Optimal transportation, curvature flows, and related a priori estimates

Alexander Kolesnikov

Moscow

2010

Curvature flow

Shrinking family of (convex) surfaces ∂A_t , where every point $x \in \partial A_t$ is moving in the direction of the normal n with the speed depending on the curvature of ∂A at x

$$\dot{x} = -K(x) \cdot n(x).$$

Here K(x) is the (Gauss) curvature of ∂A_t at x.

Approaches to the curvature flows

- 1) Solving a parabolic nonlinear equation with smooth data (R.S. Hamilton, R. Huisken ...)
- 2) Consider surfaces as level sets of a potential function φ , satisfying a nonlinear parabolic equation in viscosity sence

(L.C. Evans, J. Spruck, Y.G. Chen, Yo. Giga, S. Goto ...)

• 3) Singular limits

(H.M. Soner, L. Ambrosio ...)

Transportational approach

The Gauss flows can be obtained from the optimal transportation by a certain scaling procedure. One has to construct a "parabolic" version of the optimal transportation.

(V. Bogachev, A. Kolesnikov) Let

 $\mu = \rho_0 dx$ be a probability measure on convex set A,

 $\nu = \rho_1 dx$ be a probability measure on $B_R = \{x \colon |x| \le R\}.$

There exist a function φ with convex sublevel sets $\{\varphi \leq t\}$ and a mapping $T: A \to B_R$ such that $\nu = \mu \circ T^{-1}$ and T has the form

$$T = \varphi \frac{\nabla \varphi}{|\nabla \varphi|}.$$

The level sets of φ are moving according to a (generalized) Gauss curvature flow

$$\dot{x} = -t^{d-1} \frac{\rho_1(T)}{\rho_0(x)} K(x) \cdot \mathbf{n}(x), \qquad (1)$$

where $t = \varphi(x)$.

Scaling:

For every n consider another measure

$$\nu_n = \nu \circ S_n^{-1} \quad \text{with} \quad S_n(x) = x |x|^n.$$

Let ∇W_n be the optimal transportation pushing forward μ to ν_n . Set $T_n = S_n^{-1} \circ \nabla W_n$. Define a new potential function φ_n by

$$W_n = \frac{1}{n+2}\varphi_n^{n+2}.$$

Then T is the limit of T_n , where

$$T_n = \varphi_n \frac{\nabla \varphi_n}{|\nabla \varphi_n|^{\frac{n}{n+1}}}.$$

and T_n pushes forward μ to ν .

Remark: There exist a unique mapping of this type.

Motivation for this study:

Two different ways of proving the classical isoperimetric inequality

1) Transportation proof (M. Gromov)

$$A \subset \mathbb{R}^d$$

$$B_r = \{x : |x| \le r\}$$
 — ball in \mathbb{R}^d with $\operatorname{vol}(A) = \operatorname{vol}(B_r)$

 $T = \nabla V : A \to B_r$ — optimal transportation of $\mathcal{H}^d|_A$ to $\mathcal{H}^d|_{B_r}$

Change of variables formula

 $\det D^2 V = 1$

Arithmetic-geometric inequality:

$$1 \le \frac{\Delta V}{d}.$$

$$\operatorname{vol}(A) = \int_{A} \det D^{2} V \, dx \leq \frac{1}{d} \int_{A} \Delta V \, dx$$
$$= \frac{1}{d} \int_{\partial A} \langle n_{A}, \nabla V \rangle d\mathcal{H}^{d-1} \leq \frac{r}{d} \mathcal{H}^{d-1}(\partial A).$$

The isoperimetric inequality follows from

$$\operatorname{vol}(A) = \operatorname{vol}(B_r) = c_d r^d.$$

2) Geometric flows (P. Topping)

Let A_t be a family of convex sets such that ∂A_t evolve according to the Gauss curvature flow:

$$\dot{x}(t) = -K(x(t)) \cdot n(x(t))$$

Here $x(t) \in \partial A_{r-t}$, n — outer normal, K — Gauss curvature of ∂A_{r-t} , $A_{s_1} \subset A_{s_2}$ for $s_1 \ge s_2$.

Existence: K. Tso (Chou), 1975.

a) Evolution of the volume:

$$\frac{\partial}{\partial t} \operatorname{vol}(A_t) = -\int_{\partial A_t} K \ d\mathcal{H}^{d-1} = -\mathcal{H}^{d-1}(S^{d-1}) = -\kappa_d \qquad (2)$$

(by Gauss-Bonnet theorem). Volume decreases with a constant speed.

b) Evolution of the surface measure:

$$\frac{\partial}{\partial t} \mathcal{H}^{d-1}(\partial A_t) = -\int_{\partial A_t} KH \ d\mathcal{H}^{d-1}, \ H - \text{mean curvature}$$

Arithmetic-geometric inequality: $\sqrt[d-1]{K} \leq \frac{H}{d-1}$.

$$\frac{\partial}{\partial t} \mathcal{H}^{d-1}(\partial A_t) \le -(d-1) \int_{\partial A_t} K^{\frac{d}{d-1}} \, d\mathcal{H}^{d-1}.$$

Hölder inequality:

$$\kappa_{d} = \int_{\partial A_{t}} K \, d\mathcal{H}^{d-1} \leq \left(\int_{\partial A_{t}} K^{\frac{d}{d-1}} \, d\mathcal{H}^{d-1} \right)^{\frac{d-1}{d}} \left(\mathcal{H}^{d-1}(\partial A_{t}) \right)^{\frac{1}{d}}.$$
$$\frac{\partial}{\partial t} \mathcal{H}^{d-1}(\partial A_{t}) \leq -\frac{(d-1)}{\kappa_{d}^{\frac{d}{d-1}}} \left(\mathcal{H}^{d-1}(\partial A_{t}) \right)^{\frac{1}{d-1}}.$$
(3)

The isoperimetric inequality follows by comparison arguments from (2) and (3).

Change of variables formula

Change of variables for the optimal transportation (R. McCann)

If ∇V is the optimal transportation of μ to ν , then μ -almost everywhere

$$\det D_a^2 V = \frac{\rho_0}{\rho_1(\nabla V)}.$$

Here $D_a^2 V$ is the second Alexandrov derivative of V.

Main difficulty: potential φ is not Sobolev, but only BV.

The second derivatives of φ do exist only in directions orthogonal to $\frac{\nabla \varphi}{|\nabla \varphi|}$.

Change of variables for T

Theorem

The following change of variables formula holds for μ -almost all x:

$$K|D_a\varphi|\varphi^{d-1} = \frac{\rho_0}{\rho_1(T)}.$$

Here K is the Gauss curvature of the corresponding level set and $D_a\varphi$ is the absolutely continuous component of $D\varphi$.

Reverse mapping

Take $x \in B_r$ with |x| = t. Let H be the support function of $A_t = \{\varphi \leq t\}$.

$$H(v) = \sup_{x \in A_t} \langle x, v \rangle,$$

$$S(x) = T^{-1}(x) = H \cdot n + \nabla_{S^{d-1}} H$$

 $n = \frac{x}{|x|}, \nabla_{S^{d-1}}$ — spherical gradient.

Variants of the parabolic maximum principle

1) Let f be a twice continuously differentiable function on a convex set $A \subset \mathbb{R}^d$. Then there exists a constant C = C(d) depending only on d such that

$$\sup_{x \in A} f(x) \le \sup_{x \in \partial A} f(x) + C(d) \int_{\mathcal{C}_f} |\nabla f| K dx.$$

where C_f are contact points of the level sets $\{f = t\}$ with the convex envelopes of $\{-f \leq t\}$.

2) Maximum principle: (d = 2) For every smooth f defined on

$$\Omega: \{ 0 < R_0 \le r \le R_1, \alpha \le \theta \le \beta \}$$

with $|\beta - \alpha| < \pi$ one has:

$$\sup_{\Omega} f \le C_{1,\Omega} \cdot \sup_{\partial_p \Omega} f + C_{2,\Omega} \sqrt{\int_{\Gamma_f} \frac{|f_r(f+f_{\theta\theta})|}{r}} dx,$$

where

$$\Gamma_f: \{f_r \le 0, \ f + f_{\theta\theta} \le 0\}$$

and $\partial_p \Omega$ is the *parabolic boundary* of Ω .

Regularity results

1) Sobolev estimates for φ

Theorem: Let d = 2, $\rho_{\nu} = \frac{C_R}{r} \cdot I_{B_R}$, $T = \varphi \frac{\nabla \varphi}{|\nabla \varphi|}$.

Assume that T pushes forward μ to ν . Then

$$C_{p,R} \int_{A} |\nabla \varphi|^{p+1} d\mu \leq \int_{A} \left| \frac{\nabla \rho_{\mu}}{\rho_{\mu}} \right|^{p+1} d\mu + \int_{\partial A} \frac{\rho_{\mu}^{1+p}}{K^{p}} d\mathcal{H}^{1}.$$

(Proof: change of variables formula, integration by parts).

2) Uniform estimates for φ

Theorem: There exists a universal constant p > 0 such that

$$\sup_{A} |\nabla \varphi| \le C_1(M) \sup_{\partial A} |\nabla \varphi| + C_2(M)$$

provided

$$M = \sup \left(\|\rho_{\mu}\|_{L^{p}(\mu)}, \|\rho_{\mu}^{-1}\|_{L^{p}(\mu)}, \||\nabla\rho_{\mu}|\rho_{\mu}^{-1}\|_{L^{p}(\mu)} \right) < \infty.$$

(Proof: Sobolev estimates of φ + a parabolic analog of the Alexandrov maximum principle).

Problem: What kind of flows can be constructed by mass-transportational methods?

Assume for simplicity that d = 2. Let $F(r, \theta)$ be a smooth function. Consider a mapping of the type

$$T=F(\varphi,n)\cdot n$$

where φ has level convex subsets and $n = \frac{\nabla \varphi}{|\nabla \varphi|}$. One has

$$\det DT = |\nabla \varphi| FF_r(\varphi, n) K.$$

In particular, assume that F depends on φ in the following way

$$F(r,n) = \sqrt{2 \int_0^r g(H_r^{-1}(s,n)) H_r(s,n)} \, ds,$$

where $H(t,n) = \sup_{x \in A_t} \langle x, n \rangle$ is the corresponding dual potential (support function).

Then, assuming that T pushes forward $\mu = \rho_{\mu}(x)dx$ to $\lambda|_{B_R}$, one has the following change of variables formula

$$\rho_{\mu} = g(|\nabla \varphi|)K.$$

Since $|\nabla \varphi|^{-1}$ is the speed of level sets A_t in the direction of the inward normal, one gets that A_t are moving according to the following curvature flow:

$$\dot{x} = -\frac{1}{g^{-1}(\rho_{\mu}/K)}.$$

Examples of flows of this type

1) Power-Gauss curvature flows

$$\dot{x} = -K^p \cdot n.$$

(geometry, computer vision)

2) Logarithmic Gauss curvature flows

$$\dot{x} = -\log K \cdot n$$

(Minkowsky-type problems)

Main difficulty: One needs more regularity of φ . In particular, it is natural to expect that φ is Sobolev (not only BV).