A gradient flow model in the space of signed measures

Edoardo Mainini

Dipartimento di Matematica F. Casorati, Università degli Studi di Pavia

Mean field model for the evolution of the vortex densities in a superconductor, derived by W. E (1994), Lin and Zhang (2000):

$$\frac{d}{dt}\mu(t) - \operatorname{div}(\nabla h_{\mu(t)}\,\mu(t)) = 0 \quad \text{ in } \mathbb{R}^2,$$
$$-\Delta h_{\mu(t)} = \mu(t) \quad \text{ in } \mathbb{R}^2.$$

Model proposed by Chapman, Rubinstein and Schatzman (1996)

$$\begin{aligned} \frac{d}{dt}\mu(t) - \operatorname{div}(\nabla h_{\mu(t)}|\mu(t)|) &= 0, \quad in \ \Omega \qquad (\text{CRS}) \\ \begin{cases} -\Delta h_{\mu} + h_{\mu} &= \mu \quad \text{in } \ \Omega \\ h_{\mu} &= 1 \quad \text{on } \partial \Omega. \end{aligned}$$

Mean field model for the evolution of the vortex densities in a superconductor, derived by W. E (1994), Lin and Zhang (2000):

$$egin{aligned} &rac{d}{dt} \mu(t) - \operatorname{div}(
abla h_{\mu(t)} \, \mu(t)) = 0 & ext{ in } \mathbb{R}^2, \ &-\Delta h_{\mu(t)} = \mu(t) & ext{ in } \mathbb{R}^2. \end{aligned}$$

Model proposed by Chapman, Rubinstein and Schatzman (1996)

$$\begin{aligned} \frac{d}{dt}\mu(t) - \operatorname{div}(\nabla h_{\mu(t)}|\mu(t)|) &= 0, \quad in \ \Omega \qquad (\text{CRS}) \\ \begin{cases} -\Delta h_{\mu} + h_{\mu} &= \mu \quad \text{in } \ \Omega \\ h_{\mu} &= 1 \quad \text{on } \partial \Omega. \end{aligned}$$

Mean field model for the evolution of the vortex densities in a superconductor, derived by W. E (1994), Lin and Zhang (2000):

$$egin{aligned} &rac{d}{dt} \mu(t) - \operatorname{div}(
abla h_{\mu(t)}\,\mu(t)) = 0 & ext{ in } \mathbb{R}^2, \ &-\Delta h_{\mu(t)} = \mu(t) & ext{ in } \mathbb{R}^2. \end{aligned}$$

Model proposed by Chapman, Rubinstein and Schatzman (1996)

$$\begin{aligned} \frac{d}{dt}\mu(t) - \operatorname{div}(\nabla h_{\mu(t)}|\mu(t)|) &= 0, \quad \text{in }\Omega \qquad (\text{CRS}) \\ \begin{cases} -\Delta h_{\mu} + h_{\mu} &= \mu \quad \text{in }\Omega \\ h_{\mu} &= 1 \quad \text{on }\partial\Omega. \end{aligned}$$

Mean field model for the evolution of the vortex densities in a superconductor, derived by W. E (1994), Lin and Zhang (2000):

$$egin{aligned} &rac{d}{dt} \mu(t) - \operatorname{div}(
abla h_{\mu(t)}\,\mu(t)) = 0 & ext{ in } \mathbb{R}^2, \ &-\Delta h_{\mu(t)} = \mu(t) & ext{ in } \mathbb{R}^2. \end{aligned}$$

Model proposed by Chapman, Rubinstein and Schatzman (1996)

References

W. E: Dynamics of vortex-liquids in Ginzburg-Landau theories with applications to superconductivity, *Phys. Rev. B* **50** (1994), no. 3, 1126-1135.

J. S. CHAPMAN, J. RUBINSTEIN, AND M. SCHATZMAN: A mean-field model for superconducting vortices, *Eur. J. Appl. Math.* **7** (1996), no. 2, 97–111.

F.H. LIN AND P. ZHANG: On the hydrodynamic limit of Ginzburg-Landau vortices. *Discrete cont. dyn. systems* **6** (2000), 121–142.

The basic idea is to view a solution to (CRS) as a steepest descent curve in $\mathscr{P}_2(\overline{\Omega})$ of the related energy:

$$\Phi_{\lambda}(\mu) := rac{\lambda}{2} |\mu|(\Omega) + rac{1}{2} \int_{\Omega} \left(|
abla h_{\mu}|^2 + |h_{\mu} - 1|^2
ight), \qquad \lambda \geq 0.$$

$$\dot{\mu}(t) = -\nabla \Phi_{\lambda}(\mu(t)).$$

The basic idea is to view a solution to (CRS) as a steepest descent curve in $\mathscr{P}_2(\overline{\Omega})$ of the related energy:

$$\Phi_{\lambda}(\mu) := rac{\lambda}{2} |\mu|(\Omega) + rac{1}{2} \int_{\Omega} \left(|
abla h_{\mu}|^2 + |h_{\mu} - 1|^2
ight), \qquad \lambda \geq 0.$$

$$\dot{\mu}(t) = -\nabla \Phi_{\lambda}(\mu(t)).$$

The basic idea is to view a solution to (CRS) as a steepest descent curve in $\mathscr{P}_2(\overline{\Omega})$ of the related energy:

$$\Phi_\lambda(\mu) := rac{\lambda}{2} |\mu|(\Omega) + rac{1}{2} \int_\Omega \left(|
abla h_\mu|^2 + |h_\mu - 1|^2
ight), \qquad \lambda \geq 0.$$

$$\dot{\mu}(t) = -\nabla \Phi_{\lambda}(\mu(t)).$$

The basic idea is to view a solution to (CRS) as a steepest descent curve in $\mathscr{P}_2(\overline{\Omega})$ of the related energy:

$$\Phi_\lambda(\mu) := rac{\lambda}{2} |\mu|(\Omega) + rac{1}{2} \int_\Omega \left(|
abla h_\mu|^2 + |h_\mu - 1|^2
ight), \qquad \lambda \geq 0.$$

$$\dot{\mu}(t) = -\nabla \Phi_{\lambda}(\mu(t)).$$

$$\inf\left\{\int_{X\times X}|x-y|^2\,d\gamma(x,y):\gamma\in \Gamma(\mu,\nu)\right\}.$$

Transport plans: $\gamma \in \Gamma(\mu, \nu)$ (i.e. $\gamma \in \mathscr{P}(X \times X), \pi_{\#}^{1}\gamma = \mu, \pi_{\#}^{2}\gamma = \nu$).

Optimal plans set: $\Gamma_0(\mu, \nu)$. Plan induced by a map: $\gamma = (\mathbf{I}, \mathbf{t})_{\#}\mu$.

$$W_2(\mu,\nu) := \left(\inf \left\{ \int_{X \times X} |x - y|^2 \, d\gamma(x,y) : \gamma \in \Gamma(\mu,\nu) \right\} \right)^{\frac{1}{2}}$$

$$\inf\left\{\int_{X\times X}|x-y|^2\,d\gamma(x,y):\gamma\in \mathsf{\Gamma}(\mu,\nu)\right\}.$$

Transport plans: $\gamma \in \Gamma(\mu, \nu)$ (i.e. $\gamma \in \mathscr{P}(X \times X), \pi_{\#}^{1}\gamma = \mu, \pi_{\#}^{2}\gamma = \nu$).

Optimal plans set: $\Gamma_0(\mu, \nu)$. Plan induced by a map: $\gamma = (\mathbf{I}, \mathbf{t})_{\#}\mu$.

$$W_2(\mu,\nu) := \left(\inf\left\{\int_{X \times X} |x - y|^2 d\gamma(x,y) : \gamma \in \Gamma(\mu,\nu)\right\}\right)^{\frac{1}{2}}$$

$$\inf\left\{\int_{X\times X}|x-y|^2\,d\gamma(x,y):\gamma\in \Gamma(\mu,\nu)\right\}.$$

Transport plans: $\gamma \in \Gamma(\mu, \nu)$ (i.e. $\gamma \in \mathscr{P}(X \times X), \pi_{\#}^{1}\gamma = \mu, \pi_{\#}^{2}\gamma = \nu$).

Optimal plans set: $\Gamma_0(\mu, \nu)$. Plan induced by a map: $\gamma = (\mathbf{I}, \mathbf{t})_{\#}\mu$.

$$W_2(\mu,\nu) := \left(\inf \left\{ \int_{X \times X} |x - y|^2 \, d\gamma(x,y) : \gamma \in \Gamma(\mu,\nu) \right\} \right)^{\frac{1}{2}}$$

$$\inf\left\{\int_{X\times X}|\boldsymbol{x}-\boldsymbol{y}|^2\,\boldsymbol{d}\gamma(\boldsymbol{x},\boldsymbol{y}):\gamma\in \mathsf{\Gamma}(\mu,\nu)\right\}.$$

Transport plans: $\gamma \in \Gamma(\mu, \nu)$ (i.e. $\gamma \in \mathscr{P}(X \times X), \pi_{\#}^{1}\gamma = \mu, \pi_{\#}^{2}\gamma = \nu$).

Optimal plans set: $\Gamma_0(\mu, \nu)$. Plan induced by a map: $\gamma = (\mathbf{I}, \mathbf{t})_{\#}\mu$.

$$W_2(\mu,\nu) := \left(\inf \left\{ \int_{X \times X} |x - y|^2 \, d\gamma(x,y) : \gamma \in \Gamma(\mu,\nu) \right\} \right)^{\frac{1}{2}}$$

$$\inf\left\{\int_{X imes X} |m{x}-m{y}|^2 \, m{d}\gamma(m{x},m{y}): \gamma\in \Gamma(\mu,
u)
ight\}.$$

Transport plans: $\gamma \in \Gamma(\mu, \nu)$ (i.e. $\gamma \in \mathscr{P}(X \times X), \pi_{\#}^{1}\gamma = \mu, \pi_{\#}^{2}\gamma = \nu$).

Optimal plans set: $\Gamma_0(\mu, \nu)$. Plan induced by a map: $\gamma = (\mathbf{I}, \mathbf{t})_{\#} \mu$.

$$W_2(\mu,\nu) := \left(\inf \left\{ \int_{X \times X} |\mathbf{x} - \mathbf{y}|^2 \, d\gamma(\mathbf{x},\mathbf{y}) : \gamma \in \Gamma(\mu,\nu) \right\} \right)^{\frac{1}{2}}$$

Jordan-Kinderlehrer-Otto (1998) framework: Consider a functional $\Phi : \mathscr{P}_2(X) \to \mathbb{R}$ and a PDE of the form

 $\partial_t \mu_t + \operatorname{div}(\mathbf{v}_t \mu_t) = \mathbf{0}.$

$$\min_{\nu \in \mathscr{P}_2(X)} \Phi(\nu) + \frac{1}{2\tau} W_2^2(\nu, \mu_\tau^{k-1}), \qquad \mu_\tau^0 = \mu^0.$$

- Construct a curve t ∈ [0, T] → μ(t) ∈ 𝒫₂(X) interpolating the discrete values and passing to the limit as τ → 0.
- Show that the obtained limit curve satisfies the continuity equation.

Jordan-Kinderlehrer-Otto (1998) framework: Consider a functional $\Phi : \mathscr{P}_2(X) \to \mathbb{R}$ and a PDE of the form

 $\partial_t \mu_t + \operatorname{div}(\mathbf{v}_t \mu_t) = \mathbf{0}.$

$$\min_{\nu \in \mathscr{P}_2(X)} \Phi(\nu) + \frac{1}{2\tau} W_2^2(\nu, \mu_\tau^{k-1}), \qquad \mu_\tau^0 = \mu^0.$$

- Construct a curve t ∈ [0, T] → μ(t) ∈ 𝒫₂(X) interpolating the discrete values and passing to the limit as τ → 0.
- Show that the obtained limit curve satisfies the continuity equation.

Jordan-Kinderlehrer-Otto (1998) framework: Consider a functional $\Phi : \mathscr{P}_2(X) \to \mathbb{R}$ and a PDE of the form

 $\partial_t \mu_t + \operatorname{div}(\mathbf{v}_t \mu_t) = \mathbf{0}.$

$$\min_{\nu \in \mathscr{P}_2(X)} \Phi(\nu) + \frac{1}{2\tau} W_2^2(\nu, \mu_\tau^{k-1}), \qquad \mu_\tau^0 = \mu^0.$$

- Construct a curve t ∈ [0, T] → μ(t) ∈ 𝒫₂(X) interpolating the discrete values and passing to the limit as τ → 0.
- Show that the obtained limit curve satisfies the continuity equation.

Jordan-Kinderlehrer-Otto (1998) framework: Consider a functional $\Phi : \mathscr{P}_2(X) \to \mathbb{R}$ and a PDE of the form

 $\partial_t \mu_t + \operatorname{div}(\mathbf{v}_t \mu_t) = \mathbf{0}.$

Given μ⁰ ∈ 𝒫₂(X) and a time step τ > 0, find recursively μ^k_τ among solutions of

$$\min_{\nu \in \mathscr{P}_2(X)} \Phi(\nu) + \frac{1}{2\tau} W_2^2(\nu, \mu_{\tau}^{k-1}), \qquad \mu_{\tau}^0 = \mu^0.$$

Construct a curve t ∈ [0, T] → μ(t) ∈ 𝒫₂(X) interpolating the discrete values and passing to the limit as τ → 0.

• Show that the obtained limit curve satisfies the continuity equation.

Jordan-Kinderlehrer-Otto (1998) framework: Consider a functional $\Phi : \mathscr{P}_2(X) \to \mathbb{R}$ and a PDE of the form

 $\partial_t \mu_t + \operatorname{div}(\mathbf{v}_t \mu_t) = \mathbf{0}.$

$$\min_{\nu \in \mathscr{P}_2(X)} \Phi(\nu) + \frac{1}{2\tau} W_2^2(\nu, \mu_\tau^{k-1}), \qquad \mu_\tau^0 = \mu^0.$$

- Construct a curve t ∈ [0, T] → μ(t) ∈ 𝒫₂(X) interpolating the discrete values and passing to the limit as τ → 0.
- Show that the obtained limit curve satisfies the continuity equation.

References:

R. JORDAN, D. KINDERLEHRER, F. OTTO, *The variational formulation of the Fokker-Planck equation*, SIAM J. Math. Anal. **29** (1998), 1–17.

F. OTTO, *Dynamics of Labyrinthine Pattern Formation in Magnetic Fluids: A Mean-Field Theory,* Arch.Rational Mech. Anal. **141** (1998), 63–103.

L. AMBROSIO, N. GIGLI, G. SAVARÉ, *Gradient flows in metric spaces and in the spaces of probability measures*, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel (2005).

Existence and regularity result

In the $\mathscr{P}_{2}(\overline{\Omega})$ framework, we have the following

Theorem (L. Ambrosio, S. Serfaty, 2008)

Let $\mu^0 \in H^{-1}(\Omega) \cap \mathscr{P}_2(\overline{\Omega})$. Then there exists a curve $t \mapsto \mu(t) \in H^{-1}(\Omega) \cap \mathscr{P}_2(\overline{\Omega})$ such that:

- (i) $\mu(0) = \mu^0$ and $\mu(t)$ is solution to the (CRS) model;
- (ii) The above solution is the Wasserstein gradient flow of the energy

$$\Phi_{\lambda}(\mu) := rac{\lambda}{2} |\mu|(\Omega) + rac{1}{2} \int_{\Omega} \left(|
abla h_{\mu}|^2 + |h_{\mu} - 1|^2
ight), \qquad \lambda \geq 0;$$

(iii) If moreover $\chi_{\Omega}\mu^0 \in L^p(\Omega)$, then $\|\chi_{\Omega}\mu(t)\|_p \leq C$;

Task

The actual (CRS) model involves signed measures. Can we extend the above framework and results to the signed case?

Existence and regularity result

In the $\mathscr{P}_2(\overline{\Omega})$ framework, we have the following

Theorem (L. Ambrosio, S. Serfaty, 2008)

Let $\mu^0 \in H^{-1}(\Omega) \cap \mathscr{P}_2(\overline{\Omega})$. Then there exists a curve $t \mapsto \mu(t) \in H^{-1}(\Omega) \cap \mathscr{P}_2(\overline{\Omega})$ such that:

- (i) $\mu(0) = \mu^0$ and $\mu(t)$ is solution to the (CRS) model;
- (ii) The above solution is the Wasserstein gradient flow of the energy

$$\Phi_\lambda(\mu) := rac{\lambda}{2} |\mu|(\Omega) + rac{1}{2} \int_\Omega \left(|
abla h_\mu|^2 + |h_\mu - 1|^2
ight), \qquad \lambda \ge 0;$$

(iii) If moreover $\chi_{\Omega}\mu^0 \in L^p(\Omega)$, then $\|\chi_{\Omega}\mu(t)\|_p \leq C$;

Task

The actual (CRS) model involves signed measures. Can we extend the above framework and results to the signed case?

Existence and regularity result

In the $\mathscr{P}_2(\overline{\Omega})$ framework, we have the following

Theorem (L. Ambrosio, S. Serfaty, 2008)

Let $\mu^0 \in H^{-1}(\Omega) \cap \mathscr{P}_2(\overline{\Omega})$. Then there exists a curve $t \mapsto \mu(t) \in H^{-1}(\Omega) \cap \mathscr{P}_2(\overline{\Omega})$ such that:

- (i) $\mu(0) = \mu^0$ and $\mu(t)$ is solution to the (CRS) model;
- (ii) The above solution is the Wasserstein gradient flow of the energy

$$\Phi_{\lambda}(\mu) := rac{\lambda}{2} |\mu|(\Omega) + rac{1}{2} \int_{\Omega} \left(|
abla h_{\mu}|^2 + |h_{\mu} - 1|^2
ight), \qquad \lambda \geq 0;$$

(iii) If moreover $\chi_{\Omega}\mu^0 \in L^p(\Omega)$, then $\|\chi_{\Omega}\mu(t)\|_p \leq C$;

Task

The actual (CRS) model involves signed measures. Can we extend the above framework and results to the signed case?

Extension of the 2-Wasserstein distance to the space

 $\mathcal{M}_{\kappa,M}(\overline{\Omega}) := \{ \mu \in \mathcal{M}(\overline{\Omega}) : \mu(\overline{\Omega}) = \kappa, |\mu|(\overline{\Omega}) \le M \}, \quad \kappa \in \mathbb{R}, M \ge 0.$

First attempt: given $\mu, \nu \in \mathcal{M}_{\kappa, M}(\overline{\Omega})$, let $\mu = \mu^+ - \mu^-, \nu = \nu^+ - \nu^-$ (Hahn decomposition), and let

$$\mathbb{W}_2(\mu,\nu) := W_2^2(\mu^+ + \nu^-, \nu^+ + \mu^-).$$

• \mathbb{W}_2 does not satisfy the triangle inequality: Let $\mu = \delta_0, \nu = \delta_4$. Let $\sigma = \delta_1 - \delta_2 + \delta_3$. We get

$$\mathbb{W}_2(\mu,\nu) = 4$$
 and $\mathbb{W}_2(\mu,\sigma) + \mathbb{W}_2(\sigma,\nu) = 2\sqrt{2}$.

Extension of the 2-Wasserstein distance to the space

$$\mathcal{M}_{\kappa,M}(\overline{\Omega}) := \{ \mu \in \mathcal{M}(\overline{\Omega}) : \mu(\overline{\Omega}) = \kappa, |\mu|(\overline{\Omega}) \leq M \}, \quad \kappa \in \mathbb{R}, M \geq 0.$$

First attempt: given $\mu, \nu \in \mathcal{M}_{\kappa, M}(\overline{\Omega})$, let $\mu = \mu^+ - \mu^-, \nu = \nu^+ - \nu^-$ (Hahn decomposition), and let

$$\mathbb{W}_{2}(\mu,\nu) := W_{2}^{2}(\mu^{+}+\nu^{-},\nu^{+}+\mu^{-}).$$

• \mathbb{W}_2 does not satisfy the triangle inequality: Let $\mu = \delta_0, \nu = \delta_4$. Let $\sigma = \delta_1 - \delta_2 + \delta_3$. We get

$$\mathbb{W}_2(\mu,\nu) = 4$$
 and $\mathbb{W}_2(\mu,\sigma) + \mathbb{W}_2(\sigma,\nu) = 2\sqrt{2}$.

Extension of the 2-Wasserstein distance to the space

$$\mathcal{M}_{\kappa,M}(\overline{\Omega}) := \{ \mu \in \mathcal{M}(\overline{\Omega}) : \mu(\overline{\Omega}) = \kappa, |\mu|(\overline{\Omega}) \leq M \}, \quad \kappa \in \mathbb{R}, M \geq 0.$$

First attempt: given $\mu, \nu \in \mathcal{M}_{\kappa, M}(\overline{\Omega})$, let $\mu = \mu^+ - \mu^-, \nu = \nu^+ - \nu^-$ (Hahn decomposition), and let

$$\mathbb{W}_{2}(\mu,\nu) := W_{2}^{2}(\mu^{+}+\nu^{-},\nu^{+}+\mu^{-}).$$

• \mathbb{W}_2 does not satisfy the triangle inequality: Let $\mu = \delta_0, \nu = \delta_4$. Let $\sigma = \delta_1 - \delta_2 + \delta_3$. We get

 $\mathbb{W}_2(\mu,\nu) = 4$ and $\mathbb{W}_2(\mu,\sigma) + \mathbb{W}_2(\sigma,\nu) = 2\sqrt{2}$.

Extension of the 2-Wasserstein distance to the space

$$\mathcal{M}_{\kappa,M}(\overline{\Omega}) := \{ \mu \in \mathcal{M}(\overline{\Omega}) : \mu(\overline{\Omega}) = \kappa, |\mu|(\overline{\Omega}) \leq M \}, \quad \kappa \in \mathbb{R}, M \geq 0.$$

First attempt: given $\mu, \nu \in \mathcal{M}_{\kappa, M}(\overline{\Omega})$, let $\mu = \mu^+ - \mu^-, \nu = \nu^+ - \nu^-$ (Hahn decomposition), and let

$$\mathbb{W}_{2}(\mu,\nu) := W_{2}^{2}(\mu^{+}+\nu^{-},\nu^{+}+\mu^{-}).$$

• \mathbb{W}_2 does not satisfy the triangle inequality: Let $\mu = \delta_0, \nu = \delta_4$. Let $\sigma = \delta_1 - \delta_2 + \delta_3$. We get

$$\mathbb{W}_2(\mu,\nu) = 4$$
 and $\mathbb{W}_2(\mu,\sigma) + \mathbb{W}_2(\sigma,\nu) = 2\sqrt{2}.$

Extension of the 2-Wasserstein distance to the space

$$\mathcal{M}_{\kappa,M}(\overline{\Omega}) := \{ \mu \in \mathcal{M}(\overline{\Omega}) : \mu(\overline{\Omega}) = \kappa, |\mu|(\overline{\Omega}) \leq M \}, \quad \kappa \in \mathbb{R}, M \geq 0.$$

First attempt: given $\mu, \nu \in \mathcal{M}_{\kappa, M}(\overline{\Omega})$, let $\mu = \mu^+ - \mu^-, \nu = \nu^+ - \nu^-$ (Hahn decomposition), and let

$$\mathbb{W}_{2}(\mu,\nu) := W_{2}^{2}(\mu^{+}+\nu^{-},\nu^{+}+\mu^{-}).$$

• \mathbb{W}_2 does not satisfy the triangle inequality: Let $\mu = \delta_0, \nu = \delta_4$. Let $\sigma = \delta_1 - \delta_2 + \delta_3$. We get

$$\mathbb{W}_2(\mu,\nu) = 4$$
 and $\mathbb{W}_2(\mu,\sigma) + \mathbb{W}_2(\sigma,\nu) = 2\sqrt{2}$.

•
$$\mu \mapsto \mathbb{W}_2(\cdot, \mu)$$
 is not weakly l.s.c.

At least by Holder inequality we have, if $\gamma \in \Gamma_0(\mu^+ + \nu^-, \nu^+ + \mu^-)$,

$$\left(\int_{\overline{\Omega}\times\overline{\Omega}}|x-y|^2\,d\gamma\right)^{1/2}\geq\sqrt{\frac{1}{2M}}\int_{\overline{\Omega}\times\overline{\Omega}}|x-y|\,d\gamma\geq\sqrt{\frac{1}{2M}}\mathbb{W}_1(\mu,\nu),$$

where

$$\mathbb{W}_1(\mu,\nu) := W_1(\mu^+ + \nu^-, \nu^+ + \mu^-) = \inf_{\gamma \in \Gamma(\mu^+ + \nu^-, \nu^+ + \mu^-)} \int_{\overline{\Omega} \times \overline{\Omega}} |\mathbf{x} - \mathbf{y}| \, d\gamma.$$

The new object \mathbb{W}_1 is a distance, as clearly seen from the duality formula

$$W_1(\mu^+ + \nu^-, \nu^+ + \mu^-) = \sup_{\varphi \in \operatorname{Lip}(\Omega), \|\varphi\|_{\operatorname{Lip}} \leq 1} \int_{\Omega} \varphi \, d(\mu - \nu).$$

At least by Holder inequality we have, if $\gamma \in \Gamma_0(\mu^+ + \nu^-, \nu^+ + \mu^-)$,

$$\left(\int_{\overline{\Omega}\times\overline{\Omega}}|\boldsymbol{x}-\boldsymbol{y}|^2\,\boldsymbol{d}\gamma\right)^{1/2}\geq\sqrt{\frac{1}{2M}}\int_{\overline{\Omega}\times\overline{\Omega}}|\boldsymbol{x}-\boldsymbol{y}|\,\boldsymbol{d}\gamma\geq\sqrt{\frac{1}{2M}}\mathbb{W}_1(\mu,\nu),$$

where

$$\mathbb{W}_{1}(\mu,\nu) := W_{1}(\mu^{+}+\nu^{-},\nu^{+}+\mu^{-}) = \inf_{\gamma \in \Gamma(\mu^{+}+\nu^{-},\nu^{+}+\mu^{-})} \int_{\overline{\Omega} \times \overline{\Omega}} |\mathbf{x}-\mathbf{y}| \, d\gamma.$$

The new object \mathbb{W}_1 is a distance, as clearly seen from the duality formula

$$W_1(\mu^++
u^-,
u^++\mu^-) = \sup_{arphi \in \operatorname{Lip}(\Omega), \|arphi\|_{\operatorname{Lip}} \leq 1} \int_\Omega arphi \, d(\mu-
u).$$

At least by Holder inequality we have, if $\gamma \in \Gamma_0(\mu^+ + \nu^-, \nu^+ + \mu^-)$,

$$\left(\int_{\overline{\Omega}\times\overline{\Omega}}|\boldsymbol{x}-\boldsymbol{y}|^2\,\boldsymbol{d}\gamma\right)^{1/2}\geq\sqrt{\frac{1}{2M}}\int_{\overline{\Omega}\times\overline{\Omega}}|\boldsymbol{x}-\boldsymbol{y}|\,\boldsymbol{d}\gamma\geq\sqrt{\frac{1}{2M}}\mathbb{W}_1(\mu,\nu),$$

where

$$\mathbb{W}_{1}(\mu,\nu) := W_{1}(\mu^{+}+\nu^{-},\nu^{+}+\mu^{-}) = \inf_{\gamma \in \Gamma(\mu^{+}+\nu^{-},\nu^{+}+\mu^{-})} \int_{\overline{\Omega} \times \overline{\Omega}} |\mathbf{x}-\mathbf{y}| \, \mathbf{d}\gamma.$$

The new object \mathbb{W}_1 is a distance, as clearly seen from the duality formula

$$W_1(\mu^++
u^-,
u^++\mu^-) = \sup_{arphi \in \operatorname{Lip}(\Omega), \|arphi\|_{\operatorname{Lip}} \leq 1} \int_\Omega arphi \, d(\mu-
u).$$

Relaxed l.s.c. version: for $|\nu|(\overline{\Omega}) \leq |\mu|(\overline{\Omega})$,

$$\mathcal{W}_{2}^{2}(\nu,\mu) := \inf_{\sigma^{+}-\sigma^{-}=\nu} \left\{ W_{2}^{2}(\sigma^{+},\mu^{+}) + W_{2}^{2}(\sigma^{-},\mu^{-}) \right\}.$$

We have

$$\mathcal{W}_2(\nu,\mu) \ge \sqrt{\frac{1}{2M}} \mathbb{W}_1(\mu,\nu).$$

The discrete scheme: given $\mu^0 \in \mathcal{M}_{\kappa,M}(\overline{\Omega})$, find μ_{τ}^{k+1} by

$$\min_{\nu \in \mathcal{M}_{\kappa, M}(\overline{\Omega}), |\nu|(\overline{\Omega}) \le |\mu_{\tau}^{k}|(\overline{\Omega})} \Phi_{\lambda}(\nu) + \frac{1}{2\tau} \mathcal{W}_{2}^{2}(\nu, \mu_{\tau}^{k})$$

Relaxed l.s.c. version: for $|\nu|(\overline{\Omega}) \leq |\mu|(\overline{\Omega})$,

$$\mathcal{W}_{2}^{2}(\nu,\mu) := \inf_{\sigma^{+}-\sigma^{-}=\nu} \left\{ W_{2}^{2}(\sigma^{+},\mu^{+}) + W_{2}^{2}(\sigma^{-},\mu^{-}) \right\}.$$

We have

$$\mathcal{W}_2(\nu,\mu) \ge \sqrt{\frac{1}{2M}} \mathbb{W}_1(\mu,\nu).$$

The discrete scheme: given $\mu^0 \in \mathcal{M}_{\kappa, M}(\overline{\Omega})$, find μ_{τ}^{k+1} by

$$\min_{\nu \in \mathcal{M}_{\kappa, M}(\overline{\Omega}), |\nu|(\overline{\Omega}) \le |\mu_{\tau}^{k}|(\overline{\Omega})} \Phi_{\lambda}(\nu) + \frac{1}{2\tau} \mathcal{W}_{2}^{2}(\nu, \mu_{\tau}^{k})$$

Relaxed l.s.c. version: for $|\nu|(\overline{\Omega}) \leq |\mu|(\overline{\Omega})$,

$$\mathcal{W}_{2}^{2}(\nu,\mu) := \inf_{\sigma^{+}-\sigma^{-}=\nu} \left\{ W_{2}^{2}(\sigma^{+},\mu^{+}) + W_{2}^{2}(\sigma^{-},\mu^{-}) \right\}.$$

We have

$$\mathcal{W}_2(\nu,\mu) \geq \sqrt{\frac{1}{2M}} \mathbb{W}_1(\mu,\nu).$$

The discrete scheme: given $\mu^0 \in \mathcal{M}_{\kappa, M}(\overline{\Omega})$, find μ_{τ}^{k+1} by

$$\min_{\nu \in \mathcal{M}_{\kappa, M}(\overline{\Omega}), |\nu|(\overline{\Omega}) \le |\mu_{\tau}^{k}|(\overline{\Omega})} \Phi_{\lambda}(\nu) + \frac{1}{2\tau} \mathcal{W}_{2}^{2}(\nu, \mu_{\tau}^{k})$$

Relaxed l.s.c. version: for $|\nu|(\overline{\Omega}) \leq |\mu|(\overline{\Omega})$,

$$\mathcal{W}_{2}^{2}(\nu,\mu) := \inf_{\sigma^{+}-\sigma^{-}=\nu} \left\{ W_{2}^{2}(\sigma^{+},\mu^{+}) + W_{2}^{2}(\sigma^{-},\mu^{-}) \right\}.$$

We have

$$\mathcal{W}_2(\nu,\mu) \geq \sqrt{\frac{1}{2M}} \mathbb{W}_1(\mu,\nu).$$

The discrete scheme: given $\mu^0 \in \mathcal{M}_{\kappa,M}(\overline{\Omega})$, find μ_{τ}^{k+1} by

$$\min_{\nu\in\mathcal{M}_{\kappa,\,M}(\overline{\Omega}),\,|\nu|(\overline{\Omega})\leq|\mu^k_\tau|(\overline{\Omega})}\Phi_\lambda(\nu)+\frac{1}{2\tau}\mathcal{W}_2^2(\nu,\mu^k_\tau).$$
Existence of a limit curve in $\mathcal{M}_{\kappa,M}(\overline{\Omega})$.

From

$$\Phi_{\lambda}(\mu_{\tau}^{k}) + \frac{1}{2\tau} \mathcal{W}_{2}^{2}(\mu_{\tau}^{k}, \mu_{\tau}^{k-1}) = \min_{\nu \in \mathcal{M}_{\kappa, M}(\overline{\Omega})} \Phi_{\lambda}(\nu) + \frac{1}{2\tau} \mathcal{W}_{2}^{2}(\nu, \mu_{\tau}^{k-1}),$$

we have

$$\begin{split} & \frac{1}{2\tau} \mathcal{W}_2^2(\mu_{\tau}^k, \mu_{\tau}^{k-1}) + \Phi_{\lambda}(\mu_{\tau}^k) \leq \Phi_{\lambda}(\mu_{\tau}^{k-1}) \leq \Phi_{\lambda}(\mu^0), \\ & \frac{1}{2\tau} \sum_{k=1}^n \mathcal{W}_2^2(\mu_{\tau}^k, \mu_{\tau}^{k-1}) \leq \Phi_{\lambda}(\mu_{\tau}^0) - \Phi_{\lambda}(\mu_{\tau}^n) \leq \Phi_{\lambda}(\mu^0). \end{split}$$
 (if $\Phi \geq 0$)

Hence, for $n, m \in \mathbb{N}$, n > m, using $\left(\sum_{i=1}^{N} a_i\right)^2 \le N \sum_{i=1}^{N} a_i^2$, we get

 $\sum_{k=m+1}^{n} \mathcal{W}_{2}(\mu_{\tau}^{k}, \mu_{\tau}^{k+1}) \leq \left(\frac{1}{\tau} \sum_{k=m+1}^{n} \mathcal{W}_{2}^{2}(\mu_{\tau}^{k}, \mu_{\tau}^{k-1})\right)^{1/2} \left((n-m)\tau\right)^{1/2} \leq \sqrt{2\tau} \Phi_{\lambda}(\mu^{0})(n-m).$

By $\mathcal{W}_2(\nu,\mu) \ge \sqrt{\frac{1}{2M}} \mathbb{W}_1(\mu,\nu)$ and triangle inequality,

$$\sqrt{\frac{1}{2M}} \mathbb{W}_1(\mu_{\tau}^m, \mu_{\tau}^n) \leq \sqrt{\frac{1}{2M}} \sum_{k=m+1}^n \mathbb{W}_1(\mu_{\tau}^k, \mu_{\tau}^{k+1}) \leq \sum_{k=m+1}^n \mathcal{W}_2(\mu_{\tau}^k, \mu_{\tau}^{k+1}).$$

Existence of a limit curve in $\mathcal{M}_{\kappa, M}(\overline{\Omega})$.

From

$$\Phi_{\lambda}(\mu_{\tau}^{k}) + \frac{1}{2\tau} \mathcal{W}_{2}^{2}(\mu_{\tau}^{k}, \mu_{\tau}^{k-1}) = \min_{\nu \in \mathcal{M}_{\kappa, M}(\overline{\Omega})} \Phi_{\lambda}(\nu) + \frac{1}{2\tau} \mathcal{W}_{2}^{2}(\nu, \mu_{\tau}^{k-1}),$$

we have

$$\begin{aligned} \frac{1}{2\tau} \mathcal{W}_2^2(\mu_{\tau}^k, \mu_{\tau}^{k-1}) + \Phi_{\lambda}(\mu_{\tau}^k) &\leq \Phi_{\lambda}(\mu_{\tau}^{k-1}) \leq \Phi_{\lambda}(\mu^0), \\ \frac{1}{2\tau} \sum_{k=1}^n \mathcal{W}_2^2(\mu_{\tau}^k, \mu_{\tau}^{k-1}) &\leq \Phi_{\lambda}(\mu_{\tau}^0) - \Phi_{\lambda}(\mu_{\tau}^n) \leq \Phi_{\lambda}(\mu^0). \end{aligned}$$
 (if $\Phi \geq 0$)

Hence, for $n, m \in \mathbb{N}$, n > m, using $\left(\sum_{i=1}^{N} a_i\right)^2 \le N \sum_{i=1}^{N} a_i^2$, we get

 $\sum_{k=m+1}^{n} \mathcal{W}_{2}(\mu_{\tau}^{k}, \mu_{\tau}^{k+1}) \leq \left(\frac{1}{\tau} \sum_{k=m+1}^{n} \mathcal{W}_{2}^{2}(\mu_{\tau}^{k}, \mu_{\tau}^{k-1})\right)^{1/2} \left((n-m)\tau\right)^{1/2} \leq \sqrt{2\tau} \Phi_{\lambda}(\mu^{0})(n-m).$

By $\mathcal{W}_2(\nu,\mu) \ge \sqrt{\frac{1}{2M}} \mathbb{W}_1(\mu,\nu)$ and triangle inequality,

$$\sqrt{\frac{1}{2M}} \mathbb{W}_1(\mu_{\tau}^m, \mu_{\tau}^n) \leq \sqrt{\frac{1}{2M}} \sum_{k=m+1}^n \mathbb{W}_1(\mu_{\tau}^k, \mu_{\tau}^{k+1}) \leq \sum_{k=m+1}^n \mathcal{W}_2(\mu_{\tau}^k, \mu_{\tau}^{k+1}).$$

Existence of a limit curve in $\mathcal{M}_{\kappa, M}(\overline{\Omega})$.

From

$$\Phi_{\lambda}(\mu_{\tau}^{k}) + \frac{1}{2\tau} \mathcal{W}_{2}^{2}(\mu_{\tau}^{k}, \mu_{\tau}^{k-1}) = \min_{\nu \in \mathcal{M}_{\kappa, M}(\overline{\Omega})} \Phi_{\lambda}(\nu) + \frac{1}{2\tau} \mathcal{W}_{2}^{2}(\nu, \mu_{\tau}^{k-1}),$$

we have

$$\begin{split} & \frac{1}{2\tau}\mathcal{W}_2^2(\mu_{\tau}^k,\mu_{\tau}^{k-1}) + \Phi_{\lambda}(\mu_{\tau}^k) \leq \Phi_{\lambda}(\mu_{\tau}^{k-1}) \leq \Phi_{\lambda}(\mu^0), \\ & \frac{1}{2\tau}\sum_{k=1}^n \mathcal{W}_2^2(\mu_{\tau}^k,\mu_{\tau}^{k-1}) \leq \Phi_{\lambda}(\mu_{\tau}^0) - \Phi_{\lambda}(\mu_{\tau}^n) \leq \Phi_{\lambda}(\mu^0). \end{split}$$
(if $\Phi \geq 0$)

Hence, for $n, m \in \mathbb{N}$, n > m, using $\left(\sum_{i=1}^{N} a_i\right)^2 \le N \sum_{i=1}^{N} a_i^2$, we get

 $\sum_{k=m+1}^{n} \mathcal{W}_{2}(\mu_{\tau}^{k}, \mu_{\tau}^{k+1}) \leq \left(\frac{1}{\tau} \sum_{k=m+1}^{n} \mathcal{W}_{2}^{2}(\mu_{\tau}^{k}, \mu_{\tau}^{k-1})\right)^{1/2} \left((n-m)\tau\right)^{1/2} \leq \sqrt{2\tau} \Phi_{\lambda}(\mu^{0})(n-m).$

By $\mathcal{W}_2(\nu,\mu) \ge \sqrt{\frac{1}{2M}} \mathbb{W}_1(\mu,\nu)$ and triangle inequality,

$$\sqrt{\frac{1}{2M}} \mathbb{W}_1(\mu_{\tau}^m, \mu_{\tau}^n) \leq \sqrt{\frac{1}{2M}} \sum_{k=m+1}^n \mathbb{W}_1(\mu_{\tau}^k, \mu_{\tau}^{k+1}) \leq \sum_{k=m+1}^n \mathcal{W}_2(\mu_{\tau}^k, \mu_{\tau}^{k+1}).$$

Existence of a limit curve in $\mathcal{M}_{\kappa, M}(\overline{\Omega})$.

From

$$\Phi_{\lambda}(\mu_{\tau}^{k}) + \frac{1}{2\tau} \mathcal{W}_{2}^{2}(\mu_{\tau}^{k}, \mu_{\tau}^{k-1}) = \min_{\nu \in \mathcal{M}_{\kappa, M}(\overline{\Omega})} \Phi_{\lambda}(\nu) + \frac{1}{2\tau} \mathcal{W}_{2}^{2}(\nu, \mu_{\tau}^{k-1}),$$

we have

$$\begin{split} & \frac{1}{2\tau}\mathcal{W}_2^2(\mu_\tau^k,\mu_\tau^{k-1}) + \Phi_\lambda(\mu_\tau^k) \leq \Phi_\lambda(\mu_\tau^{k-1}) \leq \Phi_\lambda(\mu^0), \\ & \frac{1}{2\tau}\sum_{k=1}^n \mathcal{W}_2^2(\mu_\tau^k,\mu_\tau^{k-1}) \leq \Phi_\lambda(\mu_\tau^0) - \Phi_\lambda(\mu_\tau^n) \leq \Phi_\lambda(\mu^0). \quad \text{ (if } \Phi \geq 0) \end{split}$$

Hence, for $n, m \in \mathbb{N}$, n > m, using $\left(\sum_{i=1}^{N} a_i\right)^2 \le N \sum_{i=1}^{N} a_i^2$, we get

$$\sum_{k=m+1}^{n} \mathcal{W}_{2}(\mu_{\tau}^{k}, \mu_{\tau}^{k+1}) \leq \left(\frac{1}{\tau} \sum_{k=m+1}^{n} \mathcal{W}_{2}^{2}(\mu_{\tau}^{k}, \mu_{\tau}^{k-1})\right)^{1/2} ((n-m)\tau)^{1/2} \leq \sqrt{2\tau \Phi_{\lambda}(\mu^{0})(n-m)}.$$

By $\mathcal{W}_2(\nu,\mu) \geq \sqrt{\frac{1}{2M}} \mathbb{W}_1(\mu,\nu)$ and triangle inequality,

$$\sqrt{\frac{1}{2M}} \mathbb{W}_1(\mu_{\tau}^m, \mu_{\tau}^n) \leq \sqrt{\frac{1}{2M}} \sum_{k=m+1}^n \mathbb{W}_1(\mu_{\tau}^k, \mu_{\tau}^{k+1}) \leq \sum_{k=m+1}^n \mathcal{W}_2(\mu_{\tau}^k, \mu_{\tau}^{k+1}).$$

Existence of a limit curve in $\mathcal{M}_{\kappa, M}(\overline{\Omega})$.

From

$$\Phi_{\lambda}(\mu_{\tau}^{k}) + \frac{1}{2\tau} \mathcal{W}_{2}^{2}(\mu_{\tau}^{k}, \mu_{\tau}^{k-1}) = \min_{\nu \in \mathcal{M}_{\kappa, M}(\overline{\Omega})} \Phi_{\lambda}(\nu) + \frac{1}{2\tau} \mathcal{W}_{2}^{2}(\nu, \mu_{\tau}^{k-1}),$$

we have

$$\begin{split} & \frac{1}{2\tau}\mathcal{W}_2^2(\mu_{\tau}^k,\mu_{\tau}^{k-1}) + \Phi_{\lambda}(\mu_{\tau}^k) \leq \Phi_{\lambda}(\mu_{\tau}^{k-1}) \leq \Phi_{\lambda}(\mu^0), \\ & \frac{1}{2\tau}\sum_{k=1}^n \mathcal{W}_2^2(\mu_{\tau}^k,\mu_{\tau}^{k-1}) \leq \Phi_{\lambda}(\mu_{\tau}^0) - \Phi_{\lambda}(\mu_{\tau}^n) \leq \Phi_{\lambda}(\mu^0). \quad \text{ (if } \Phi \geq 0) \end{split}$$

Hence, for $n, m \in \mathbb{N}$, n > m, using $\left(\sum_{i=1}^{N} a_i\right)^2 \le N \sum_{i=1}^{N} a_i^2$, we get

$$\sum_{k=m+1}^{n} \mathcal{W}_{2}(\mu_{\tau}^{k}, \mu_{\tau}^{k+1}) \leq \left(\frac{1}{\tau} \sum_{k=m+1}^{n} \mathcal{W}_{2}^{2}(\mu_{\tau}^{k}, \mu_{\tau}^{k-1})\right)^{1/2} ((n-m)\tau)^{1/2} \leq \sqrt{2\tau \Phi_{\lambda}(\mu^{0})(n-m)}.$$

By $\mathcal{W}_2(\nu,\mu) \geq \sqrt{rac{1}{2M}} \mathbb{W}_1(\mu,\nu)$ and triangle inequality,

$$\sqrt{\frac{1}{2M}}\mathbb{W}_{1}(\mu_{\tau}^{m},\mu_{\tau}^{n}) \leq \sqrt{\frac{1}{2M}}\sum_{k=m+1}^{n}\mathbb{W}_{1}(\mu_{\tau}^{k},\mu_{\tau}^{k+1}) \leq \sum_{k=m+1}^{n}\mathcal{W}_{2}(\mu_{\tau}^{k},\mu_{\tau}^{k+1}).$$

Edoardo Mainini (Università di Pavia) Gradient flow of a signed measures model

We are left with

$$\mathbb{W}_1(\mu_{\tau}^m,\mu_{\tau}^n) \leq \sqrt{4M\Phi_{\lambda}(\mu)^{\circ}(n-m)\tau}.$$

Interpolation: for t > 0, let

$$\overline{\mu}_{\tau}(t) := \mu_{\tau}^k \quad \text{if } t \in ((k-1)\tau, k\tau], \, k > 0.$$

We find the $C^{0, 1/2}$ estimate

$$\mathbb{W}_1(\overline{\mu}_{\tau}(t),\overline{\mu}_{\tau}(s)) \leq \sqrt{2\Phi_{\lambda}(\overline{\mu})}\sqrt{|t-s|+ au} \quad \forall s, t > 0.$$

A limit exists by compactness:

We are left with

$$\mathbb{W}_1(\mu_{\tau}^m,\mu_{\tau}^n) \leq \sqrt{4M\Phi_{\lambda}(\mu)^{\mathfrak{o}}(n-m)\tau}.$$

Interpolation: for t > 0, let

$$\overline{\mu}_{\tau}(t) := \mu_{\tau}^k \quad \text{if } t \in ((k-1)\tau, k\tau], \, k > 0.$$

We find the $C^{0, 1/2}$ estimate

$$\mathbb{W}_1(\overline{\mu}_{\tau}(t),\overline{\mu}_{\tau}(s)) \leq \sqrt{2\Phi_{\lambda}(\overline{\mu})}\sqrt{|t-s|+ au} \quad \forall s, t > 0.$$

A limit exists by compactness:

We are left with

$$\mathbb{W}_1(\mu_{\tau}^m,\mu_{\tau}^n) \leq \sqrt{4M\Phi_{\lambda}(\mu)^0(n-m)\tau}.$$

Interpolation: for t > 0, let

$$\overline{\mu}_{\tau}(t) := \mu_{\tau}^k \quad \text{if } t \in ((k-1)\tau, k\tau], \, k > 0.$$

We find the $C^{0, 1/2}$ estimate

$$\mathbb{W}_1(\overline{\mu}_{\tau}(t),\overline{\mu}_{\tau}(s)) \leq \sqrt{2\Phi_{\lambda}(\overline{\mu})}\sqrt{|t-s|+ au} \quad \forall s, t > 0.$$

A limit exists by compactness:

We are left with

$$\mathbb{W}_1(\mu^m_{\tau},\mu^n_{\tau}) \leq \sqrt{4M\Phi_{\lambda}(\mu)^{o}(n-m) au}.$$

Interpolation: for t > 0, let

$$\overline{\mu}_{\tau}(t) := \mu_{\tau}^{k} \quad \text{if } t \in ((k-1)\tau, k\tau], \, k > 0.$$

We find the $C^{0, 1/2}$ estimate

$$\mathbb{W}_1(\overline{\mu}_{\tau}(t),\overline{\mu}_{\tau}(s)) \leq \sqrt{2\Phi_{\lambda}(\overline{\mu})}\sqrt{|t-s|+ au} \quad \forall s, t > 0.$$

A limit exists by compactness:

We are left with

$$\mathbb{W}_1(\mu^m_{ au},\mu^n_{ au}) \leq \sqrt{4M\Phi_\lambda(\mu)^{\mathrm{o}}(n-m) au}.$$

Interpolation: for t > 0, let

$$\overline{\mu}_{\tau}(t) := \mu_{\tau}^{k} \quad \text{if } t \in ((k-1)\tau, k\tau], \, k > 0.$$

We find the $C^{0, 1/2}$ estimate

$$\mathbb{W}_1(\overline{\mu}_{\tau}(t),\overline{\mu}_{\tau}(s)) \leq \sqrt{2\Phi_{\lambda}(\overline{\mu})}\sqrt{|t-s|+ au} \quad \forall s, t > 0.$$

A limit exists by compactness:

For simplicity let $\Omega = \mathbb{R}^2$.

Theorem (L. Ambrosio, E. M., S. Serfaty, 2010)

Consider a single step of the minimization problem above, starting from $\mu \in L^{p}(\mathbb{R}^{2})$, $p \geq 4$.

 There exists a minimizer μ_τ ∈ L^p(ℝ²) such that ||μ_τ||_p ≤ ||μ||_p. (uniform in τ estimate)

• There holds

$$-\nabla h_{\mu_{\tau}}\mu_{\tau} = \frac{1}{\tau}\pi_{\#}^{1}((x-y)\gamma_{0}^{+}) + \frac{1}{\tau}\pi_{\#}^{1}((x-y)\gamma_{0}^{-}),$$

where $\gamma_0^+ \in \Gamma_0(\mu_\tau^+, \mu_0^+)$ and $\gamma_0^- \in \Gamma_0(\mu_\tau^-, \mu_0^-)$.

For simplicity let $\Omega = \mathbb{R}^2$.

Theorem (L. Ambrosio, E. M., S. Serfaty, 2010)

Consider a single step of the minimization problem above, starting from $\mu \in L^{p}(\mathbb{R}^{2})$, $p \geq 4$.

 There exists a minimizer μ_τ ∈ L^p(ℝ²) such that ||μ_τ||_p ≤ ||μ||_p. (uniform in τ estimate)

• There holds

$$-\nabla h_{\mu_{\tau}}\mu_{\tau} = \frac{1}{\tau} \pi^{1}_{\#}((x - y)\gamma^{+}_{0}) + \frac{1}{\tau} \pi^{1}_{\#}((x - y)\gamma^{-}_{0}),$$

where $\gamma^{+}_{0} \in \Gamma_{0}(\mu^{+}_{\tau}, \mu^{+}_{0})$ and $\gamma^{-}_{0} \in \Gamma_{0}(\mu^{-}_{\tau}, \mu^{-}_{0}).$

For simplicity let $\Omega = \mathbb{R}^2$.

Theorem (L. Ambrosio, E. M., S. Serfaty, 2010)

Consider a single step of the minimization problem above, starting from $\mu \in L^{p}(\mathbb{R}^{2})$, $p \geq 4$.

 There exists a minimizer μ_τ ∈ L^p(ℝ²) such that ||μ_τ||_p ≤ ||μ||_p. (uniform in τ estimate)

• There holds

$$-\nabla h_{\mu_{\tau}}\mu_{\tau} = \frac{1}{\tau} \pi^{1}_{\#}((x-y)\gamma^{+}_{0}) + \frac{1}{\tau} \pi^{1}_{\#}((x-y)\gamma^{-}_{0}),$$

here $\gamma^{+}_{0} \in \Gamma_{0}(\mu^{+}_{\tau},\mu^{+}_{0})$ and $\gamma^{-}_{0} \in \Gamma_{0}(\mu^{-}_{\tau},\mu^{-}_{0}).$

For simplicity let $\Omega = \mathbb{R}^2$.

Theorem (L. Ambrosio, E. M., S. Serfaty, 2010)

Consider a single step of the minimization problem above, starting from $\mu \in L^{p}(\mathbb{R}^{2})$, $p \geq 4$.

 There exists a minimizer μ_τ ∈ L^p(ℝ²) such that ||μ_τ||_p ≤ ||μ||_p. (uniform in τ estimate)

There holds

$$-\nabla h_{\mu_{\tau}}\mu_{\tau} = \frac{1}{\tau}\pi_{\#}^{1}((x-y)\gamma_{0}^{+}) + \frac{1}{\tau}\pi_{\#}^{1}((x-y)\gamma_{0}^{-}),$$

where $\gamma_0^+ \in \Gamma_0(\mu_\tau^+, \mu_0^+)$ and $\gamma_0^- \in \Gamma_0(\mu_\tau^-, \mu_0^-)$.

For simplicity let $\Omega = \mathbb{R}^2$.

Theorem (L. Ambrosio, E. M., S. Serfaty, 2010)

Consider a single step of the minimization problem above, starting from $\mu \in L^{p}(\mathbb{R}^{2})$, $p \geq 4$.

- There exists a minimizer μ_τ ∈ L^p(ℝ²) such that ||μ_τ||_p ≤ ||μ||_p. (uniform in τ estimate)
- There holds

$$-\nabla h_{\mu_{\tau}}\mu_{\tau} = \frac{1}{\tau} \pi^{1}_{\#}((x - y)\gamma^{+}_{0}) + \frac{1}{\tau} \pi^{1}_{\#}((x - y)\gamma^{-}_{0}),$$

where $\gamma^{+}_{0} \in \Gamma_{0}(\mu^{+}_{\tau}, \mu^{+}_{0})$ and $\gamma^{-}_{0} \in \Gamma_{0}(\mu^{-}_{\tau}, \mu^{-}_{0}).$

• The regularity part: there exists functions $\varphi : \mathbb{R} \to \mathbb{R}$, with *p*-growth, such that

$$\int_{\mathbb{R}^2} \varphi(\mu_{\tau}) \leq \int_{\mathbb{R}^2} \varphi(\mu).$$

(They are characterized characterized by the McCann (1997) displacement convexity inequality: $2x^2\varphi''(x) \ge x\varphi'(x) - \varphi(x)$)

• The Euler-Lagrange equation: suppose μ_{τ} is the minimizer. Consider a variation of the form

$$(\mu_{\tau})_{\varepsilon} = (\mathbb{I} + \varepsilon \xi)_{\#} \mu_{\tau},$$

$$-\nabla h_{\mu_{\tau}}\mu_{\tau} = \frac{1}{\tau}\pi^{1}_{\#}((x-y)\gamma^{+}_{0}) + \frac{1}{\tau}\pi^{1}_{\#}((x-y)\gamma^{-}_{0}).$$

• The regularity part: there exists functions $\varphi : \mathbb{R} \to \mathbb{R}$, with *p*-growth, such that

$$\int_{\mathbb{R}^2} \varphi(\mu_{ au}) \leq \int_{\mathbb{R}^2} \varphi(\mu).$$

(They are characterized characterized by the McCann (1997) displacement convexity inequality: $2x^2\varphi''(x) \ge x\varphi'(x) - \varphi(x)$)

• The Euler-Lagrange equation: suppose μ_{τ} is the minimizer. Consider a variation of the form

$$(\mu_{\tau})_{\varepsilon} = (\mathbb{I} + \varepsilon \xi)_{\#} \mu_{\tau},$$

$$-\nabla h_{\mu_{\tau}}\mu_{\tau} = \frac{1}{\tau}\pi^{1}_{\#}((x-y)\gamma^{+}_{0}) + \frac{1}{\tau}\pi^{1}_{\#}((x-y)\gamma^{-}_{0}).$$

• The regularity part: there exists functions $\varphi : \mathbb{R} \to \mathbb{R}$, with *p*-growth, such that

$$\int_{\mathbb{R}^2} arphi(\mu_ au) \leq \int_{\mathbb{R}^2} arphi(\mu).$$

(They are characterized characterized by the McCann (1997) displacement convexity inequality: $2x^2\varphi''(x) \ge x\varphi'(x) - \varphi(x)$)

• The Euler-Lagrange equation: suppose μ_{τ} is the minimizer. Consider a variation of the form

$$(\mu_{\tau})_{\varepsilon} = (\mathbf{I} + \varepsilon \boldsymbol{\xi})_{\#} \mu_{\tau},$$

$$-\nabla h_{\mu_{\tau}}\mu_{\tau} = \frac{1}{\tau}\pi_{\#}^{1}((x-y)\gamma_{0}^{+}) + \frac{1}{\tau}\pi_{\#}^{1}((x-y)\gamma_{0}^{-}).$$

• The regularity part: there exists functions $\varphi : \mathbb{R} \to \mathbb{R}$, with *p*-growth, such that

$$\int_{\mathbb{R}^2} arphi(\mu_ au) \leq \int_{\mathbb{R}^2} arphi(\mu).$$

(They are characterized characterized by the McCann (1997) displacement convexity inequality: $2x^2\varphi''(x) \ge x\varphi'(x) - \varphi(x)$)

• The Euler-Lagrange equation: suppose μ_{τ} is the minimizer. Consider a variation of the form

$$(\mu_{\tau})_{\varepsilon} = (\mathbf{I} + \varepsilon \boldsymbol{\xi})_{\#} \mu_{\tau},$$

$$-\nabla h_{\mu_{\tau}}\mu_{\tau} = \frac{1}{\tau}\pi_{\#}^{1}((x-y)\gamma_{0}^{+}) + \frac{1}{\tau}\pi_{\#}^{1}((x-y)\gamma_{0}^{-}).$$

Theorem (L. Ambrosio, E. M., S. Serfaty, 2010)

Let $\mu^0 \in L^4(\mathbb{R}^2)$. There exists a minimizing movement $\mu(t)$ and it satisfies

$$\frac{d}{dt}\mu(t) - \operatorname{div}\left(\nabla h_{\mu(t)}\varrho(t)\right) = 0 \quad \text{in } \mathcal{D}'((0, +\infty) \times \mathbb{R}^2),$$

where $\varrho(t)$ is a suitable positive measure satisfying $\varrho(t) \ge |\mu(t)|$. Idea of the proof: in the sense of distributions ($\phi \in C_0^2(\mathbb{R}^2)$),

$$\frac{d}{dt}\int_{\mathbb{R}^2}\phi\,d\overline{\mu}_{\tau}(t)=\sum_{k=0}^{\infty}\left(\int_{\mathbb{R}^2}\phi\,d\mu_{\tau}^{k+1}-\int_{\mathbb{R}^2}\phi\,d\mu_{\tau}^k\right)\delta_{\{k\tau\}},$$

$$\frac{d}{dt}\int_{\mathbb{R}^2}\phi \ d\overline{\mu}_{\tau}(t) = \sum_{k=0}^{\infty} \delta_{\{k\tau\}} \int_{\mathbb{R}^2 \times \mathbb{R}^2} \left(\phi(x) - \phi(y)\right) \ d\gamma_{\tau}^{k+1}(x,y).$$

Theorem (L. Ambrosio, E. M., S. Serfaty, 2010)

Let $\mu^0 \in L^4(\mathbb{R}^2)$. There exists a minimizing movement $\mu(t)$ and it satisfies

$$rac{d}{dt} \mu(t) - ext{div} \left(
abla h_{\mu(t)} arrho(t)
ight) = 0 \quad ext{in } \mathcal{D}'((0,+\infty) imes \mathbb{R}^2),$$

where $\varrho(t)$ is a suitable positive measure satisfying $\varrho(t) \ge |\mu(t)|$.

Idea of the proof: in the sense of distributions ($\phi \in C_0^2(\mathbb{R}^2)$),

$$\frac{d}{dt}\int_{\mathbb{R}^2}\phi\,d\overline{\mu}_{\tau}(t)=\sum_{k=0}^{\infty}\left(\int_{\mathbb{R}^2}\phi\,d\mu_{\tau}^{k+1}-\int_{\mathbb{R}^2}\phi\,d\mu_{\tau}^k\right)\delta_{\{k\tau\}},$$

$$\frac{d}{dt}\int_{\mathbb{R}^2}\phi \ d\overline{\mu}_{\tau}(t) = \sum_{k=0}^{\infty} \delta_{\{k\tau\}} \int_{\mathbb{R}^2 \times \mathbb{R}^2} (\phi(x) - \phi(y)) \ d\gamma_{\tau}^{k+1}(x,y).$$

Theorem (L. Ambrosio, E. M., S. Serfaty, 2010)

Let $\mu^0 \in L^4(\mathbb{R}^2)$. There exists a minimizing movement $\mu(t)$ and it satisfies

$$rac{d}{dt} \mu(t) - ext{div} \left(
abla h_{\mu(t)} arrho(t)
ight) = 0 \quad ext{in } \mathcal{D}'((0,+\infty) imes \mathbb{R}^2),$$

where $\varrho(t)$ is a suitable positive measure satisfying $\varrho(t) \ge |\mu(t)|$.

Idea of the proof: in the sense of distributions ($\phi \in C_0^2(\mathbb{R}^2)$),

$$\frac{d}{dt}\int_{\mathbb{R}^2}\phi\,d\overline{\mu}_{\tau}(t)=\sum_{k=0}^{\infty}\left(\int_{\mathbb{R}^2}\phi\,d\mu_{\tau}^{k+1}-\int_{\mathbb{R}^2}\phi\,d\mu_{\tau}^k\right)\delta_{\{k\tau\}},$$

$$\frac{d}{dt}\int_{\mathbb{R}^2}\phi\,d\overline{\mu}_{\tau}(t)=\sum_{k=0}^{\infty}\delta_{\{k\tau\}}\int_{\mathbb{R}^2\times\mathbb{R}^2}\left(\phi(x)-\phi(y)\right)\,d\gamma_{\tau}^{k+1}(x,y).$$

$$\frac{d}{dt} \int_{\mathbb{R}^2} \phi \, d\overline{\mu}_{\tau}(t) = \sum_{k=0}^{\infty} \delta_{\{k\tau\}} \left(\int_{\mathbb{R}^2 \times \mathbb{R}^2} \langle \nabla \phi(x), x - y \rangle \, d\gamma_{\tau}^{k+1}(x, y) + \mathcal{R}_{\tau}^k \right)$$
$$= \sum_{k=0}^{\infty} \delta_{\{k\tau\}} \left(\int_{\mathbb{R}^2 \times \mathbb{R}^2} \langle \nabla \phi(x), x - y \rangle \, d\left((\gamma_0^+)_{\tau}^{k+1} - (\gamma_0^-)_{\tau}^{k+1} \right) (x, y) \right) + o(1).$$

But $-\nabla h_{\mu_{\tau}^{k}}(\mu_{\tau}^{k})^{+} = \frac{1}{\tau}\pi_{\#}^{1}((x-y)(\gamma_{0}^{+})_{\tau}^{k}),$ $\nabla h_{\mu_{\tau}^{k}}(\mu_{\tau}^{k})^{-} = \frac{1}{\tau}\pi_{\#}^{1}((x-y)(\gamma_{0}^{-})_{\tau}^{k}).$

We find

$$\frac{d}{dt}\int_{\mathbb{R}^2}\phi\,d\overline{\mu}_{\tau}(t)=-\sum_{k=0}^{\infty}\tau\delta_{\{k\tau\}}\int_{\mathbb{R}^2}\left\langle \nabla\phi(x),\nabla h_{\mu_{\tau}^k}(x)\right\rangle\,d|\mu_{\tau}^k|(x)+o(1).$$

$$rac{d}{dt}\int_{\mathbb{R}^2}\phi\,d\mu(t)+\int_{\mathbb{R}^2}\langle
abla\phi,
abla h_{\mu(t)}
angle\,darrho(t)=0,$$

$$\frac{d}{dt} \int_{\mathbb{R}^2} \phi \, d\overline{\mu}_{\tau}(t) = \sum_{k=0}^{\infty} \delta_{\{k\tau\}} \left(\int_{\mathbb{R}^2 \times \mathbb{R}^2} \langle \nabla \phi(\mathbf{x}), \mathbf{x} - \mathbf{y} \rangle \, d\gamma_{\tau}^{k+1}(\mathbf{x}, \mathbf{y}) + \mathcal{R}_{\tau}^k \right)$$
$$= \sum_{k=0}^{\infty} \delta_{\{k\tau\}} \left(\int_{\mathbb{R}^2 \times \mathbb{R}^2} \langle \nabla \phi(\mathbf{x}), \mathbf{x} - \mathbf{y} \rangle \, d\left((\gamma_0^+)_{\tau}^{k+1} - (\gamma_0^-)_{\tau}^{k+1} \right) (\mathbf{x}, \mathbf{y}) \right) + o(1).$$

But $-\nabla h_{\mu_{\tau}^{k}}(\mu_{\tau}^{k})^{+} = \frac{1}{\tau}\pi_{\#}^{1}((x-y)(\gamma_{0}^{+})_{\tau}^{k}),$ $\nabla h_{\mu_{\tau}^{k}}(\mu_{\tau}^{k})^{-} = \frac{1}{\tau}\pi_{\#}^{1}((x-y)(\gamma_{0}^{-})_{\tau}^{k}).$

We find

$$\frac{d}{dt}\int_{\mathbb{R}^2}\phi\,d\overline{\mu}_{\tau}(t)=-\sum_{k=0}^{\infty}\tau\delta_{\{k\tau\}}\int_{\mathbb{R}^2}\left\langle \nabla\phi(x),\nabla h_{\mu_{\tau}^k}(x)\right\rangle\,d|\mu_{\tau}^k|(x)+o(1).$$

$$rac{d}{dt}\int_{\mathbb{R}^2}\phi\,d\mu(t)+\int_{\mathbb{R}^2}\langle
abla\phi,
abla h_{\mu(t)}
angle\,darrho(t)=0,$$

$$\begin{aligned} \frac{d}{dt} \int_{\mathbb{R}^2} \phi \, d\overline{\mu}_{\tau}(t) &= \sum_{k=0}^{\infty} \delta_{\{k\tau\}} \left(\int_{\mathbb{R}^2 \times \mathbb{R}^2} \langle \nabla \phi(\mathbf{x}), \mathbf{x} - \mathbf{y} \rangle \, d\gamma_{\tau}^{k+1}(\mathbf{x}, \mathbf{y}) + \mathcal{R}_{\tau}^k \right) \\ &= \sum_{k=0}^{\infty} \delta_{\{k\tau\}} \left(\int_{\mathbb{R}^2 \times \mathbb{R}^2} \langle \nabla \phi(\mathbf{x}), \mathbf{x} - \mathbf{y} \rangle \, d\left((\gamma_0^+)_{\tau}^{k+1} - (\gamma_0^-)_{\tau}^{k+1} \right) (\mathbf{x}, \mathbf{y}) \right) + o(1). \end{aligned}$$

But $-\nabla h_{\mu_{\tau}^k}(\mu_{\tau}^k)^+ &= \frac{1}{\tau} \pi_{\#}^1((\mathbf{x} - \mathbf{y})(\gamma_0^+)_{\tau}^k), \\ \nabla h_{\mu_{\tau}^k}(\mu_{\tau}^k)^- &= \frac{1}{\tau} \pi_{\#}^1((\mathbf{x} - \mathbf{y})(\gamma_0^-)_{\tau}^k). \end{aligned}$
We find

$$\frac{d}{dt}\int_{\mathbb{R}^2}\phi\,d\overline{\mu}_{\tau}(t)=-\sum_{k=0}^{\infty}\tau\delta_{\{k\tau\}}\int_{\mathbb{R}^2}\left\langle\nabla\phi(x),\nabla h_{\mu_{\tau}^k}(x)\right\rangle\,d|\mu_{\tau}^k|(x)+o(1).$$

$$rac{d}{dt}\int_{\mathbb{R}^2}\phi\,d\mu(t)+\int_{\mathbb{R}^2}\langle
abla\phi,
abla h_{\mu(t)}
angle\,darrho(t)=0,$$

$$\begin{split} \frac{d}{dt} \int_{\mathbb{R}^2} \phi \, d\overline{\mu}_{\tau}(t) &= \sum_{k=0}^{\infty} \delta_{\{k\tau\}} \left(\int_{\mathbb{R}^2 \times \mathbb{R}^2} \langle \nabla \phi(\mathbf{x}), \mathbf{x} - \mathbf{y} \rangle \, d\gamma_{\tau}^{k+1}(\mathbf{x}, \mathbf{y}) + \mathcal{R}_{\tau}^k \right) \\ &= \sum_{k=0}^{\infty} \delta_{\{k\tau\}} \left(\int_{\mathbb{R}^2 \times \mathbb{R}^2} \langle \nabla \phi(\mathbf{x}), \mathbf{x} - \mathbf{y} \rangle \, d\left((\gamma_0^+)_{\tau}^{k+1} - (\gamma_0^-)_{\tau}^{k+1} \right) (\mathbf{x}, \mathbf{y}) \right) + o(1). \end{split}$$

But $-\nabla h_{\mu_{\tau}^k}(\mu_{\tau}^k)^+ = \frac{1}{\tau} \pi_{\#}^1((\mathbf{x} - \mathbf{y})(\gamma_0^+)_{\tau}^k), \\ \nabla h_{\mu_{\tau}^k}(\mu_{\tau}^k)^- = \frac{1}{\tau} \pi_{\#}^1((\mathbf{x} - \mathbf{y})(\gamma_0^-)_{\tau}^k). \end{split}$
We find

$$\frac{d}{dt}\int_{\mathbb{R}^2}\phi\,d\overline{\mu}_{\tau}(t)=-\sum_{k=0}^{\infty}\tau\delta_{\{k\tau\}}\int_{\mathbb{R}^2}\left\langle \nabla\phi(\mathbf{x}),\nabla h_{\mu_{\tau}^k}(\mathbf{x})\right\rangle\,d|\mu_{\tau}^k|(\mathbf{x})+o(1).$$

$$\frac{d}{dt}\int_{\mathbb{R}^2}\phi\,d\mu(t)+\int_{\mathbb{R}^2}\langle\nabla\phi,\nabla h_{\mu(t)}\rangle\,d\varrho(t)=0,$$

$$\begin{split} \frac{d}{dt} \int_{\mathbb{R}^2} \phi \, d\overline{\mu}_{\tau}(t) &= \sum_{k=0}^{\infty} \delta_{\{k\tau\}} \left(\int_{\mathbb{R}^2 \times \mathbb{R}^2} \langle \nabla \phi(\mathbf{x}), \mathbf{x} - \mathbf{y} \rangle \, d\gamma_{\tau}^{k+1}(\mathbf{x}, \mathbf{y}) + \mathcal{R}_{\tau}^k \right) \\ &= \sum_{k=0}^{\infty} \delta_{\{k\tau\}} \left(\int_{\mathbb{R}^2 \times \mathbb{R}^2} \langle \nabla \phi(\mathbf{x}), \mathbf{x} - \mathbf{y} \rangle \, d\left((\gamma_0^+)_{\tau}^{k+1} - (\gamma_0^-)_{\tau}^{k+1} \right) (\mathbf{x}, \mathbf{y}) \right) + o(1). \end{split}$$

But $-\nabla h_{\mu_{\tau}^k}(\mu_{\tau}^k)^+ = \frac{1}{\tau} \pi_{\#}^1((\mathbf{x} - \mathbf{y})(\gamma_0^+)_{\tau}^k), \\ \nabla h_{\mu_{\tau}^k}(\mu_{\tau}^k)^- = \frac{1}{\tau} \pi_{\#}^1((\mathbf{x} - \mathbf{y})(\gamma_0^-)_{\tau}^k). \end{split}$
We find

$$\frac{d}{dt}\int_{\mathbb{R}^2}\phi\,d\overline{\mu}_{\tau}(t)=-\sum_{k=0}^{\infty}\tau\delta_{\{k\tau\}}\int_{\mathbb{R}^2}\left\langle \nabla\phi(x),\nabla h_{\mu_{\tau}^k}(x)\right\rangle\,d|\mu_{\tau}^k|(x)+o(1).$$

$$rac{d}{dt}\int_{\mathbb{R}^2}\phi\,d\mu(t)+\int_{\mathbb{R}^2}\langle
abla\phi,
abla h_{\mu(t)}
angle\,darrho(t)=0,$$

$$\begin{split} \frac{d}{dt} \int_{\mathbb{R}^2} \phi \, d\overline{\mu}_{\tau}(t) &= \sum_{k=0}^{\infty} \delta_{\{k\tau\}} \left(\int_{\mathbb{R}^2 \times \mathbb{R}^2} \langle \nabla \phi(\mathbf{x}), \mathbf{x} - \mathbf{y} \rangle \, d\gamma_{\tau}^{k+1}(\mathbf{x}, \mathbf{y}) + \mathcal{R}_{\tau}^k \right) \\ &= \sum_{k=0}^{\infty} \delta_{\{k\tau\}} \left(\int_{\mathbb{R}^2 \times \mathbb{R}^2} \langle \nabla \phi(\mathbf{x}), \mathbf{x} - \mathbf{y} \rangle \, d\left((\gamma_0^+)_{\tau}^{k+1} - (\gamma_0^-)_{\tau}^{k+1} \right) (\mathbf{x}, \mathbf{y}) \right) + o(1). \end{split}$$

But $-\nabla h_{\mu_{\tau}^k}(\mu_{\tau}^k)^+ = \frac{1}{\tau} \pi_{\#}^1((\mathbf{x} - \mathbf{y})(\gamma_0^+)_{\tau}^k), \\ \nabla h_{\mu_{\tau}^k}(\mu_{\tau}^k)^- = \frac{1}{\tau} \pi_{\#}^1((\mathbf{x} - \mathbf{y})(\gamma_0^-)_{\tau}^k). \end{split}$
We find

$$\frac{d}{dt}\int_{\mathbb{R}^2}\phi\,d\overline{\mu}_{\tau}(t)=-\sum_{k=0}^{\infty}\tau\delta_{\{k\tau\}}\int_{\mathbb{R}^2}\left\langle\nabla\phi(x),\nabla h_{\mu_{\tau}^k}(x)\right\rangle\,d|\mu_{\tau}^k|(x)+o(1).$$

$$rac{d}{dt}\int_{\mathbb{R}^2}\phi\,d\mu(t)+\int_{\mathbb{R}^2}\langle
abla\phi,
abla h_{\mu(t)}
angle\,darrho(t)=0,$$

A more interesting formulation is

$$\begin{cases} \frac{d}{dt} \varrho^+(t) - \operatorname{div} \left(\nabla h_{\mu(t)} \varrho^+(t) \right) = -\sigma(t) \\ \frac{d}{dt} \varrho^-(t) + \operatorname{div} \left(\nabla h_{\mu(t)} \varrho^-(t) \right) = -\sigma(t). \end{cases}$$

The term $\sigma \ge 0$ is responsible of mass cancellation.

$$\frac{d}{dt}\mu(t) - \operatorname{div}(\nabla h_{\mu(t)} |\mu(t)|) = 0. \quad (CRS)$$

A more interesting formulation is

$$\begin{cases} \frac{d}{dt}\varrho^+(t) - \operatorname{div}\left(\nabla h_{\mu(t)}\varrho^+(t)\right) = -\sigma(t) \\ \frac{d}{dt}\varrho^-(t) + \operatorname{div}\left(\nabla h_{\mu(t)}\varrho^-(t)\right) = -\sigma(t). \end{cases}$$

The term $\sigma \ge 0$ is responsible of mass cancellation.

$$\frac{d}{dt}\mu(t) - \operatorname{div}(\nabla h_{\mu(t)} |\mu(t)|) = 0. \quad (CRS)$$

A more interesting formulation is

$$\begin{cases} \frac{d}{dt}\varrho^+(t) - \operatorname{div}\left(\nabla h_{\mu(t)}\varrho^+(t)\right) = -\sigma(t) \\ \frac{d}{dt}\varrho^-(t) + \operatorname{div}\left(\nabla h_{\mu(t)}\varrho^-(t)\right) = -\sigma(t). \end{cases}$$

The term $\sigma \ge 0$ is responsible of mass cancellation.

$$\frac{d}{dt}\mu(t) - \operatorname{div}(\nabla h_{\mu(t)} |\mu(t)|) = 0. \quad (CRS)$$

A more interesting formulation is

$$\left\{ egin{array}{l} \displaystyle rac{d}{dt}arrho^+(t)-\operatorname{div}\left(
abla h_{\mu(t)}arrho^+(t)
ight)=-\sigma(t)\ \displaystyle rac{d}{dt}arrho^-(t)+\operatorname{div}\left(
abla h_{\mu(t)}arrho^-(t)
ight)=-\sigma(t). \end{array}
ight.$$

The term $\sigma \ge 0$ is responsible of mass cancellation.

$$rac{d}{dt} \mu(t) - \operatorname{div}(
abla h_{\mu(t)} |\mu(t)|) = 0.$$
 (CRS)

Task

Uniqueness of solutions up to the boundary.

We work with probability measures. We begin with a formulation that accounts for the boundary.

The actual formulation in Ambrosio, Serfaty (2008) is

$$\frac{d}{dt}\mu(t) - \operatorname{div}(\chi_{\Omega}\nabla h_{\mu(t)}\mu(t)) = 0 \quad \text{in } \mathbb{R}^2 \qquad (\text{CRS 2})$$

$$\int_0^T \int_{\overline{\Omega}} \partial_t \phi(\mathbf{x},t) \, d\mu_t + \int_0^T \int_{\Omega} \nabla h_{\mu_t}(\mathbf{x}) \cdot \nabla \phi(\mathbf{x},t) \, d\mu_t = 0.$$

The boundary

Task

Uniqueness of solutions up to the boundary.

We work with probability measures. We begin with a formulation that accounts for the boundary.

The actual formulation in Ambrosio, Serfaty (2008) is

$$\frac{d}{dt}\mu(t) - \operatorname{div}(\chi_{\Omega}\nabla h_{\mu(t)}\mu(t)) = 0 \quad \text{in } \mathbb{R}^2 \qquad (\text{CRS 2})$$

$$\int_0^T \int_{\overline{\Omega}} \partial_t \phi(\mathbf{x}, t) \, d\mu_t + \int_0^T \int_{\Omega} \nabla h_{\mu_t}(\mathbf{x}) \cdot \nabla \phi(\mathbf{x}, t) \, d\mu_t = 0.$$

The boundary

Task

Uniqueness of solutions up to the boundary.

We work with probability measures. We begin with a formulation that accounts for the boundary.

The actual formulation in Ambrosio, Serfaty (2008) is

$$\frac{d}{dt}\mu(t) - \operatorname{div}(\chi_{\Omega} \nabla h_{\mu(t)}\mu(t)) = 0 \quad \text{in } \mathbb{R}^2 \qquad (\text{CRS 2})$$

$$\int_0^T \int_{\overline{\Omega}} \partial_t \phi(x,t) \, d\mu_t + \int_0^T \int_{\Omega} \nabla h_{\mu_t}(x) \cdot \nabla \phi(x,t) \, d\mu_t = 0.$$

Task

Uniqueness of solutions up to the boundary.

We work with probability measures. We begin with a formulation that accounts for the boundary.

The actual formulation in Ambrosio, Serfaty (2008) is

$$\frac{d}{dt}\mu(t) - \operatorname{div}(\chi_{\Omega} \nabla h_{\mu(t)}\mu(t)) = 0 \quad \text{in } \mathbb{R}^2 \qquad (\mathsf{CRS 2})$$

$$\int_0^T \int_{\overline{\Omega}} \partial_t \phi(x,t) \, d\mu_t + \int_0^T \int_{\Omega} \nabla h_{\mu_t}(x) \cdot \nabla \phi(x,t) \, d\mu_t = 0.$$
Task

Uniqueness of solutions up to the boundary.

We work with probability measures. We begin with a formulation that accounts for the boundary.

The actual formulation in Ambrosio, Serfaty (2008) is

$$\frac{d}{dt}\mu(t) - \operatorname{div}(\chi_{\Omega} \nabla h_{\mu(t)}\mu(t)) = 0 \quad \text{in } \mathbb{R}^2 \qquad (\mathsf{CRS 2})$$

In the sense of distributions this means

$$\int_0^T \int_{\overline{\Omega}} \partial_t \phi(\mathbf{x}, t) \, d\mu_t + \int_0^T \int_{\Omega} \nabla h_{\mu_t}(\mathbf{x}) \cdot \nabla \phi(\mathbf{x}, t) \, d\mu_t = 0.$$

We try to be even more precise on the role of the boundary with the following

Definition (regular gradient flow)

Let T > 0. A solution of problem (CRS 2) is a regular gradient flow if *i*) $\|\widehat{\mu}(t)\|_{\infty} \in L^{\infty}(0, T)$, *ii*) $\langle \nabla h_{\mu(t)}(x), y - x \rangle \ge 0$ for all $(x, y) \in \operatorname{supp}(\widetilde{\mu}(t)) \times \overline{\Omega}$ and $t \in (0, T]$.

We try to be even more precise on the role of the boundary with the following

Definition (regular gradient flow)

Let T > 0. A solution of problem (CRS 2) is a regular gradient flow if *i*) $\|\widehat{\mu}(t)\|_{\infty} \in L^{\infty}(0, T)$, *ii*) $\langle \nabla h_{\mu(t)}(x), y - x \rangle \ge 0$ for all $(x, y) \in \operatorname{supp}(\widetilde{\mu}(t)) \times \overline{\Omega}$ and $t \in (0, T]$.

We try to be even more precise on the role of the boundary with the following

Definition (regular gradient flow)

Let T > 0. A solution of problem (CRS 2) is a regular gradient flow if *i*) $\|\widehat{\mu}(t)\|_{\infty} \in L^{\infty}(0, T)$, *ii*) $\langle \nabla h_{\mu(t)}(x), y - x \rangle \ge 0$ for all $(x, y) \in \operatorname{supp}(\widetilde{\mu}(t)) \times \overline{\Omega}$ and $t \in (0, T]$.

We try to be even more precise on the role of the boundary with the following

Definition (regular gradient flow)

Let T > 0. A solution of problem (CRS 2) is a regular gradient flow if *i*) $\|\widehat{\mu}(t)\|_{\infty} \in L^{\infty}(0, T)$, *ii*) $\langle \nabla h_{\mu(t)}(x), y - x \rangle \ge 0$ for all $(x, y) \in \operatorname{supp}(\widetilde{\mu}(t)) \times \overline{\Omega}$ and $t \in (0, T]$.

We try to be even more precise on the role of the boundary with the following

Definition (regular gradient flow)

Let T > 0. A solution of problem (CRS 2) is a regular gradient flow if *i*) $\|\widehat{\mu}(t)\|_{\infty} \in L^{\infty}(0, T)$, *ii*) $\langle \nabla h_{\mu(t)}(x), y - x \rangle \ge 0$ for all $(x, y) \in \operatorname{supp}(\widetilde{\mu}(t)) \times \overline{\Omega}$ and $t \in (0, T]$.

Let Ω be convex. Let $\widehat{\mu}^0 \in L^{\infty}(\Omega)$. Then there exists a regular gradient flow $\mu(t)$ such that $\mu(0) = \widehat{\mu}^0$

The proof is based on a new variation, made on the boundary: let μ_τ be a discrete minimizer and

$$(\mu_{\tau})_{\varepsilon} := \widehat{\mu}_{\tau} + \alpha^2 T_{\varepsilon \#}(\sigma) + (1 - \alpha^2) \widetilde{\mu}_{\tau}.$$

where $\alpha = (1 - \epsilon)^2$. Here $\sigma \ll \mathcal{L}^2 \llcorner \Omega$ and $T \in \Gamma_0(\widetilde{\mu}_{\tau}, \sigma)$.

Theorem (E.M., 2009)

Let Ω be convex. Let $\hat{\mu}^0 \in L^{\infty}(\Omega)$. Then there exists a regular gradient flow $\mu(t)$ such that $\mu(0) = \hat{\mu}^0$

The proof is based on a new variation, made on the boundary: let μ_{τ} be a discrete minimizer and

$$(\mu_{\tau})_{\varepsilon} := \widehat{\mu}_{\tau} + \alpha^2 T_{\varepsilon \#}(\sigma) + (1 - \alpha^2) \widetilde{\mu}_{\tau}.$$

where $\alpha = (1 - \epsilon)^2$. Here $\sigma \ll \mathcal{L}^2 \llcorner \Omega$ and $T \in \Gamma_0(\widetilde{\mu}_{\tau}, \sigma)$.

Theorem (E.M., 2009)

Let Ω be convex. Let $\hat{\mu}^0 \in L^{\infty}(\Omega)$. Then there exists a regular gradient flow $\mu(t)$ such that $\mu(0) = \hat{\mu}^0$

The proof is based on a new variation, made on the boundary: let μ_τ be a discrete minimizer and

$$(\mu_{\tau})_{\varepsilon} := \widehat{\mu}_{\tau} + \alpha^2 T_{\varepsilon \#}(\sigma) + (1 - \alpha^2) \widetilde{\mu}_{\tau}.$$

where $\alpha = (1 - \epsilon)^2$. Here $\sigma \ll \mathcal{L}^2 \sqcup \Omega$ and $T \in \Gamma_0(\widetilde{\mu}_{\tau}, \sigma)$.

Theorem (E.M., 2009)

Let Ω be convex. Let $\hat{\mu}^0 \in L^{\infty}(\Omega)$. Then there exists a regular gradient flow $\mu(t)$ such that $\mu(0) = \hat{\mu}^0$

The proof is based on a new variation, made on the boundary: let μ_τ be a discrete minimizer and

$$(\mu_{\tau})_{\varepsilon} := \widehat{\mu}_{\tau} + \alpha^2 T_{\varepsilon \#}(\sigma) + (1 - \alpha^2) \widetilde{\mu}_{\tau}.$$

where $\alpha = (1 - \epsilon)^2$. Here $\sigma \ll \mathcal{L}^2 \llcorner \Omega$ and $T \in \Gamma_0(\widetilde{\mu}_{\tau}, \sigma)$.

Theorem (E.M., 2009)

L. AMBROSIO, S. SERFATY: A gradient flow approach to an evolution problem arising in superconductivity, *Comm. Pure Appl. Math.*, Comm. Pure Appl. Math. **LXI** (2008), no.11, 1495–1539.

E. M., A global uniqueness result for an evolution problem arising in superconductivity, Boll. Unione Mat. Ital. (9) II (2009), no.2, 509–528.

L. AMBROSIO, E. M., S. SERFATY, Gradient flow of the Chapman-Rubinstein-Schatzman model for signed vortices, preprint.