; be a family of convex sets such that 0A; evolve according to

the Gauss curvature flow:

Here x(t) € 0A,_4, n — outer normal, K — Gauss curvature of
0A,_4, As, C A, for 51 > so.

Existence: K. Tso (Chou), 1975.

a) Evolution of the volume:

oAy = — [ K ant' = —qi (st = gy (2)
ot 0A;

(by Gauss-Bonnet theorem). Volume decreases with a constant speed.

b) Evolution of the surface measure:

g?—ld_l(ﬁAt) = — KH dH™', H — mean curvature
ot oA,

Arithmetic-geometric inequality: “vK < d_ill'

ng‘l(aAt) <—(d—1) [ KT
(975 0A;

Holder inequality:

Kq = Mtl( dH*! < (/8Ath1 de—l)T(Hd—l(aAt)) .

0
—HTHOA) < ———;
ot -1
Ra
The isoperimetric inequality follows by comparison arguments from

(2) and (3).
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Change of variables formula

Change of variables for the optimal transportation (R. McCann)
If VV is the optimal transportation of p to v, then p-almost every-

where
P0

p1(VV)

Here D2V is the second Alexandrov derivative of V.

det D?V =

Main difficulty: potential ¢ is not Sobolev, but only BV.

The second derivatives of ¢ do exist only in directions orthogonal to

Vp
Vel

Change of variables for T’
Theorem
The following change of variables formula holds for p-almost all x:

Po
p1(T)
Here K is the Gauss curvature of the corresponding level set and

K‘Da90|90d_1 =

D, is the absolutely continuous component of Do.



Reverse mapping
Take x € B, with |z| = t. Let H be the support function of A; =

{p <t}.
H(v) - Sup<£IJ,?}>,

rEA;
S(x)=T Yo)=H -n+Ve1H

X

n—m,

V ¢qi-1 — spherical gradient.
Variants of the parabolic maximum principle
1) Let f be a twice continuously differentiable function on a convex
set A C R% Then there exists a constant C' = C(d) depending
only on d such that
sup f(x) < sup f(z)+C(d) | |Vf|Kdz.
r€A r€0A Cy

where C; are contact points of the level sets {f = ¢} with the
convex envelopes of {—f < t}.

2) Maximum principle: (d = 2) For every smooth f defined on
QD {0< Ry<r<Rj,a<0<p}

with |5 — | < 7 one has:

U+ )l

T

)

sup f < Cio-sup f + Chq
Q 9,92 r;

where
LrAfi <0, f+ foo <0}
and 0, is the parabolic boundary of ).



Regularity results
1) Sobolev estimates for ¢
Theorem: Let d =2, p, = % Ipg,

T = cp—vSp
Vel
Assume that T pushes forward p to v. Then
p+1 1+p
pR/ [VelP™ du < / ’Vp” dp+ | P ant
o4 K7

( Proof: change of variables formula, integration by parts).
2) Uniform estimates for ¢

Theorem: There exists a universal constant p > 0 such that
sp V| < C1(M) Sup [Vl + Co(M)

provided

i) < oo

( Proof: Sobolev estimates of ¢ + a parabolic analog of the Alexandrov

M = Sup<“,0u”Lp(u)a Hp;lHpr)

maximum principle).



Problem: What kind of flows can be constructed by
mass-transportational methods?

Assume for simplicity that d = 2. Let F'(r, ) be a smooth function.
Consider a mapping of the type

T="F(p,n)- n,
where ¢ has level convex subsets and n = |—’ One has
det DT = |Vp|FF.(p,n)K

In particular, assume that F' depends on ¢ in the following way

F(r.n) \/ / n))H,(s,n) ds.

where H(t,n) = sup,c4, (z,n) is the corresponding dual potential

(support function).
Then, assuming that 1" pushes forward p = p,(x)dz to A|g,, one

has the following change of variables formula

= g(|Vp|) K

Since |Vip|™! is the speed of level sets A; in the direction of the in-
ward normal, one gets that A; are moving according to the following

curvature flow:
1

“Hpu/ K)

i=—



Examples of flows of this type

1) Power-Gauss curvature flows
r=—K" n.

(geometry, computer vision)

2) Logarithmic Gauss curvature flows
r=—logK - -n

(Minkowsky-type problems)
Main difficulty: One needs more regularity of ¢. In particular, it
is natural to expect that ¢ is Sobolev (not only BV).
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