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Curvature flow

Shrinking family of (convex) surfaces ∂At, where every point x ∈ ∂At

is moving in the direction of the normal n with the speed depending

on the curvature of ∂A at x

ẋ = −K(x) · n(x).

Here K(x) is the (Gauss) curvature of ∂At at x.

Approaches to the curvature flows

• 1) Solving a parabolic nonlinear equation with smooth data

( R.S. Hamilton, R. Huisken ... )

• 2) Consider surfaces as level sets of a potential function ϕ, satis-

fying a nonlinear parabolic equation in viscosity sence

(L.C. Evans, J. Spruck, Y.G. Chen, Yo. Giga, S. Goto ...)

• 3) Singular limits

(H.M. Soner, L. Ambrosio ...)
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Transportational approach

The Gauss flows can be obtained from the optimal transportation by

a certain scaling procedure. One has to construct a ”parabolic” version

of the optimal transportation.

(V. Bogachev, A. Kolesnikov) Let

µ = ρ0 dx be a probability measure on convex set A,

ν = ρ1 dx be a probability measure on BR = {x : |x| ≤ R}.
There exist a function ϕ with convex sublevel sets {ϕ ≤ t} and a

mapping T : A→ BR such that ν = µ ◦ T−1 and T has the form

T = ϕ
∇ϕ
|∇ϕ|

.

The level sets of ϕ are moving according to a (generalized) Gauss

curvature flow

ẋ = −td−1 ρ1(T )

ρ0(x)
K(x) · n(x), (1)

where t = ϕ(x).

Scaling:

For every n consider another measure

νn = ν ◦ S−1
n with Sn(x) = x|x|n.

Let ∇Wn be the optimal transportation pushing forward µ to νn.

Set Tn = S−1
n ◦ ∇Wn. Define a new potential function ϕn by

Wn =
1

n + 2
ϕn+2
n .

Then T is the limit of Tn, where

Tn = ϕn
∇ϕn
|∇ϕn|

n
n+1
.

and Tn pushes forward µ to ν.

Remark: There exist a unique mapping of this type.
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Motivation for this study:

Two different ways of proving the classical isoperimetric inequality

1) Transportation proof (M. Gromov)

A ⊂ Rd

Br = {x : |x| ≤ r} — ball in Rd with vol(A) = vol(Br)

T = ∇V : A→ Br — optimal transportation of Hd|A to Hd|Br

Change of variables formula

detD2V = 1

Arithmetic-geometric inequality:

1 ≤ ∆V

d
.

vol(A) =

∫
A

detD2V dx ≤ 1

d

∫
A

∆V dx

=
1

d

∫
∂A

〈nA,∇V 〉dHd−1 ≤ r

d
Hd−1(∂A).

The isoperimetric inequality follows from

vol(A) = vol(Br) = cdr
d.
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2) Geometric flows (P. Topping)

Let At be a family of convex sets such that ∂At evolve according to

the Gauss curvature flow:

ẋ(t) = −K(x(t)) · n(x(t))

Here x(t) ∈ ∂Ar−t, n — outer normal, K — Gauss curvature of

∂Ar−t, As1 ⊂ As2 for s1 ≥ s2.

Existence: K. Tso (Chou), 1975.

a) Evolution of the volume:

∂

∂t
vol(At) = −

∫
∂At

K dHd−1 = −Hd−1(Sd−1) = −κd (2)

(by Gauss-Bonnet theorem). Volume decreases with a constant speed.

b) Evolution of the surface measure:

∂

∂t
Hd−1(∂At) = −

∫
∂At

KH dHd−1, H — mean curvature

Arithmetic-geometric inequality: d−1√K ≤ H
d−1.

∂

∂t
Hd−1(∂At) ≤ −(d− 1)

∫
∂At

K
d

d−1 dHd−1.

Hölder inequality:

κd =

∫
∂At

K dHd−1 ≤
(∫

∂At

K
d

d−1 dHd−1
)d−1

d
(
Hd−1(∂At)

)1
d
.

∂

∂t
Hd−1(∂At) ≤ −

(d− 1)

κ
d

d−1
d

(
Hd−1(∂At)

) 1
d−1
. (3)

The isoperimetric inequality follows by comparison arguments from

(2) and (3).
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Change of variables formula

Change of variables for the optimal transportation (R. McCann)

If ∇V is the optimal transportation of µ to ν, then µ-almost every-

where

detD2
aV =

ρ0

ρ1(∇V )
.

Here D2
aV is the second Alexandrov derivative of V .

Main difficulty: potential ϕ is not Sobolev, but only BV.

The second derivatives of ϕ do exist only in directions orthogonal to
∇ϕ
|∇ϕ|.

Change of variables for T

Theorem

The following change of variables formula holds for µ-almost all x:

K|Daϕ|ϕd−1 =
ρ0

ρ1(T )
.

Here K is the Gauss curvature of the corresponding level set and

Daϕ is the absolutely continuous component of Dϕ.
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Reverse mapping

Take x ∈ Br with |x| = t. Let H be the support function of At =

{ϕ ≤ t}.
H(v) = sup

x∈At

〈x, v〉,

S(x) = T−1(x) = H · n +∇Sd−1H

n = x
|x|, ∇Sd−1 — spherical gradient.

Variants of the parabolic maximum principle

1) Let f be a twice continuously differentiable function on a convex

set A ⊂ Rd. Then there exists a constant C = C(d) depending

only on d such that

sup
x∈A

f (x) ≤ sup
x∈∂A

f (x) + C(d)

∫
Cf
|∇f |Kdx.

where Cf are contact points of the level sets {f = t} with the

convex envelopes of {−f ≤ t}.
2) Maximum principle: (d = 2) For every smooth f defined on

Ω : {0 < R0 ≤ r ≤ R1, α ≤ θ ≤ β}

with |β − α| < π one has:

sup
Ω
f ≤ C1,Ω · sup

∂pΩ
f + C2,Ω

√∫
Γf

|fr(f + fθθ)|
r

dx,

where

Γf : {fr ≤ 0, f + fθθ ≤ 0}

and ∂pΩ is the parabolic boundary of Ω.
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Regularity results

1) Sobolev estimates for ϕ

Theorem: Let d = 2, ρν = CR
r · IBR

,

T = ϕ
∇ϕ
|∇ϕ|

.

Assume that T pushes forward µ to ν. Then

Cp,R

∫
A

|∇ϕ|p+1 dµ ≤
∫
A

∣∣∣∇ρµ
ρµ

∣∣∣p+1

dµ +

∫
∂A

ρ1+p
µ

Kp
dH1.

( Proof: change of variables formula, integration by parts).

2) Uniform estimates for ϕ

Theorem: There exists a universal constant p > 0 such that

sup
A
|∇ϕ| ≤ C1(M) sup

∂A
|∇ϕ| + C2(M)

provided

M = sup
(
‖ρµ‖Lp(µ), ‖ρ−1

µ ‖Lp(µ),
∥∥|∇ρµ|ρ−1

µ

∥∥
Lp(µ)

)
<∞.

( Proof: Sobolev estimates of ϕ + a parabolic analog of the Alexandrov

maximum principle).
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Problem: What kind of flows can be constructed by

mass-transportational methods?

Assume for simplicity that d = 2. Let F (r, θ) be a smooth function.

Consider a mapping of the type

T = F (ϕ, n) · n,

where ϕ has level convex subsets and n = ∇ϕ
|∇ϕ|. One has

detDT = |∇ϕ|FFr(ϕ, n)K.

In particular, assume that F depends on ϕ in the following way

F (r, n) =

√
2

∫ r

0

g(H−1
r (s, n))Hr(s, n) ds,

where H(t, n) = supx∈At
〈x, n〉 is the corresponding dual potential

(support function).

Then, assuming that T pushes forward µ = ρµ(x)dx to λ|BR
, one

has the following change of variables formula

ρµ = g(|∇ϕ|)K.

Since |∇ϕ|−1 is the speed of level sets At in the direction of the in-

ward normal, one gets that At are moving according to the following

curvature flow:

ẋ = − 1

g−1(ρµ/K)
.
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Examples of flows of this type

1) Power-Gauss curvature flows

ẋ = −Kp · n.

(geometry, computer vision)

2) Logarithmic Gauss curvature flows

ẋ = − logK · n

(Minkowsky-type problems)

Main difficulty: One needs more regularity of ϕ. In particular, it

is natural to expect that ϕ is Sobolev (not only BV).
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