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This commercial reads:

Permanently sober loaders;

. . .

We select

optimal transport



n > 2; 1 < p < n.

Ẇ1
p (Rn) stands for the completion of

C∞0 (Rn) with respect to the norm ‖∇v‖p.

1. Critical Sobolev embedding:

K(n, p) = inf
v∈Ẇ1

p (Rn)\{0}

‖∇v‖p,Rn
‖v‖p∗,Rn

> 0.

2. Critical trace embedding:

K1(n, p) = inf
v∈Ẇ1

p (Rn+)\{0}

‖∇v‖p,Rn+
‖v‖p∗∗,∂Rn+

> 0.

Here

p∗ = np
n−p; p∗∗ = (n−1)p

n−p .

NB: Without loss of generality, one can

assume v > 0.



How to find the sharp con-
stants in 1 and 2?

1. Critical Sobolev embedding.

The classical approach (T. Aubin, 1976;

G. Talenti, 1976):

Step 1: Symmetrization, i.e. the rear-

rangement mapping any level set to the

ball of the same volume centered in ori-

gin.

It is well known (G. Pólya, G. Szegö,

1940s) that this rearrangement dimin-

ishes our functional.

Step 2: Thus, the problem is reduced

to a one-dimensional inequality which

was considered by G.A. Bliss (1930).



Alternative approach based on the op-

timal transport (D. Cordero-Erausquin,

B. Nazaret, C. Villani, 2004).

Consider two probability measures in Rn

with smooth densities F and G and

bounded supports. Then there exists

the Brenier map T = ∇ϕ such that for

all measurable functions ψ∫
Rn
ψ(x)G(x) dx =

∫
Rn
ψ(T (x))F (x) dx. (1)

Moreover, the function ϕ is convex and

satisfies the Monge–Ampère equation

F (x) = G(∇ϕ(x)) · det(D2ϕ(x)). (2)

almost everywhere w.r.t. the measure

Fdx. Here D2ϕ is a.e.-Hessian matrix

of ϕ which exists by A.D. Aleksandrov’s

theorem.



By (1),

∫
Rn

G1−1
n(x) dx =

∫
Rn

G−1
n(∇ϕ(x))F (x) dx.

Using (2) and the Hadamard inequality,

we obtain

∫
Rn

G1−1
n(x) dx =

=
∫

Rn
det

1
n(D2ϕ(x))F1−1

n(x) dx 6

6
1

n

∫
Rn

∆ϕ(x)F1−1
n(x) dx. (3)

Since ϕ is convex, we can change ∆ϕ,

understood as a.e.-Laplacian in the right-

hand side of (3), to the full distributional

Laplacian.



Integrating by parts, we get

∫
Rn

G1−1
n(x) dx 6

6 −
1

n

∫
Rn

〈∇ϕ(x),∇(F1−1
n)(x)〉 dx. (4)

Put F = vp
∗
, G = up

∗
. Then ‖v‖p∗,Ω =

‖u‖p∗,Ω = 1, and (4) becomes

∫
Rn

up
∗(1−1

n)(x) dx 6

6−p(n−1)
n(n−p)

∫
Rn
v
n(p−1)
n−p (x)〈∇ϕ(x),∇v(x)〉 dx.

(Note that the exponent in the last integral equals p∗/p′).

Now we apply the Hölder inequality and

arrive at



∫
Rn

up
∗(1−1

n)(x) dx 6 p(n−1)
n(n−p)‖∇v‖p,Rn·

·
[ ∫
Rn

vp
∗
(x)|∇ϕ(x)|p

′
dx

]1/p′
.

By (1),

∫
Rn

vp
∗
(x)|∇ϕ(x)|p

′
dx =

∫
Rn

up
∗
(y)|y|p

′
dy.

This gives

∫
Rn
up

∗(1−1
n)(x) dx

[ ∫
Rn
up

∗(x)|x|p′ dx
]1/p′ 6 p(n−1)

n(n−p)‖∇v‖p,Rn.

Since the Brenier map ϕ is not contained

in the last inequality, it remains valid for

all u and v normalized in Lp∗(Rn).



Now we observe that the equality in

det
1
n(D2ϕ) 6 1

n∆ϕ implies D2ϕ = CI,
and thus, we can assume ∇ϕ(x) = Cx.

Further, the equality in the Hölder in-

equality means vp
∗/p′∇ϕ = C∇v. This

implies v = v(|x|) and provides a 1st or-

der ODE for v. Solving it, we obtain the

Bliss function

h(x) = (a+ b|x|p
′
)
1−n

p .

Direct calculation shows that we really

have the equality for u = v = Ch. In

particular, this means

‖∇v‖p,Rn
‖v‖p∗,Rn

>
‖∇h‖p,Rn
‖h‖p∗,Rn

,

and K(n, p) = n
1
p

(
n−p
p−1

) 1
p′
(
ωn−1 · B

(
n
p ,
n
p′ + 1

))1
n
.



2. Critical trace embedding.

Escobar (1988) conjectured that the

minimizer in the half-space is

w(x) = |x− εe|−
n−p
p−1, (5)

with e = (0, . . . ,0,−1), and proved it

for p = 2 using the conformal invariance

of the quotient ‖∇v‖2,Rn+
/
‖v‖2∗∗,∂Rn+. B.

Nazaret (2006) proved this conjecture

by the optimal transport approach.

Now we consider two probability mea-

sures in Rn+ with smooth densities F

and G and bounded supports. Then the

identity (1) becomes∫
Rn+

ψ(x)G(x) dx =
∫

Rn+

ψ(T (x))F (x) dx. (6)



Just as earlier, we obtain

∫
Rn+

G1−1
n(x) dx 6

1

n

∫
Rn+

∆ϕ(x)F1−1
n(x) dx.

Integrating by parts, we get

n
∫

Rn+

G1−1
n(x) dx 6

6
∫

∂Rn+

F1−1
n(x)〈∇ϕ(x),n〉 dΣ−

−
∫

Rn+

〈∇ϕ(x),∇(F1−1
n)(x)〉 dx.

By definition of the Brenier map, for all

x ∈ Rn+ one has ∇ϕ(x) ∈ Rn+. Therefore,

〈∇ϕ(x),n〉 6 0 on ∂Rn+, and

n
∫

Rn+

G1−1
n(x) dx 6

6 −
∫

Rn+

〈∇ϕ(x),∇(F1−1
n)(x)〉 dx. (7)



Adding to both parts of (7) the integral

∫
Rn+

〈e,∇(F1−1
n)(x)〉 dx =

=
∫

∂Rn+

F1−1
n(x)〈e,n〉 dΣ =

=
∫

∂Rn+

F1−1
n(x) dΣ,

we arrive at

∫
∂Rn+

F1−1
n(x) dΣ + n

∫
Rn+

G1−1
n(x) dx 6

6
∫

Rn+

〈e−∇ϕ(x),∇(F1−1
n)(x)〉 dx. (8)

Put F = vp
∗
, G = up

∗
. Then ‖v‖p∗,Rn+ =

‖u‖p∗,Rn+ = 1, and (8) becomes



‖v‖p
∗∗
p∗∗,∂Rn+

6 (n−1)p
n−p

∫
Rn+

v
n(p−1)
n−p (x)·

· 〈e−∇ϕ(x),∇v(x)〉 dx− n‖u‖p
∗∗
p∗∗,Rn+

.

By the Hölder inequality,

‖v‖p
∗∗
p∗∗,∂Rn+

6 (n−1)p
n−p ‖∇v‖p,Rn+·

·
[ ∫
Rn+

vp
∗
(x)|e−∇ϕ(x)|p

′
dx

]1
p′−

− n‖u‖p
∗∗
p∗∗,Rn+

.

By (6),

∫
Rn+

vp
∗
(x)|e−∇ϕ(x)|p

′
dx =

=
∫

Rn+

up
∗
(y)|e− y|p

′
dy.

This gives



‖v‖p
∗∗
p∗∗,∂Rn+

6 (n−1)p
n−p ‖∇v‖p,Rn+·

·
[ ∫
Rn+

up
∗
(x)|e− x|p

′
dx

]1
p′−

− n‖u‖p
∗∗
p∗∗,Rn+

. (9)

Note that both sides of (9) do not con-

tain the Brenier map. Hence, by approx-

imation, this inequality remains valid for

all u and v normalized in Lp∗(Rn+).

Now we specify (7) by setting u = Cw,

with w defined in (5) and C = ‖w‖−1
p∗,Rn+

.

Then for any v ∈ Ẇ1
p (Rn+) such that

‖v‖p∗,Rn+ = 1, we have

‖v‖p
∗∗
p∗∗,∂Rn+

6 A‖∇v‖p,Rn+ −B, (10)



where

A = (n−1)p
n−p ·C

n(p−1)
n−p · I

1
p′ , B = nCp

∗∗
· I;

I = ‖w‖p
∗∗
p∗∗,Rn+

=
∫

Rn+

dx

|x− e|(n−1)p′
.

For arbitrary v ∈ Ẇ1
p (Ω), without nor-

malization, (9) can be rewritten as fol-

lows: (
K(v)

J(v)

)p∗∗
6 AK(v)−B,

i.e.

Jp
∗∗
(v) > F(K(v)) ≡

Kp∗∗(v)

AK(v)−B
,

where

J(v) =
‖∇v‖p,Ω
‖v‖p∗∗,∂Ω

, K(v) =
‖∇v‖p,Ω
‖v‖p∗,Ω

.



By elementary calculus, the function F

achieves its minimum at the point

p(n− 1)B

n(p− 1)A
=
n− p

p− 1
CI

1
p = K(w),

and therefore,

Jp
∗∗
(v) >

Kp∗∗(w)

AK(w)−B
=

(
n−p
p−1

)n(p−1)
n−p I

p−1
n−p.

If v = u = Cw, then the Brenier map

is the identity. Direct calculation shows

that all the inequalities become equali-

ties. This means

‖∇v‖p,Rn+
‖v‖p∗∗,∂Rn+

>
‖∇w‖p,Rn+
‖w‖p∗∗,∂Rn+

,

and

K1(n, p) =
(
n−p
p−1

) 1
p′
(
ωn−2

2 · B
(
n−1
2 , n−1

2(p−1)

)) 1
(n−1)p′

.



The following observation is by A. Nazarov (to

appear in Algebra and Analysis, 2010, N5).

Theorem. Let Ω be a convex circular

cone with aperture 2θ. Then the mini-

mum for the critical trace embedding in

Ω is provided by the function (5).

The proof runs almost without changes.

In particular, this implies

K1(n, p;Ω) =
(
n−p
p−1

)n(p−1)
(n−1)pI

p−1
(n−1)p sin

1
p∗∗(θ),

with

I = ‖w‖p
∗∗
p∗∗,Ω =

∫
Ω

dx

|x− e|(n−1)p′
.



Remark. The value of I for circular cones can be calcu-
lated explicitly:

I = π
n

2
−12a−

3

2Γ
(
a− n−1

2

)
B
(
n
2
, a− n

2

)
·

· sinn−a−
1

2(θ)P
1

2
−a
n−a−3

2

(
cos(θ)

)
,

where a = (n−1)p
2(p−1)

while Pµ
ν(x) is the Legendre function.

Theorem remains valid for any convex

cone Ω, if its supporting hyperplanes at

almost every point have a constant an-

gle θ with the axis xn. The simplest

example of such cone is a dyhedral an-

gle less than half-space. Another inter-

esting example is a cone supported by

arbitrary simplex in Sn−1.

It is worth to note that for nonconvex cone of

such type (θ > π
2), the function (5) does not

provide minimum in the critical trace embed-

ding, though it is a stationary point.


