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This commercial reads:

Permanently sober loaders;

We select
optimal transport



n>2, 1<p<n.

W21 (R"™) stands for the completion of
Co°(R™) with respect to the norm ||Vu||p.

1. Critical Sobolev embedding:
[Voll, rn

K(n,p) = inf

| > 0.
veWLRM\{0} ||v][p rr

2. Critical trace embedding:

| Vvll, re
Ki(n,p) = __inf PP+ S0
veWg (RN} |Vl arr
Here
p* = np . P = (n—l)p.

n—p'’ n—mp

NB: Without loss of generality, one can

assume v > 0.



How to find the sharp con-
stants in 1 and 27

1. Critical Sobolev embedding.
The classical approach (T. Aubin, 1976;
G. Talenti, 1976):

Step 1: Symmetrization, i.e. the rear-
rangement mapping any level set to the
ball of the same volume centered in ori-
gin.

It is well known (G. Pdlya, G. Szego,
1940s) that this rearrangement dimin-
ishes our functional.

Step 2: Thus, the problem is reduced
to a one-dimensional inequality which
was considered by G.A. Bliss (1930).



Alternative approach based on the op-
timal transport (D. Cordero-Erausquin,
B. Nazaret, C. Villani, 2004).

Consider two probability measures in R™
with smooth densities F and G and
bounded supports. Then there exists
the Brenier map T' = V¢ such that for
all measurable functions

[ ¥(@)G(2) de = [ $(T(x))F(z)dz. (1)
R™ R™

Moreover, the function ¢ is convex and
satisfies the Monge—Ampeére equation

F(z) = G(Ve(x)) - det(D%p(x)).  (2)

almost everywhere w.r.t. the measure
Fdz. Here D?p is a.e.-Hessian matrix
of ¢ which exists by A.D. Aleksandrov’s
theorem.



By (1),

[ G (@) de = [ GH(Vi(2))F(z) da.
R’I’L Rn

Using (2) and the Hadamard inequality,

we obtain

/ Gl_%(w) dx =
Rn

= [ detn(D?p(a)) F* i (x) do <
Rn

<> [ Dp@)F () da. (3)

an
Since ¢ is convex, we can change Ay,
understood as a.e.-Laplacian in the right-

hand side of (3), to the full distributional

Laplacian.



Integrating by parts, we get

1
/ Gl n(z)dz <
R’I’L

<~ [(Ve(@), VER)(@)) da. (4)
R?’L

Put F =P, G =uP". Then ||v|q =

|u]|p+ @ =1, and (4) becomes

/ W (1= (2) dar <

n(p—1
< 2= [ R0 (Vi (), Vo)) da

(Note that the exponent in the last integral equals p*/p’).

Now we apply the Holder inequality and

arrive at
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By (1),

* / * /
| P @IVe@)F de = [ u¥ @)yl dy.
R™ R™

T his gives
* 1
[ uP (1_5)(33) dx
Rn

p(n—1
]1/10’ S n(n—p

, J11V0]l R
[ [ uP (z)|z|P dx
Rn

Since the Brenier map ¢ is not contained

in the last inequality, it remains valid for

all w and v normalized in L,«(R").



Now we observe that the equality in
1
detn(D?p) < tAy implies D?p = CI,

and thus, we can assume Vop(x) = Cx.

Further, the equality in the Holder in-
equality means v?" PV = CVo. This
implies v = v(|z|) and provides a 1st or-
der ODE for v. Solving it, we obtain the

Bliss function
I 1-—"n
h(z) = (a+blzP) »

Direct calculation shows that we really

have the equality for u = v = Ch. In

particular, this means
Volpzn (VAR
|ollpe e~ Al e

?

and K(n,p) = ml?( 1)p (wn_l -B(%,]%-F 1)>%



2. Critical trace embedding.

Escobar (1988) conjectured that the
minimizer in the half-space is

w(z) = |z —ce| P 1, (5)
with e = (0,...,0,—1), and proved it
for p = 2 using the conformal invariance
of the quotient ||VU||2,R”}I_/HU||2**,8R7}I_- B.
Nazaret (2006) proved this conjecture
by the optimal transport approach.

Now we consider two probability mea-
sures in Rf,”_ with smooth densities F
and G and bounded supports. Then the
identity (1) becomes

[¥(@)G(x) dz = [ (T (2))F(x)dz. (6)
R" R"

+ +



Just as earlier, we obtain

/Gl_%(w) dx <% /Agp(w)Fl_%(w) dux.

R™ R™

Integrating by parts, we get

n / Gl_%(:c) dx <

R}

< F1=0(2)(Vop(x), n) d5—
8R7}|_

— [ (Ve(@), V(F)()) da.

R}
By definition of the Brenier map, for all
z € R} one has Vp(z) € Ry. Therefore,

(Vo(z),n) <0 on OR% , and

1
n / Gl n(z) dzx <
R

<= [(Ve(@), VF) @) do. (7)

R}



Adding to both parts of (7) the integral

[ (e, V(FY ) (@) do =
= [ F'u(2)(e,n)ds =

1
= / Fl=n(z) dz,
8IR{7}F

we arrive at

Fl_%(a:)dz—l—n / Gl_%(a:)dazé

OR™. R™
< [ (e~ Ve(2), V(FI ") (2)) dz. (8)
R

Put F =", G=uP. Then [0l g =

* PN — 1
[Eaafps R , and (8) becomes



kok n(p—1)
p (n—1)p n_ ,
[ollpes prr. < V5= [ v n (@)
R}
(e = Ve(x), Vo(a)) da — nl|ul[ju gy -

Ry

By the Holder inequality,

1
ol omn < U 190l e
3
| [ @le = Vo) do|” -
Rn
- n”UHg**,R?}'_-
By (6),

[ o7 (@)e — Vo)V dx =

R}

* /
= [ W (y)le —y” dy.
By

T his gives



(n 1)p

H’UHP** ORY S IVollpre
%
-[/up (:U)|e—:c\p dz|” —
RY

JlDen e - (9)
— N{u .
p**’RZ—

Note that both sides of (9) do not con-
tain the Brenier map. Hence, by approx-
imation, this inequality remains valid for
all w and v normalized in L, (]R{ ).

Now we specify (7) by setting u = Cw,
with w defined in (5) and C = ku—*lm.
Then for any v € W, (R.) such that

||U *R?}I- — 1, we have

I,

ol [? orr S AlVolp gy — B, (10)



n(p-1) 1
A=@Dp.cn5 ) B=ncr” T
1= p** n —
ol = [ 1= =1

For arbitrary v € W}(€2), without nor-

malization, (9) can be rewritten as fol-

lOWS:
(J@)) S ARQ@) =B
l.e.
W) FEW) = e

where

J(’U) — HVUHP,Q
[vllp= 00

)

K(’U) — HVUHp,Q
o]l p*,02



By elementary calculus, the function F
achieves its minimum at the point

p(n—1)B _ n-—p

1
— CIr = K ,
nlp—1)A p-—1 (w)

and therefore,

If v = v = Cw, then the Brenier map
IS the identity. Direct calculation shows
that all the inequalities become equali-
ties. This means

IVollpre g IVwllpre

lollpe+ orn g [l pe+ orn

)

and
1 1

K1(n,p) = (g)p (“’52 -B(”gl, 2&—_11)» (="




The following observation is by A. Nazarov (to
appear in Algebra and Analysis, 2010, N5).
Theorem. Let €2 be a convex circular
cone with aperture 20. Then the mini-
mum for the critical trace embedding in
2 is provided by the function (5).

The proof runs almost without changes.

In particular, this implies

n(p—1) p—1 1

K1(n,p; Q) = (22F) " DP2G=Dr sini™ (0),

with

. L / dx
1 = [Jwllpe o _Q |z — e|(n—1)p"




Remark. The value of Z for circular cones can be calcu-
lated explicitly:

7= 2 (0 - 5B (g0 - 5)

SN 73 () Pi:i_g(cos(m),

where a = g”(‘;_li]; while P#(z) is the Legendre function.
Theorem remains valid for any convex
cone €2, if its supporting hyperplanes at
almost every point have a constant an-
gle 0 with the axis z,. The simplest
example of such cone is a dyhedral an-
gle less than half-space. Another inter-
esting example is a cone supported by
arbitrary simplex in SP—1.

It is worth to note that for nonconvex cone of
such type (6 > 75), the function (5) does not

provide minimum in the critical trace embed-
ding, though it is a stationary point.



