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Evolution model for ginzburg-landau vortices

Mean field model for the evolution of the vortex densities in a
superconductor, derived by W. E (1994), Lin and Zhang (2000):

d
dt

µ(t)− div(∇hµ(t) µ(t)) = 0 in R2,

−∆hµ(t) = µ(t) in R2.

Model proposed by Chapman, Rubinstein and Schatzman (1996)

d
dt

µ(t)− div(∇hµ(t)|µ(t)|) = 0, in Ω (CRS){
−∆hµ + hµ = µ in Ω

hµ = 1 on ∂Ω.

The model involves signed measures.
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Evolution model for ginzburg-landau vortices
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The positive measure setting

Suppose first that the vortex density µ is a positive measure. In this
case we search for solutions in H−1(Ω) ∩P2(Ω), where P2(Ω) is the
space of probability measures over Ω with finite second moment.

The basic idea is to view a solution to (CRS) as a steepest descent
curve in P2(Ω) of the related energy:

Φλ(µ) :=
λ

2
|µ|(Ω) +

1
2

∫
Ω

(
|∇hµ|2 + |hµ − 1|2

)
, λ ≥ 0.

Formally find a curve t 7→ µ(t) such that

µ̇(t) = −∇Φλ(µ(t)).
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Optimal transportation distance

Kantorovich optimal transportation problem

inf
{∫

X×X
|x − y |2 dγ(x , y) : γ ∈ Γ(µ, ν)

}
.

Transport plans: γ ∈ Γ(µ, ν) (i.e. γ ∈ P(X × X ), π1
#γ = µ, π2

#γ = ν).

Optimal plans set: Γ0(µ, ν).
Plan induced by a map: γ = (I, t)#µ.

Optimal transport distance (Wasserstein distance )

W2(µ, ν) :=

(
inf

{∫
X×X

|x − y |2 dγ(x , y) : γ ∈ Γ(µ, ν)

}) 1
2
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Edoardo Mainini (Universit à di Pavia) Gradient flow of a signed measures model 5 / 22



Optimal transportation distance

Kantorovich optimal transportation problem

inf
{∫

X×X
|x − y |2 dγ(x , y) : γ ∈ Γ(µ, ν)

}
.

Transport plans: γ ∈ Γ(µ, ν) (i.e. γ ∈ P(X × X ), π1
#γ = µ, π2

#γ = ν).

Optimal plans set: Γ0(µ, ν).
Plan induced by a map: γ = (I, t)#µ.

Optimal transport distance (Wasserstein distance )

W2(µ, ν) :=

(
inf

{∫
X×X

|x − y |2 dγ(x , y) : γ ∈ Γ(µ, ν)

}) 1
2
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Edoardo Mainini (Universit à di Pavia) Gradient flow of a signed measures model 5 / 22



Optimal transportation distance

Kantorovich optimal transportation problem

inf
{∫

X×X
|x − y |2 dγ(x , y) : γ ∈ Γ(µ, ν)

}
.

Transport plans: γ ∈ Γ(µ, ν) (i.e. γ ∈ P(X × X ), π1
#γ = µ, π2

#γ = ν).

Optimal plans set: Γ0(µ, ν).
Plan induced by a map: γ = (I, t)#µ.

Optimal transport distance (Wasserstein distance )

W2(µ, ν) :=

(
inf

{∫
X×X

|x − y |2 dγ(x , y) : γ ∈ Γ(µ, ν)

}) 1
2
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Gradient flow in the space (P2(X ), W2)

Jordan-Kinderlehrer-Otto (1998) framework:
Consider a functional Φ : P2(X ) → R and a PDE of the form

∂tµt + div (vtµt) = 0.

Given µ0 ∈ P2(X ) and a time step τ > 0, find recursively µk
τ

among solutions of

min
ν∈P2(X)

Φ(ν) +
1
2τ

W 2
2 (ν, µk−1

τ ), µ0
τ = µ0.

Construct a curve t ∈ [0, T ] 7→ µ(t) ∈ P2(X ) interpolating the
discrete values and passing to the limit as τ → 0.

Show that the obtained limit curve satisfies the continuity equation.
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Gradient flow in the space (P2(X ), W2)

References:

R. JORDAN, D. KINDERLEHRER, F. OTTO, The variational formulation of the
Fokker-Planck equation, SIAM J. Math. Anal. 29 (1998), 1–17.

F. OTTO, Dynamics of Labyrinthine Pattern Formation in Magnetic Fluids: A Mean-
Field Theory, Arch.Rational Mech. Anal. 141 (1998), 63–103.
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Existence and regularity result

In the P2(Ω) framework, we have the following

Theorem (L. Ambrosio, S. Serfaty, 2008)

Let µ0 ∈ H−1(Ω) ∩P2(Ω). Then there exists a curve
t 7→ µ(t) ∈ H−1(Ω) ∩P2(Ω) such that:

(i) µ(0) = µ0 and µ(t) is solution to the (CRS) model;

(ii) The above solution is the Wasserstein gradient flow of the energy

Φλ(µ) :=
λ

2
|µ|(Ω) +

1
2

∫
Ω

(
|∇hµ|2 + |hµ − 1|2

)
, λ ≥ 0;

(iii) If moreover χΩµ0 ∈ Lp(Ω), then ‖χΩµ(t)‖p ≤ C;

Task

The actual (CRS) model involves signed measures. Can we extend the
above framework and results to the signed case?
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Transport cost for signed measures

Extension of the 2-Wasserstein distance to the space

Mκ, M(Ω) := {µ ∈M(Ω) : µ(Ω) = κ, |µ|(Ω) ≤ M}, κ ∈ R, M ≥ 0.

First attempt: given µ, ν ∈Mκ, M(Ω), let µ = µ+ − µ−, ν = ν+ − ν−

(Hahn decomposition), and let

W2(µ, ν) := W 2
2 (µ+ + ν−, ν+ + µ−).

W2 does not satisfy the triangle inequality:
Let µ = δ0, ν = δ4. Let σ = δ1 − δ2 + δ3. We get

W2(µ, ν) = 4 and W2(µ, σ) + W2(σ, ν) = 2
√

2.

µ 7→ W2(·, µ) is not weakly l.s.c.
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Edoardo Mainini (Universit à di Pavia) Gradient flow of a signed measures model 9 / 22



Transport cost for signed measures

At least by Holder inequality we have, if γ ∈ Γ0(µ
+ + ν−, ν+ + µ−),(∫

Ω×Ω
|x − y |2 dγ

)1/2

≥
√

1
2M

∫
Ω×Ω

|x − y |dγ ≥
√

1
2M

W1(µ, ν),

where

W1(µ, ν) := W1(µ
+ + ν−, ν+ + µ−) = inf

γ∈Γ(µ++ν−, ν++µ−)

∫
Ω×Ω

|x − y |dγ.

The new object W1 is a distance, as clearly seen from the duality
formula

W1(µ
+ + ν−, ν+ + µ−) = sup

ϕ∈Lip(Ω),‖ϕ‖Lip≤1

∫
Ω

ϕ d(µ− ν).
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Transport cost for signed measures

Relaxed l.s.c. version: for |ν|(Ω) ≤ |µ|(Ω),

W2
2 (ν, µ) := inf

σ+−σ−=ν

{
W 2

2 (σ+, µ+) + W 2
2 (σ−, µ−)

}
.

We have

W2(ν, µ) ≥
√

1
2M

W1(µ, ν).

The discrete scheme: given µ0 ∈Mκ, M(Ω), find µk+1
τ by

min
ν∈Mκ, M(Ω), |ν|(Ω)≤|µk

τ |(Ω)
Φλ(ν) +

1
2τ
W2

2 (ν, µk
τ ).
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W2
2 (ν, µ) := inf

σ+−σ−=ν

{
W 2

2 (σ+, µ+) + W 2
2 (σ−, µ−)

}
.

We have
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√

1
2M
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Convergence of the discrete scheme

Existence of a limit curve in Mκ, M(Ω).

From

Φλ(µk
τ ) +

1
2τ
W2

2 (µk
τ , µk−1

τ ) = min
ν∈Mκ, M (Ω)

Φλ(ν) +
1

2τ
W2

2 (ν, µk−1
τ ),

we have
1

2τ
W2

2 (µk
τ , µk−1

τ ) + Φλ(µk
τ ) ≤ Φλ(µk−1

τ ) ≤ Φλ(µ0),

1
2τ

n∑
k=1

W2
2 (µk

τ , µk−1
τ ) ≤ Φλ(µ0

τ )− Φλ(µn
τ ) ≤ Φλ(µ0). (if Φ ≥ 0)

Hence, for n, m ∈ N, n > m, using
(∑N

i=1 ai

)2
≤ N

∑N
i=1 a2

i , we get

n∑
k=m+1

W2(µ
k
τ , µk+1

τ ) ≤

(
1
τ

n∑
k=m+1

W2
2 (µk

τ , µk−1
τ )

)1/2

((n −m)τ)1/2 ≤
√

2τΦλ(µ0)(n −m).

By W2(ν, µ) ≥
√

1
2M W1(µ, ν) and triangle inequality,√

1
2M

W1(µ
m
τ , µn

τ ) ≤
√

1
2M

n∑
k=m+1

W1(µ
k
τ , µk+1

τ ) ≤
n∑

k=m+1

W2(µ
k
τ , µk+1

τ ).
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Convergence of the discrete scheme

We are left with
W1(µ

m
τ , µn

τ ) ≤
√

4MΦλ(µ)0(n −m)τ .

Interpolation: for t > 0, let

µτ (t) := µk
τ if t ∈ ((k − 1)τ, kτ ], k > 0.

We find the C0, 1/2 estimate

W1(µτ (t), µτ (s)) ≤
√

2Φλ(µ)
√
|t − s|+ τ ∀s, t > 0.

A limit exists by compactness:

µτn
(t) ⇀ µ(t) in the sense of measures, for a.e. t .
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Variational result

For simplicity let Ω = R2.

Theorem (L. Ambrosio, E. M., S. Serfaty, 2010)

Consider a single step of the minimization problem above, starting
from µ ∈ Lp(R2), p ≥ 4.

There exists a minimizer µτ ∈ Lp(R2) such that ‖µτ‖p ≤ ‖µ‖p.
(uniform in τ estimate)

There holds

−∇hµτ µτ =
1
τ

π1
#((x − y)γ+

0 ) +
1
τ

π1
#((x − y)γ−0 ),

where γ+
0 ∈ Γ0(µ

+
τ , µ+

0 ) and γ−0 ∈ Γ0(µ
−
τ , µ−0 ).
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Edoardo Mainini (Universit à di Pavia) Gradient flow of a signed measures model 14 / 22



Variational result

For simplicity let Ω = R2.

Theorem (L. Ambrosio, E. M., S. Serfaty, 2010)

Consider a single step of the minimization problem above, starting
from µ ∈ Lp(R2), p ≥ 4.

There exists a minimizer µτ ∈ Lp(R2) such that ‖µτ‖p ≤ ‖µ‖p.
(uniform in τ estimate)

There holds

−∇hµτ µτ =
1
τ

π1
#((x − y)γ+

0 ) +
1
τ

π1
#((x − y)γ−0 ),

where γ+
0 ∈ Γ0(µ

+
τ , µ+

0 ) and γ−0 ∈ Γ0(µ
−
τ , µ−0 ).
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Sketch of the proof

The regularity part: there exists functions ϕ : R → R, with
p-growth, such that ∫

R2
ϕ(µτ ) ≤

∫
R2

ϕ(µ).

(They are characterized characterized by the McCann (1997)
displacement convexity inequality: 2x2ϕ′′(x) ≥ xϕ′(x)− ϕ(x))

The Euler-Lagrange equation: suppose µτ is the minimizer.
Consider a variation of the form

(µτ )ε = (I + εξ)#µτ ,

where ξ is a C∞
0 vector field. First order argument:

−∇hµτ µτ =
1
τ

π1
#((x − y)γ+

0 ) +
1
τ

π1
#((x − y)γ−0 ).
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Limit PDE

Theorem (L. Ambrosio, E. M., S. Serfaty, 2010)

Let µ0 ∈ L4(R2). There exists a minimizing movement µ(t) and it
satisfies

d
dt

µ(t)− div (∇hµ(t)%(t)) = 0 in D′((0,+∞)× R2),

where %(t) is a suitable positive measure satisfying %(t) ≥ |µ(t)|.

Idea of the proof: in the sense of distributions (φ ∈ C2
0(R2)),

d
dt

∫
R2

φ dµτ (t) =
∞∑

k=0

(∫
R2

φ dµk+1
τ −

∫
R2

φ dµk
τ

)
δ{kτ},

d
dt

∫
R2

φ dµτ (t) =
∞∑

k=0

δ{kτ}

∫
R2×R2

(φ(x)− φ(y)) dγk+1
τ (x , y).
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Limit PDE

d
dt

∫
R2

φ dµτ (t) =
∞∑

k=0

δ{kτ}

(∫
R2×R2

〈∇φ(x), x − y〉dγk+1
τ (x , y) +Rk

τ

)
=

∞∑
k=0

δ{kτ}

(∫
R2×R2

〈∇φ(x), x − y〉d
(
(γ+

0 )k+1
τ − (γ−0 )k+1

τ

)
(x , y)

)
+ o(1).

But −∇hµk
τ
(µk

τ )+ = 1
τ π1

#((x − y)(γ+
0 )k

τ ),
∇hµk

τ
(µk

τ )− = 1
τ π1

#((x − y)(γ−0 )k
τ ).

We find

d
dt

∫
R2

φ dµτ (t) = −
∞∑

k=0

τδ{kτ}

∫
R2

〈
∇φ(x),∇hµk

τ
(x)

〉
d |µk

τ |(x) + o(1).

Passing to the limit as τ goes to zero, we have µτ (t) ⇀ µ(t) for any t , but
|µτ (t)| ⇀ %(t) 6= |µ(t)|.Then

d
dt

∫
R2

φ dµ(t) +

∫
R2
〈∇φ,∇hµ(t)〉d%(t) = 0,
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τ (x , y) +Rk

τ

)
=

∞∑
k=0

δ{kτ}

(∫
R2×R2

〈∇φ(x), x − y〉d
(
(γ+

0 )k+1
τ − (γ−0 )k+1

τ

)
(x , y)

)
+ o(1).

But −∇hµk
τ
(µk

τ )+ = 1
τ π1

#((x − y)(γ+
0 )k

τ ),
∇hµk

τ
(µk

τ )− = 1
τ π1

#((x − y)(γ−0 )k
τ ).

We find
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dt

∫
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φ dµτ (t) = −
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τδ{kτ}
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〈
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τ
(x)

〉
d |µk

τ |(x) + o(1).

Passing to the limit as τ goes to zero, we have µτ (t) ⇀ µ(t) for any t , but
|µτ (t)| ⇀ %(t) 6= |µ(t)|.Then

d
dt

∫
R2

φ dµ(t) +

∫
R2
〈∇φ,∇hµ(t)〉d%(t) = 0,
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Limit PDE

A more interesting formulation is
d
dt

%+(t)− div (∇hµ(t)%
+(t)) = −σ(t)

d
dt

%−(t) + div (∇hµ(t)%
−(t)) = −σ(t).

The term σ ≥ 0 is responsible of mass cancellation.

Remark : Orthogonality preserving solutions to the system above are
solution to

d
dt

µ(t)− div(∇hµ(t) |µ(t)|) = 0. (CRS)
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The boundary

Task

Uniqueness of solutions up to the boundary.

We work with probability measures. We begin with a formulation that
accounts for the boundary.

The actual formulation in Ambrosio, Serfaty (2008) is

d
dt

µ(t)− div(χΩ∇hµ(t)µ(t)) = 0 in R2 (CRS 2)

In the sense of distributions this means∫ T

0

∫
Ω

∂tφ(x , t) dµt +

∫ T

0

∫
Ω
∇hµt (x) · ∇φ(x , t) dµt = 0.
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The boundary

Notation. If µ ∈ P(Ω), let µ̂ = χΩµ, µ̃ = χ∂Ωµ.

We try to be even more precise on the role of the boundary with the
following

Definition (regular gradient flow)

Let T > 0. A solution of problem (CRS 2) is a regular gradient flow if

i) ‖µ̂(t)‖∞ ∈ L∞(0, T ),

ii) 〈∇hµ(t)(x), y − x〉 ≥ 0 for all (x , y) ∈ supp(µ̃(t))× Ω and t ∈ (0, T ].

Condition (ii) means that, at least for convex Ω, the (limit of) velocity
field at the boundary points away from Ω.
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Edoardo Mainini (Universit à di Pavia) Gradient flow of a signed measures model 20 / 22



Existence of a regular gradient flow

Theorem (E.M., 2009)

Let Ω be convex. Let µ̂0 ∈ L∞(Ω).
Then there exists a regular gradient flow µ(t) such that µ(0) = µ̂0

The proof is based on a new variation, made on the boundary: let µτ

be a discrete minimizer and

(µτ )ε := µ̂τ + α2Tε#(σ) + (1− α2)µ̃τ .

where α = (1− ε)2. Here σ � L2xΩ and T ∈ Γ0(µ̃τ , σ).

Theorem (E.M., 2009)

Let Ω be convex. Let µ1, µ2 be regular gradient flows. Then
µ1(0) = µ2(0) implies µ1(t) = µ2(t) for all t ∈ [0, T ].
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Edoardo Mainini (Universit à di Pavia) Gradient flow of a signed measures model 21 / 22



Existence of a regular gradient flow

Theorem (E.M., 2009)

Let Ω be convex. Let µ̂0 ∈ L∞(Ω).
Then there exists a regular gradient flow µ(t) such that µ(0) = µ̂0

The proof is based on a new variation, made on the boundary: let µτ

be a discrete minimizer and

(µτ )ε := µ̂τ + α2Tε#(σ) + (1− α2)µ̃τ .

where α = (1− ε)2. Here σ � L2xΩ and T ∈ Γ0(µ̃τ , σ).

Theorem (E.M., 2009)

Let Ω be convex. Let µ1, µ2 be regular gradient flows. Then
µ1(0) = µ2(0) implies µ1(t) = µ2(t) for all t ∈ [0, T ].
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