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J. Moser, 1965

Given a C∞ compact connected manifold Mn, ∂Mn = ∅, and α, β two
n-volume forms on Mn s.t. ∫

Mn
α =

∫
Mn

β.

Then ∃φ ∈ Diff∞(Mn,Mn) such that

φ∗(β) = α.

In local coordinates: If α = fdx and β = gdx then the equation

g(φ(x))|J(φ(x))| = f(x), x ∈Mn,

has a C∞-solution.

The solution φ is NOT UNIQUE.

When ∂Mn 6= ∅, see B. Dacorogna-J. Moser, 1990.
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One can think of at least two ways to restrict the class of possible solutions:

I. Search for φ in a special (= restricted) class of maps.

II. Associate a COST C(φ) with each φ and look for φ that optimize
the cost.

It seems that in many problems in geometry and physics the approach I is
usually taken, while in economics, mechanics, etc., the main approach is
II.

It turns out that for several classes of problems in geometry and ge-
ometrical optics these two approaches lead to the same solution.

The Aleksandrov’s problem is a good case supporting this observation.
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Aleksandrov’s problem for Compact Convex
Hypersurfaces
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Statement of the problem

Notation.

Fn ≡
{

closed convex hypersurfaces in Rn+1

∗−shaped with respect to the origin O} , n ≥ 1.
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x

ρ(x)

N

N

N

x r(x) = ρ(x)x {N(x)}

αF = γ o r

S n~

γ

r γ
S n~

Sn
F

The generalized Gauss map;

in general, multivalued

Generalized Gauss map
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With each F ∈ Fn we associate two functions:

Radial function ρ : Sn → (0,∞), ρ(x) = dist (O, F ) in direction x ∈ Sn

Support function h : S̃n → (0,∞), h(N) = distance from O to the
supporting hyperplane to F with the outward unit normal N ∈ S̃n.

=====
Notation: σ− standard Lebesgue measure on Sn.
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Fact. If ω ∈ B(Sn) then αF (ω) ⊂ S̃n is Lebesgue measurable.

Def-n. The integral Gauss Curvature is the “pull-back” of σ:

KF (ω) =
∫
αF (ω)

dσ, ω ∈ B(Sn).

QUESTION. Given a positive Borel measure µ on Sn, under what condi-
tions on µ there exists a F ∈ Fn such that

KF (ω) = µ(ω), ∀ω ∈ B(Sn)?

Uniqueness - ?
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Theorem 1. (A.D. Aleksandrov ’39) In order for a given function µ on B(Sn)

to be the integral Gauss curvature of F ∈ Fn it is necessary and sufficient
that

µ is nonnegative and countably additive on Borel subsets of Sn, (1)

µ(Sn) = σ(Sn), (2)

the inequality

µ(Sn \ ω) > σ(ω∗), (3)

holds for any spherically convex ω ⊂ Sn, ω 6= Sn, where (the dual)

ω∗ = {y ∈ Sn | 〈x, y〉 ≤ 0 ∀x ∈ ω.}

Such F is unique up to a homothety with respect to O.

Note. The measure µ may be a sum of point masses.
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Illustration of condition

µ(Sn \ ω) > σ(ω∗),
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If F ∈ C2 then

KF (ω) =
∫
αF (ω)⊂S̃n

dσ(N) =
∫
r(ω)

K̄dF =∫
ω⊂Sn

K̄gdσ = µ(ω), ∀ω ∈ B(Sn),

where K̄ is the Gauss-Kronecker curvature and gdσ is the volume element
of F .

The solution of Aleksandrov is a weak solution.
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Outline of Aleksandrov’s proof

Step 1. First solve the problem in the class of convex polytopes Pnk ⊂ F
n

with vertices only on some fixed set of rays x1, ..., xk emanating from O
and not pointing in one hemisphere. The equation of the problem is

(KP (xi) ≡) σ(αP (xi)) = µi, i = 1,2, ..., k, P ∈ Pnk
where µ = (µ1, ..., µk) is a given atomic measure satisfying conditions of
Aleksandrov’s theorem.

Step 2. Given a general µ, approximate it by
∑k
i=1 µiδ(xi). Do Step 1 for

the µk =
∑
i µiδ(xi) to obtain a sequence {Pk}.

Step 3. Show that the set {Pk} is compact in C(Sn). Extract a converging
subsequence (making sure that F = limk→∞ Pk ∈ Fn) and use weak
continuity of the KPk(≡ σ(αPk)) to conclude that KPk(ω) −→ KF (ω)
(weakly).
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To do Step I, Aleksandrov used his Mapping Lemma, which is a variant of
the domain invariance theorem. However, to apply Aleksandrov’s mapping
lemma one needs to establish first the uniqueness of a solution.
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Aleksandrov’s theorem stimulated further research on this and many re-
lated problems.

Various generalizations (including noncompact case) were investigated by
A.D. Aleksandrov, A.V. Pogorelov, I. Bakel’man, A. Kagan, V. Oliker, L.
Caffarelli-L. Nirenberg-J. Spruck, A. Treibergs, P. Delanoe, J. Urbas, L.
Barbosa-H. Lira-V. Oliker, Y.Y. Li-V. Oliker, Q. Jin-Y.Y.Li, R. McCann, V.
Bogachev-A. Kolesnikov,...

This list is by no means complete!!
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In his classical book on Convex Polyhedra, ’50, A.D. Alek-
sandrov asked for variational proofs of geometric exis-
tence problems for convex polytopes and said that this
is a difficult problem.

Next, I will describe such a variational formulation and a proof of Aleksan-
drov’s theorem. In fact, the proposed approach is really a generic proce-
dure applicable in many other existence problems in geometry (and optics).
In addition, this approach provides significantly more information about the
solution (including a way to compute it!) than the original approach of Alek-
sandrov.

The Theorems 2-4 below were established by V.O., Adv. in Math., 213
(2007).
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Theorem 2. Let µ : Sn → [0,∞) satisfy (1)-(3) in Theorem 1. Put:

c(x,N) =

{
log〈x,N〉 when 〈x,N〉 > 0
−∞ otherwise (x,N) ∈ Sn × S̃n,

A = {(h, ρ) ∈ C(S̃n)× C(Sn) | h > 0, ρ > 0, (4)
logh(N)− log ρ(x) ≥ c(x,N), (x,N) ∈ Sn × S̃n},

Q[h, ρ] =
∫
S̃n

logh(N)dσ(N)−
∫
Sn

log ρ(x)dµ(x). (5)

Then ∃ ! (up to a homothety with respect toO) closed convex hypersurface
F̃ ∈ Fn with support function h̃ and radial function ρ̃ such that

Q[h̃, ρ̃] = inf
A
Q[h, ρ]. (6)

The hypersurface F̃ is the unique (up to a homothety w. r. to O) solution
of the Aleksandrov problem, that is,

KF̃ (ω) = µ(ω), ∀ω ∈ B(Sn). (7)



Monge’s Problem on Sn
16

• Connection with the Monge problem on Sn

Let µ be as before and let Θ = {θ} :

(a) each θ is measurable, possibly multivalued, map of Sn onto S̃n,

(b) ∀ Borel set ω ⊂ Sn the image θ(ω) is Lebesgue measurable and
σ{N ∈ S̃n | θ−1(N) contains more than one point} = 0,

(c) each θ is measure preserving, that is,∫
S̃n
f(θ−1(N))dσ(N) =

∫
Sn
f(x)dµ(x) ∀f ∈ C(Sn).
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Observe that Θ 6= ∅. For example, the generalized Gauss map αF̃ ∈ Θ,
where F̃ ∼ (h̃, ρ̃) is the minimizer of Q, but there are also other maps in
Θ.

Here is a construction for an atomic measure µ. Let x1, ..., xk ∈ Sn

and µ1, ..., µk ≥ 0,
∑
µi = σ(Sn). Subdivide S̃n =

⋃k
i=1 Ēi where

|∂Ei| = 0, Ei
⋂
Ej = ∅ when i 6= j, and

∫
Ei
dσ = µi, i = 1, ..., k.

Consider a multivalued map θ : Sn → S̃n s.t. θ(xi) = Ēi and
∀x 6= xi θ(x) ∈

⋃k
i=1 ∂Ei. Then θ ∈ Θ.
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For (x,N) ∈ Sn × S̃n define the “cost density” and the cost

c(x,N) =

{
log〈x,N〉 when 〈x,N〉 > 0
−∞ otherwise (x,N) ∈ Sn × S̃n (8)

T [θ] :=
∫
S̃n
c(θ−1(N), N)dσ(N), θ ∈ Θ, (9)

Problem of Monge’s type (MP) on Sn × S̃n: Find θ̃ ∈ Θ such that

T [θ̃] = supΘT [θ].

Theorem 3. Let F̃ ∼ (h̃, ρ̃) be the minimizer of Q in Theorem 2. The
generalized Gauss map αF̃ is a solution of MP and any other solution θ̃ of
MP satisfies θ̃ = αF̃ µ− a.e. Furthermore,

Q[h̃, ρ̃] = T [θ̃].

In addition, θ̃−1 = α−1
F̃

σ − a.e.
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Geometrically, for F ∈ Fn the function c(x,NF (x)) ≡ log〈x,NF (x)〉
gives a scale invariant quantitative measure of “asphericity” of a hyper-
surface F with respect to O. For example, for a sphere centered at O it is
identically zero, while for a sufficiently elongated ellipsoid of revolution cen-
tered at O it has large negative values at points where the radial direction
is nearly orthogonal to the normal.

The above result shows that the most efficient way (with respect to the cost
c(x,N)) to transfer to σ an abstractly given measure µ on Sn is to move
it by the generalized Gauss map αF̃ of the convex hypersurface F̃ solving
the Aleksandrov problem and the variational problem (4)-(6).

The conditions on µ and Θ are in fact intrinsic on Sn. But the solution
solves an extrinsic embedding problem!
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Connection with the Kantorovich problem on Sn.
In the framework of the mass transport theory on Sn × S̃n the problem of
minimizing Q[h, ρ] over A is the dual of the following Kantorovich-type
(primal) maximization problem.

Let Γ(µ, σ) be a set of joint finite Borel measures on Sn×S̃n with marginals
µ and σ as in Theorem 1; that is, for each γ ∈ Γ(µ, σ):

γ[ω, S̃n] = µ(ω) ∀ω ∈ B(Sn)

and

γ[Sn, ω̃] = σ(ω̃) ∀ω̃ ∈ B(S̃n).

Put

C[γ] =
∫
Sn

∫
S̃n
c(x,N)dγ(x,N), γ ∈ Γ(µ, σ).

Each γ is an admissible transport “plan” with marginals µ and σ.
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A Kantorovich type problem: Find γ̃ ∈ Γ(µ, σ) s.t.

C[γ̃] = sup
Γ(µ,σ)

C[γ].

Theorem 4. Such optimal measure γ̃ exists and it is generated by the map
αF̃ by setting

γ̃[U, V ] = σ[αF̃ (U) ∩ V ]

for any Borel subsets U and V on Sn × S̃n.

In addition, the duality relation

Q[h̃, ρ̃] = C[γ̃]

holds.
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Main steps of the variational proof of A.D.’s theorem.

1. Availability of two representations of F ∈ Fn:

(a) via the radial function ρ : Sn → (0,∞)

(b) via the support function h : S̃n → (0,∞)

(c) ρ and h are related by a “Legendre”-like transform:

h(N) = sup
x∈Sn

ρ(x)〈x,N〉, N ∈ S̃n, (10)

1

ρ(x)
= sup

N∈S̃n

〈x,N〉
h(N)

, x ∈ Sn. (11)
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(d) Conversely, a pair (h, ρ) ∈ C(S̃n) × C(Sn), h, ρ > 0, satisfying
(10),(11) defines a unique F ∈ Fn with support function h and ra-
dial function ρ.

(e) The generalized Gauss map αF : Sn → S̃n and its inverse are

αF (x) =
{
N ∈ S̃n|h(N) = ρ(x)〈x,N〉

}
, x ∈ Sn,

α−1
F (N) = {x ∈ Sn|h(N) = ρ(x)〈x,N〉} , N ∈ S̃n.
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2. Splitting: (10), (11) imply that for any F ∈ Fn the pair (h, ρ) satisfies

logh(N)− log ρ(x) ≥ c(x,N) ∀x ∈ Sn, N ∈ S̃n, (12)

and for each x equality is attained for some N and for each N equality
is attained for some x.

3. Define the functional

Q[h, ρ] :=
∫
S̃n

logh(N)dσ(N)−
∫
Sn

log ρ(x)dµ(x)

on the set

A := {(h, ρ) ∈ C(S̃n)× C(Sn), h > 0, ρ > 0 and satisfy (12)}.

and consider the problem:

Q[h, ρ] 7−→ min overA.
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4. Notes on the proof:

(i) The problem is first solved for convex polytopes Pk ∈ Pnk ⊂ F
n

with vertices on a fixed set of k rays x1, ..., xk originating at O and
atomic

µ =
k∑
i=1

µiδxi.

(ii) For polytopes one needs to minimize

Q[h, ρ] :=
∫
S̃n

logh(N)dσ(N)−
k∑
i=1

log ρ(xi)µi

on a (suitably modified) set A.
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(iii) Because µ(Sn) = σ(S̃n), the functional Q is scale invariant,

Q[λh, λρ] = Q[logh, log ρ] ∀λ > 0.

Then the set A may be normalized to (h, ρ) s.t. ρ(x), h(N) ≤ 1 and
ρ(x̃) = 1 for some x̃ρ ∈ Sn.

(iv) It suffices to minimize Q on (h, ρ) ∈ A on which equality in (12) holds
for some x ∈ Sn and for some N ∈ S̃n. By step 1(d) these are convex
polytopes in Pnk . By Blaschke’s theorem the set of such polytopes is
compact in C(Sn). Hence the minQ is attained on some convex P .

HOWEVER, if O ∈ P then P 6∈ Fn!!!. But this is impossible!



Main Steps of the Variational Proof
27

Proof. Let {P s} with radial functions {ρs} be a minimizing sequence,

Ps

O

Pmin

x1

x2

x3x4

x5

ρs(x 1

Ps Pmin
ρs(x 1) ρ (x 1)min

= 0,

)

V

ω := V Sn

µ (Sn ω)=  µ 1> σ (ω∗)
;
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By (iii) not all ρs(xi) → 0. Assume, that it is only ρs(x1) −→ 0 and
ρs(xi) ≥ ε > 0 for i 6= 1. When P s −→ Pmin ⇒

KPs(x1) := σ(αP s(x1))→ σ(αPmin
(x1)) = σ(αV (O)) = σ(ω∗) < µ1,

where ω = V ∩ Sn. Then

Q[hs, ρs] =
k∑
i=1

{∫
αPs(xi)

loghs(N)dσ(N)− log ρs(xi)µi

}

=
k∑
i=1

{∫
αPs(xi)

[log ρs(xi) + log〈xi, N〉] dσ(N)− log ρs(xi)µi

}
= log ρs(x1) [σ(αP s(x1)− µ1]

+
∑
i>1

log ρs(xi) [σ(αP s(xi))− µi] +
k∑
i=1

∫
αPs(xi)

log〈xi, N〉dσ(N).

Since σ(αP s(x1))→ σ(ω∗) and σ(ω∗)− µ1 < 0, we get
log ρs(x1) [σ(αP s(x1))− µ1]→ +∞. The remaining terms are bounded.
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(v) A geometric perturbation argument is used to show that

KPmin
(xi) = µi, i = 1, ..., k.

(vi) The general variational problem for a measure µ satisfying (1)-(3) in
Theorem 1 is handled by approximation by polyhedra and uses the
fact that the integral Gauss curvature is weakly continuous.

(vii) Uniqueness [using (12), show uniqueness µ-a.e. of the generalized
Gauss map of the minimizer; then show uniqueness of the minimizing
pair (ρmin, hmin)].

(viii) Note. The typical in optimal transport requirement µ(Sn) = σ(S̃n) is
sufficient for compactness in C(Sn) but not sufficient to stay in Fn.
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Now one can construct polytopes with prescribed curvatures
by using linear programming (at least in principle!).
===========================
Regularity
If µ has density m and e is the usual metric on Sn then the equation is

ρ1−ndet[−ρHess(ρ) + 2∇ρ⊗∇ρ+ ρ2e]

(ρ2 + |∇ρ|2)(n+1)/2det(e)
= m on Sn,

The main result - Pogorelov ’69, n = 2, Oliker ’83, n ≥ 2 (using polarity,
extending C2 estimates by Pogorelov, plus C3 estimates by Calabi):

If m > 0, m ∈ Ck(Sn), k ≥ 3, then F ∈ Ck+1,β(Sn), β ∈ (0,1). If
m ∈ Ca(Sn) then F ∈ Ca(Sn).

The case when m ≥ 0 was studied by P. Guan and Y.Y. Li (’97) under
various additional assumptions.
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Proof of Theorem 3. Let θ ∈ Θ. Then for any pair (h, ρ) ∈ A

logh(N)− log ρ(θ−1(N)) ≥ c(θ−1(N), N).

It suffices to consider θ such that 〈θ−1(N), N〉 ≤ 0 only on sets of mea-
sure zero. Multiply by dσ, integrate and use the change of variable on the
second term in the left (using (c) in def-n of Θ). Then

Q[h, ρ] =
∫
S̃n

logh(N)dσ(N)−
∫
Sn

log ρ(x)dµ(x) ≥ T [θ].

Using the minimizing pair (hmin, ρmin), we obtain

Q[hmin, ρmin] = T [αF̃ ] ≥ T [θ],

that is, T [αF̃ ] = T [θ̃].

Note. The uniqueness is obtained using the uniqueness of αF̃ .
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Outline of the proof of Theorem 4. Observe that any map θ ∈ Θ gives a
measure in Γ(µ, σ) by setting:

γθ[U, V ] = σ[θ(U) ∩ V ] ∀ Borel U ∈ Sn, V ∈ S̃n.
Then for γ0 := αF̃ we have (after switching to θ−1)

sup
Γ(µ,σ)

C[γ] ≥ sup
θ∈Θ

∫
S̃n
c(θ−1(N), N)dσ(N)

=
∫
S̃n
c(α−1

F̃
(N), N)dσ(N) = Q[h̃, ρ̃].

We prove now the reverse inequality.
Since c(x,N) ≤ 0 ∀(x,N) ∈ Sn × S̃n, it is clear that

sup
Γ(µ,σ)

C[γ] = sup
Γ+(µ,σ)

C[γ], where

Γ+(µ, σ) := {γ ∈ Γ(µ, σ) | sptγ ⊂ {(x,N) ∈ Sn × S̃n | 〈x,N〉 ≥ 0}.
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On the other hand, any pair (h, ρ) in the set A of admissible functions
satisfies

logh(N)− log ρ(x) ≥ c(x,N), (x,N) ∈ Sn × S̃n,

and by integrating against any γ ∈ Γ+(µ, σ) we obtain:

C[γ] ≤
∫
Sn

∫
S̃n

[logh(N)− log ρ(x)]γ(dx, dN)

=
∫
S̃n

logh(N)γ(Sn, dN)−
∫
S̃n

log ρ(x)γ(dx, S̃n) = Q[h, ρ].

Thus, the supΓ(µ,σ) C[γ] is attained on γ̃ corresponding to (h̃, ρ̃), that is,
γ̃ is defined by αF̃ and the equality Q[h̃, ρ̃] = C[γ̃] holds.
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Entropy and monotonicity

(a) For F ∈ Fn put uF := 〈α−1
F (N), N〉 and consider the “entropy”

E(F ) :=
∫
S̃n
uF (N) loguF (N)dσ.

Then E(F ) ≤ 0. Also, it increases when passing from F to a parallel

hypersurface. Its maximum (= 0) is attained when

F = Sn.
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(b) To prove this in a more general case one might consider a flow with
rescaling (diam(Ft) = 1 to factor out homotheties):

∂Ft

∂t
= KFtN, on S̃n × (0,∞), F0 = Finit ∈ Fn.

The claim is that under this flow the limiting state is Sn and E(F )→ 0.
This should follow from the evolution equation for the entropy density
uFt loguFt.


