# FREE GRADIENT DISCONTINUITY AND IMAGE SEGMENTATION 

Franco Tomarelli

Politecnico di Milano
Dipartimento di Matematica "Francesco Brioschi"
franco.tomarell@polimi.it
http://cvgmt.sns.it/papers

Optimization and stochastic methods for spatially distributed information Sankt Petersburg, May 13th 2010


[^0]

## Abstract:

This talk deals with free discontinuity problems related to contour enhancement in image segmentation, focussing on the mathematical analysis of Blake \& Zisserman functional, precisely:
(1) existence of strong solution under Dirichlet boundary condition is shown,
(2) several extremal conditions on optimal segmentation are stated,
(3) well-posedness of the problem is discussed,
(4) non trivial local minimizers are analyzed.

The segmentation we look for provides
a cartoon of the given image satisfying some requirements: the decomposition of the image is performed by choosing a pattern of lines of steepest discontinuity for light intensity, and this pattern will be called segmentation of the image.

## Eyjafjallajökull



Franco Tomarelli


## Franco Tomarelli



Franco Tomarelli


## rotoscope



Franco Tomarelli

A classic variational model for image segmentation has been proposed by Mumford \& Shah, who introduced the functional

$$
\begin{equation*}
\int_{\Omega \backslash K}\left(|D u(x)|^{2}+|u(\mathbf{x})-g(\mathbf{x})|^{2}\right) d \mathbf{x}+\gamma \mathcal{H}^{n-1}(K \cap \Omega) \tag{1}
\end{equation*}
$$

where

- $\Omega \subset \mathbb{R}^{n}(n \geq 1)$ is an open set,
- $K \subset \mathbb{R}^{n}$ is a closed set,
- $u$ is a scalar function,
- Du denotes the distributional gradient of $u$,
- $g \in L^{2}(\Omega)$ is the datum (grey intensity levels of the given image),
- $\gamma>0$ is a parameter related to the selected contrast threshold,
- $\mathcal{H}^{n-1}$ denotes $n-1$ dimensional Hausdorff measure.

According to this model the segmentation of the given image is achieved by minimizing (1) among admissible pairs ( $K, u$ ), say closed $K \subset \mathbb{R}^{n}$ and $u \in C^{1}(\Omega \backslash K)$.

This model led in a natural way to the study of a new type of functional in Calculus of Variations:

## free discontinuity problem.

Existence of minimizers of (1) was proven by

- De Giorgi, Carriero \& Leaci (1989)
in the framework of bounded variation functions without Cantor part (space SBV) introduced in
- De Giorgi \& Ambrosio.

Further regularity properties of optimal segmentation in Mumford \& Shah model were shown by

- [Dal Maso, Morel \& Solimini, (1992), $n=2$, ]
- [Ambrosio, Fusco \& Pallara (2000)],
- [Lops, Maddalena, Solimini, (2001), $n=2$, ],
- [Bonnet \& David (2003), $n=2$ ].


## stair-casing effect




Franco Tomarelli



To overcome the problems and aiming to better description of stereoscopic images they proposed a different functional including second derivatives.

Blake \& Zisserman variational principle faces segmentation as a minimum problem:
input is given by intensity levels of a monochromatic image,
output is given by

- meaningful boundaries whose length is penalized (correspond to discontinuity set of the given intensity and of its first derivatives)
- a piece-wise smooth intensity function (smoothed on each region in which the domain is splitted by such boundaries).


## another problem with free discontinuity: Blake \& Zisserman functional

$$
\begin{align*}
& F\left(K_{0}, K_{1}, v\right)= \\
& \quad=\int_{\Omega \backslash\left(K_{0} \cup K_{1}\right)}\left(\left|D^{2} v(\mathbf{x})\right|^{2}+|v(\mathbf{x})-g(\mathbf{x})|^{2}\right) d \mathbf{x}+  \tag{2}\\
& \quad+\alpha \mathcal{H}^{n-1}\left(K_{0}\right)+\beta \mathcal{H}^{n-1}\left(K_{1} \backslash K_{0}\right)
\end{align*}
$$

to be minimized among admissible triplets ( $K_{0}, K_{1}, v$ ) :

- $K_{0}, K_{1}$ closed subsets of $\mathbb{R}^{n}$,
- $u \in C^{2}\left(\Omega \backslash\left(K_{0} \cup K_{1}\right)\right)$ and continuous on $\Omega \backslash K_{0}$.
with data:
- $\Omega \subset \mathbb{R}^{n}$ open set, $n \geq 1$,
- $g \in L^{2}(\Omega)$ grey level intensity of the given image,
- $\alpha, \beta$ positive parameters
(chosen accordingly to scale and contrast threshold),
- $\mathcal{H}^{n-1}$ denotes the $(n-1)$ dimensional Hausdorff measure.

Existence of minimizers for (2) has been proven by

- Coscia $n=1$ (STRONG AND WEAK FORM. COINCIDE IFF $n=1!$ ), AND BY
- [Carriero, Leaci \& T.] $n=2$,
via direct method in calculus of variations:
solution of a weak formulation of minimum problem (performed for any dimension $n \geq 2$ ) and subsequently proving additional regularity of weak minimizers under Neumann bdry condition $(n=2)$
[C-L-T, Ann.S.N.S., Pisa (1997)]

Since we looked for a weak formulation of a free discontinuity problem, we wrote a suitable relaxed form relaxed version of BZ functional; this form depends only on $u$ (not on triplets!): optimal segmentation ( $K_{0} \cup K_{1}$ ) has to be recovered through jumps ( $u$ discontinuity set) and creases (Du discontinuity set) [C-L-T, in PNLDE, 25 (1996)]

We proved also several density estimates for minimizers energy and optimal segmentation:

- [C-L-T, Nonconvex Optim. Appl. 55 (2001)],
- [C-L-T, C.R.Acad.Sci.(2002)],
- [C-L-T J. Physiol.(2003)];
by exploiting this estimates, via Gamma-convergence techniques,
- [Ambrosio, Faina \& March, SIAM J.Math.An. (2002)] obtained an approximation of Blake \& Zisserman functional with elliptic functionals,
and numerical implementation was performed by
- [R.March]
- [M.Carriero, A.Farina, I.Sgura ].

No uniqueness due to nonconvexity,
nevertheless generic uniqueness olds true in 1-D.
About uniqueness and well-posedness:

- [T.Boccellari, F.T., Ist.Lombardo Rend.Sci 2008, 142 237-266] ( $n \geq 1$ ),
- [T.Boccellari, F.T.] QDD Dip.Mat.Polit.MI 2010] ( $n=1$ ),


## Stime a priori e continuità del valore di minimo

Theorem - Minimizing triplets $\left(K_{0}, K_{1}, u\right)$ of
Blake \& Zisserman $F_{\alpha, \beta}^{g}$ functional fulfil (in any dimension $n$ ):

- $\|u\|_{L^{2}} \leq 2\|g\|_{L^{2}}$,
- $0 \leq m^{g}(\alpha, \beta) \leq\|g\|_{L^{2}}^{2}$,
- $\left|m^{g}(\alpha, \beta)-m^{h}(a, b)\right| \leq 5\left(\|g\|_{L^{2}}+\|h\|_{L^{2}}\right)\|g-h\|_{L^{2}}+$ $\frac{\min \left\{\|g\|_{L^{2}}^{2},\|h\|_{L^{2}}^{2}\right\}}{\min \{\alpha, a\}}|\alpha-a|+\frac{\min \left\{\|g\|_{L^{2}}^{2},\|h\|_{L^{2}}^{2}\right\}}{\min \{\beta, b\}}|\beta-b|$,
$\left\{\mathcal{H}^{n-1}\left(K_{0}\right) \leq \frac{2}{\alpha}\left(\|g\|^{2}+\eta^{2}\right), \quad \mathcal{H}^{n-1}\left(K_{1} \backslash K_{0}\right) \leq \frac{2}{\beta}\left(\|g\|^{2}+\eta^{2}\right)\right.$
per ogni terna $\left(u, K_{0}, K_{1}\right)$ minimizzante $F_{\alpha, \beta}^{h}$ con $\|h-g\|_{L^{2}}<\eta$.
notice that 1-dimensional case fits very well to a short presentation, since (only in 1 -d) strong and weak functional coincide.


## 1-d Blake \& Zisserman 1-d functional

Given $g \in L^{2}(0,1), \alpha, \beta \in \mathbb{R}$ we set $F_{\alpha, \beta}^{g}$ :

$$
\begin{equation*}
F_{\alpha, \beta}^{g}(u)=\int_{0}^{1}|\ddot{u}(x)|^{2} d x+\int_{0}^{1}|u(x)-g(x)|^{2} d x+\alpha \sharp\left(S_{u}\right)+\beta \sharp\left(S_{u} \backslash S_{u}\right) \tag{3}
\end{equation*}
$$

to be minimized among $u \in L^{2}(0,1)$ t.c. $\sharp\left(S_{u} \cup S_{\dot{u}}\right)<+\infty$ t.c.
$u^{\prime}, u^{\prime \prime} \in L^{2}(I)$ for every interval $I \subseteq(0,1) \backslash\left(S_{u} \cup S_{u}\right)$

## Notation:

$\dot{u}$ denotes the absolutely continuous part of $u^{\prime}$,
$\ddot{u}$ the absolutely continuous part of $(\dot{u})^{\prime}=u^{\prime \prime}$,
$S_{u} \subseteq(0,1)$ the set of jump points of $u$, $S_{u} \subseteq(0,1)$ the set of jump points of $\dot{u}$,
$\sharp$ the counting measure.

## $n=1$

Summary of analytic results:

- Euler equations for local minimizers,
- compliance identity for local minimizers,
- a priori estimates on minimum value and minimizers,
- continuous dependence of minimum value $m^{g}(\alpha, \beta)$ with respect to $g, \alpha, \beta$.


## Theorem

$F_{\alpha, \beta}^{g}$ achieves its minimum provided the following conditions are fulfilled:

$$
\begin{gather*}
0<\beta \leq \alpha \leq 2 \beta<+\infty  \tag{4}\\
g \in L^{2} . \tag{5}
\end{gather*}
$$

Uniqueness fails

There are many kinds of uniqueness failure:
precisely, even considering the simple 1-d case:

- if $g$ has a jump,
then there $\exists \alpha>0$ s.t. $F_{\alpha, \alpha}^{g}$ has exactly two minimizers;
- there are $\alpha>0$ and $g \in L^{2}(0,1)$ s.t. uniqueness fail for every $\beta$ in a non empty interval $(\alpha-\varepsilon, \alpha]$;
- for every $\alpha$ and $\beta$ fulfilling $0<\beta \leq \alpha<2 \beta$ there is $g \in L^{2}(0,1)$ s.t.

$$
\sharp\left(\operatorname{argmin} F_{\alpha, \beta}^{g}\right) \geq 2 .
$$

- Eventually we can show an example of a set $\mathcal{N} \subseteq L^{2}(0,1)$ with non empty interior part in $L^{2}(0,1)$
s.t. for every $g \in \mathcal{N}$ there are $\alpha$ and $\beta$ satisfying (4) and

$$
\sharp\left(\operatorname{argmin} F_{\alpha, \beta}^{g}\right) \geq 2 .
$$

## Generic uniqueness

Euler eqs are an over-determined system (singular set is an unknown)

Nevertheless we can prove

## Theorem ([T.Boccellari \& F.T ])

For any $\alpha, \beta$ s.t.

$$
0<\beta \leq \alpha \leq 2 \beta, \quad \alpha / \beta \notin \mathbb{Q},
$$

there is a $G_{\delta}$ (countable intersection of dense open sets)

$$
\text { set } E_{\alpha, \beta} \subset L^{2}(0,1) \text { such that }
$$

$$
\sharp\left(\operatorname{argmin} F_{\alpha, \beta}^{g}\right)=1 .
$$

Idea of the proof:

- we show analytic dependence of (absolutely continuous part of) energy
with respect to variations of open cells of
CW-complex structure of partitions of $(0,1)$ induced by singular set of piecewise affine data $g$
- the set of all piece-wise affine data (related to suitably refined partitions of $(0,1)$ ) and exhibiting non uniqueness of minimizer with different quality" (ordering of jump and creases) and same prescribed cardinality of singular set has null $m$ dimensional Lebesgue measure (here $m$ is the dimension of the space of continuous piece-wise functions in ( 0,1 ) affine with at most $m$ creases)
- technical density argument

The whole picture is coherent with the presence of instable patterns, each of them corresponding to a bifurcation of optimal segmentation under variation of parameters $\alpha \mathrm{e} \beta$, related to:

- contrast threshold ( $\sqrt{\alpha}$ ),
- "luminance sensitivity",
- resistance to noise,
- crease detection ( $\sqrt{\beta}$ ),
- double edge detection.


## Dirichlet problem for BZ functional, $n=2$

Image InPainting refers to the filling in of missing or partially occluded regions of an image.

Minimizing Blake \& Zisserman functional is useful to achieve contour continuation in the whole image region $\widetilde{\Omega}$ when occlusion or local damage occur in $\widetilde{\Omega} \backslash \Omega$ e.g. blotches in a fresco or a movie film.

## Dirichlet problem:

minimize the energy $F\left(K_{0}, K_{1}, v\right)$ in $\widetilde{\Omega} \subset \mathbb{R}^{2}$ :

$$
\begin{align*}
& F\left(K_{0}, K_{1}, v\right)= \\
& \quad=\int_{\tilde{\Omega} \backslash\left(K_{0} \cup K_{1}\right)}\left(\left|D^{2} v(\mathbf{x})\right|^{2}+\mu|v(\mathbf{x})-g(\mathbf{x})|^{2}\right) d \mathbf{x}+  \tag{6}\\
& +\alpha \mathcal{H}^{1}\left(K_{0}\right)+\beta \mathcal{H}^{1}\left(K_{1} \backslash K_{0}\right)
\end{align*}
$$

among triplets which assume prescribed data $w$ on $\widetilde{\Omega} \backslash \Omega$ :
say $v=w$ a.e. $\widetilde{\Omega} \backslash \Omega$

## Weak formulation of Dirichlet pb for BZ functional

Minimize $\mathcal{F}: X \rightarrow[0,+\infty]$ defined by

$$
\begin{equation*}
\mathcal{F}(v)=\int_{\tilde{\Omega}}\left(\left|\nabla^{2} v\right|^{2}+\mu|v-g|^{2}\right) d \mathbf{x}+\alpha \mathcal{H}^{1}\left(S_{v}\right)+\beta \mathcal{H}^{1}\left(S_{\nabla v} \backslash S_{v}\right) \tag{7}
\end{equation*}
$$

where $\Omega \subset \subset \widetilde{\Omega} \subset \mathbb{R}^{2}$ are open sets, $\mathbf{x}=(x, y) \in$
Omegaand
$X=G S B V^{2}(\widetilde{\Omega}) \cap L^{2}(\widetilde{\Omega}) \cap\{v=w$ a.e. $\widetilde{\Omega} \backslash \Omega\}$.

## Theorem

If $g \in L^{2}(\widetilde{\Omega}), w \in X$ and $\beta \leq \alpha \leq 2 \beta$ then $\mathcal{F}$ has at least one minimizer in $X$.

The main part $\mathcal{F}$ is denoted by $\mathcal{E}$ :

$$
\begin{equation*}
\mathcal{E}(v)=\int_{\tilde{\Omega}}\left|\nabla^{2} v\right|^{2} d \mathbf{x}+\alpha \mathcal{H}^{1}\left(S_{v}\right)+\beta \mathcal{H}^{1}\left(S_{\nabla v} \backslash S_{v}\right) \tag{8}
\end{equation*}
$$


the example with cut and tilted disks tells that
(1) sublevels of functional $\mathcal{E}$ are not compact on

$$
\left\{v \in \operatorname{SBV}(\Omega): \nabla v \in \operatorname{SBV}(\Omega)^{2}\right\}
$$

(2) by letting untilted some of the big disks we find functions with unbounded gradient with arbitrarily small energy $\mathcal{E}$

We recall the definitions of some function spaces related to first derivatives which are special measures in the sense of De Giorgi
$S B V(\Omega)$ denotes the class of functions $v \in B V(\Omega)$ s.t.

$$
\int_{\Omega}|D v|=\int_{\Omega}|\nabla v| d y+\int_{S_{v}}\left|v^{+}-v^{-}\right| d \mathcal{H}^{1}
$$

$$
\operatorname{SBV}_{\text {loc }}(\Omega)=\left\{v \in \operatorname{SBV}\left(\Omega^{\prime}\right): \forall \Omega^{\prime} \subset \subset \Omega\right\},
$$

$\operatorname{GSBV}(\Omega)=\left\{v: \Omega \rightarrow \mathbb{R}\right.$ Borel $\left.;-k \vee v \wedge k \in S B V_{\text {loc }}(\Omega) \forall k\right\}$

$$
\operatorname{GSBB}^{2}(\Omega)=\left\{v \in \operatorname{GSB} v(\Omega), \nabla v \in(\operatorname{GSB} V(\Omega))^{2}\right\}
$$

## We emphasize that

$\operatorname{GSBV}(\Omega), \operatorname{GSBV}^{2}(\Omega)$ are neither vector spaces nor subsets of distributions in $\Omega$.

Nevertheless
smooth variations of a function in $\operatorname{GSB}^{2}(\Omega)$ still belong to the same class.

Notice that,

- if $v \in \operatorname{GSB} V(\Omega)$, then $S_{v}$ is countably $\left(\mathcal{H}^{1}, 1\right)$ rectifiable and $\nabla v$ exists a.e. in $\Omega$.
- $D v \neq \nabla v$ in $\operatorname{GSB}^{2}(\Omega)$
- $S_{\nabla v}=\bigcup_{i=1}^{2} S_{\nabla_{i v}}$


## Remark

(1) $v \in B V \cap L^{\infty}, \quad P(E)<+\infty \Rightarrow v \chi_{E} \in B V$
(2) $v \in B V, \quad P(E)<+\infty \quad \not{ }^{*} \quad v \chi_{E} \in B V$
(3) $v \in B V, P(E)<+\infty \quad \Rightarrow \quad v \chi E \in G B V$

* the trace of $v$ could be not integrable, e.g.:

$$
\begin{gathered}
n=2 \quad \Omega=B_{1} \quad v=\varrho^{-1 / 2} \in W^{1,1}\left(B_{1}\right) \\
E=\left\{\mathbf{x}=\{x, y\} \frac{1}{k^{2}+1}<\varrho<\frac{1}{k^{2}}, k \in \mathbf{N}\right\}
\end{gathered}
$$

## Theorem [CLT, Adv.Math.Sci.Appl., 2010] existence of strong minimizer

Assume

$$
0<\beta \leq \alpha \leq 2 \beta, \mu>0, g \in L^{2}(\widetilde{\Omega}) \cap L_{l o c}^{4}(\widetilde{\Omega}), w \in L^{2}(\widetilde{\Omega})
$$

$\Omega$ is a bounded open set with $C^{2}$ boundary $\partial \Omega$,

$$
w \in C^{2}(\widetilde{\Omega}), \quad D^{2} w \in L^{\infty}(\widetilde{\Omega})
$$

Then there is at least one triplet $\left(C_{0}, C_{1}, u\right)$ minimizing functional

$$
\begin{aligned}
F\left(K_{0}, K_{1}, v\right) & =\int_{\Omega \backslash\left(K_{0} \cup K_{1}\right)}\left(\left|D^{2} v(\mathbf{x})\right|^{2}+|v(\mathbf{x})-g(\mathbf{x})|^{2}\right) d \mathbf{x}+ \\
& +\alpha \mathcal{H}^{1}\left(K_{0}\right)+\beta \mathcal{H}^{1}\left(K_{1} \backslash K_{0}\right)
\end{aligned}
$$

with finite energy, among admissible triplets $\left(K_{0}, K_{1}, v\right)$ :

$$
\left\{\begin{array}{l}
K_{0}, K_{1} \text { Borel subsets of } \mathbb{R}^{2}, \quad K_{0} \cup K_{1} \text { closed, } \\
v \in C^{2}\left(\Omega_{\varepsilon} \backslash\left(K_{0} \cup K_{1}\right)\right), \quad v \text { approximately continuous in }\left(\Omega_{\varepsilon} \backslash K_{0}\right), \\
v=w \text { a.e. in } \Omega_{\varepsilon} \backslash \Omega .
\end{array}\right.
$$

Moreover, any minimizing triplet ( $K_{0}, K_{1}, v$ ) fulfils:

$$
K_{0} \cap \widetilde{\Omega} \text { and } K_{1} \cap \widetilde{\Omega} \text { are }\left(\mathcal{H}^{1}, 1\right) \text { rectifiable sets, }
$$

$$
\mathcal{H}^{1}\left(K_{0} \cap \widetilde{\Omega}\right)=\mathcal{H}^{1}\left(\overline{S_{v}}\right), \quad \mathcal{H}^{1}\left(K_{1} \cap \widetilde{\Omega}\right)=\mathcal{H}^{1}\left(\overline{S_{\nabla v}} \backslash S_{v}\right),
$$

$\{v$

$$
v \in \operatorname{GSB}^{2}(\widetilde{\Omega}), \text { hence }
$$

the function $v$ is also a minimizer of the weak functional $\mathcal{F}$

$$
\mathcal{F}(z)=\int_{\Omega}\left(\left|\nabla^{2} z\right|^{2}+\mu|z-g|^{2}\right) d \mathbf{x}+\alpha \mathcal{H}^{1}\left(S_{z}\right)+\beta \mathcal{H}^{1}\left(S_{\nabla z} \backslash S_{z}\right)
$$

over $z \in L^{2}(\Omega) \cap \operatorname{GSB} V(\Omega): \nabla z \in(\operatorname{GSBV}(\Omega))^{2}, z=w$ a.e. $\widetilde{\Omega} \backslash \Omega$.
Eventually, the third element $v$ of any minimizing triplet ( $K_{0}, K_{1}, v$ ) fulfils

$$
\mathcal{F}(v)=F\left(K_{0}, K_{1}, v\right)
$$

$\square$

## Steps of the proof

Existence of minimizing triplets is achieved by showing partial regularity of the weak solution with penalized Dirichlet datum. The novelty consists in the regularization at the boundary for a free gradient discontinuity problem;
regularity is proven at points with 2-dimensional energy density by:
( - blow-up technique
(2) suitable joining along lunulae filling half-disk
(3) a decay estimate for weak minimizers

In the blow-up procedure, two refinements of relevant tools are

- hessian decay of a function which is bi-harmonic in half-disk and vanishes together with normal derivative on the diameter
- a Poincaré-Wirtinger inequality for GSBV functions vanishing in a sector


## Theorem (Biharmonic extension and $L^{2}$ decay of Hessian)

Set $B_{R}^{+}=B_{R}(\mathbf{0}) \cap\{y>0\} \subset \mathbb{R}^{2}, R>0$.
Assume $z \in H^{2}\left(B_{R}^{+}\right), \Delta^{2} z \equiv 0 B_{R}^{+}, \quad z=z_{y} \equiv 0$ on $\{y=0\}$.)
Then there exists an (obviously unique) extension $Z$ of $z$ in whole $B_{R}$ such that $\quad \Delta^{2} Z \equiv 0 B_{R}$.
This extension may increase a lot $L^{2}$ hessian norm of $D^{2} Z$ nevertheless it implies nice decay on half-ball:

$$
\left\|D^{2} Z\right\|_{L^{2}\left(B_{\eta R}^{+}\right)}^{2} \leq \eta^{2}\left\|D^{2} z\right\|_{L^{2}\left(B_{R}^{+}\right)}^{2} .
$$

Such extimate is not a straightforward consequence of classical Schwarz reflection principle for harmonic functions vanishing on the diameter, since the Almansi decomposition on the half-disk $B_{R}^{+}$may neither respect the vanishing value on the diameter:
e.g. $\varrho^{3}(\cos \vartheta-\cos (3 \vartheta))=\varrho^{2} \varphi+\psi$ where $\varphi=x, \psi=3 x^{2} y-x^{3}$ are both harmonic but do not vanish on the diameter $\{y=0\}$, nor preserves orthogonality in $L^{2}$ or $H^{2}$ :
cancelation of big norms
may take place in one half-disk and not in the other: see Fig. (39)

## Duffin extension formula

Assume
$z \in H^{2}\left(B_{1}^{+}\right)$,
$z$ is bi-harmonic in $B_{1}^{+}$
$z=\partial z / \partial y=0$ on $B_{1}(\mathbf{0}) \cap\{y=0\}$.
Then
$z$ has a bi-harmonic extension $Z$ in $B_{1}$ defined by

$$
\begin{cases}Z(x, y)=z(x, y) & \forall(x, y) \in B_{1}^{+}, \\ Z(x,-y)=-z(x, y)+2 y z_{y}(x, y)-y^{2} \Delta z(x, y) & \forall(x,-y) \in B_{1}^{-} .\end{cases}
$$

## Almansi-type decomposition (revisited)

Let $u \in H^{2}\left(B_{R} \backslash \Gamma\right)$.
Then

$$
\begin{equation*}
\Delta_{\mathbf{x}}^{2} u=0 \quad B_{R} \backslash \Gamma \tag{9}
\end{equation*}
$$

iff

$$
\begin{equation*}
\exists \varphi, \psi: u(\mathbf{x})=\psi(\mathbf{x})+\|\mathbf{x}\|^{2} \varphi(\mathbf{x}), \quad \Delta_{\mathbf{x}} \varphi(\mathbf{x})=\Delta_{\mathbf{x}} \psi(\mathbf{x}) \equiv 0, B_{R} \backslash \Gamma \tag{10}
\end{equation*}
$$

Moreover decomposition (10) is unique up to possible linear terms in $\psi$ :
say $A \varrho \cos \vartheta=A x$ and $B \varrho \sin \vartheta=B y$ that can switch independently to respectively $A \varrho^{-1} \cos \vartheta$ and $B \varrho^{-1} \sin \vartheta$ in $\varphi$.

Back to hessian decay estimate (36)

Blake \& Zisserman functional
Euler equations


We use a new Poincaré-Wirtinger type inequality in the class GSBV which allows surgical truncations of non integrable functions of several variables with the aim of taming blow-up at boundary points in case of functions vanishing in a full sector.

Notice that $v \in G S B V^{2}(\Omega)$ does not even entail that either $v$ or $\nabla v$ belongs to $L_{\text {loc }}^{1}(\Omega)$.

## DECAY

## Theorem - Decay of functional $\mathcal{F}$ at boundary points

There are constants $C_{1}, C_{2}$ (dep. on $\left.\alpha, g, w\right)$ s.t.,

$$
\left\{\begin{array}{l}
\forall k>2, \forall \eta, \sigma \in(0,1) \text { with } \eta<C_{2} \\
\exists \varepsilon_{0}>0, \vartheta_{0}>0: \forall \varepsilon \in\left(0, \varepsilon_{0}\right],
\end{array}\right.
$$

$\forall \mathbf{x} \in \partial \Omega$ and any local minimizer $u$ of $\mathcal{F}$ in $\Omega \cap B_{\varrho}(\mathbf{x})$, s.t.

$$
\begin{aligned}
0 & <\varrho \leq\left(\varepsilon^{k} \wedge C_{1}\right), \quad \int_{B_{\varrho}(\mathbf{x})}|g|^{4} \leq \varepsilon^{k} \text { and } \\
& \alpha \mathcal{H}^{1}\left(S_{u} \cap \overline{\Omega \cap B_{\varrho}(\mathbf{x})}\right)+\beta \mathcal{H}^{1}\left(\left(S_{\nabla u} \backslash S_{u}\right) \cap \overline{\Omega \cap B_{\varrho}(\mathbf{x})}\right)<\varepsilon \varrho,
\end{aligned}
$$

we have

$$
\begin{aligned}
& \mathcal{F}_{B_{\eta_{e}}(\mathbf{x})}(u) \leq \\
& \leq \eta^{2-\sigma} \max \left\{\mathcal{F}_{B_{e}(\mathbf{x})}(u), \varrho^{2} \vartheta_{0}\left(\left(\operatorname{Lip}\left(\gamma_{\partial \Omega^{\prime}}\right)\right)^{2}+(\operatorname{Lip}(D w))^{2}\right)\right\} .
\end{aligned}
$$

## Admissible triplets and localization

## Admissible triplets: $\left(K_{0}, K_{1}, v\right)$ is an admissible triplet if

$\int K_{0}, K_{1}$ Borel subsets of $\mathbb{R}^{2}, \quad K_{0} \cup K_{1}$ closed, $v \in C^{2}\left(\widetilde{\Omega} \backslash\left(K_{0} \cup K_{1}\right)\right), v$ approximately continuous in $\widetilde{\Omega} \backslash K_{0}$, $v=w$ a.e. in $\widetilde{\Omega} \backslash \Omega$.

## (Localization)

We will use the symbols $F_{A}, \mathcal{F}_{A}$ to denote respectively functionals $F$, $\mathcal{F}$ when $\widetilde{\Omega}$ is substituted by a Borel set $A \subset \widetilde{\Omega},\left(\operatorname{resp} . E_{A}, \mathcal{F}_{A}\right.$ for $\left.E, \mathcal{F}\right)$

## (Locally minimizing triplet of $F$ (6))

Admissible triplet $\left(K_{0}, K_{1}, u\right)$, is a locally minimizing triplet of $F$ if

$$
\begin{gathered}
F_{A}\left(K_{0}, K_{1}, u\right)<+\infty \\
F_{A}\left(K_{0}, K_{1}, u\right) \leq F_{A}\left(T_{0}, T_{1}, v\right)
\end{gathered}
$$

$\forall$ smooth open $A \subset \subset \Omega$ and any admissible triplet ( $T_{0}, T_{1}, v$ ) s.t.

$$
\operatorname{spt}(v-u) \quad \text { and } \overline{\left(T_{0} \cup T_{1}\right) \triangle\left(K_{0} \cup K_{1}\right)} \quad \text { are subsets of } A .
$$

## (Essential locally minimizing triplet of $F$, resp. E)

Given a locally minimizing triplet ( $T_{0}, T_{1}, v$ ) of the functional $F$ (resp. E),
there is another triplet ( $K_{0}, K_{1}, u$ ), called
essential locally minimizing triplet, which is uniquely defined by

$$
\begin{gathered}
u=\widetilde{v} \\
K_{0}=\overline{T_{0} \cap K} \backslash\left(T_{1} \backslash T_{0}\right) \\
K_{1}=\overline{T_{1} \cap K} \backslash T_{0}
\end{gathered}
$$

where $\widetilde{v}$ is the approximate limit of $v$, a.e. defined by

$$
g(\widetilde{v}(\mathbf{x}))=\lim _{\varrho \downarrow 0} f_{B_{\rho}(0)} g(v(\mathbf{x}+\mathbf{y})) d \mathbf{y} \quad \forall g \in C^{0}(\overline{\mathbb{R}})
$$

and $K$ is the smallest closed subset of $T_{0} \cup T_{1}$ such that $\widetilde{v} \in C^{2}(\Omega \backslash K)$.

## Some Euler equations in 2 dimensional case [c.l.T] Calc.Var.Part.Diff.Eq, 2008 [c.L.t] Prepr. 24 Dip.Mat.Univ.Salento, 2008

- $\Delta^{2} u+\mu u=\mu g \quad \Omega \backslash\left(K_{0} \cup K_{1}\right)$
- Neumann boundary operators (plate-type bending moments) vanishing in $K_{0} \cup K_{1}$
- $\llbracket\left|D^{2} u\right|^{2}+\mu|u-g|^{2} \rrbracket=\alpha \mathcal{K}\left(K_{0}\right)$
- $\llbracket\left|D^{2} u\right|^{2} \rrbracket=\beta \mathcal{K}\left(K_{1} \backslash K_{0}\right)$
- Integral and geometric conditions at the "boundary" of singular set: crack-tip and crease-tip.


## Euler equations

From now on, for sake of simplicity, we examine only the main part $E$ of functional $F$ :

$$
\begin{align*}
& E\left(K_{0}, K_{1}, v\right)= \\
& =\int_{\Omega \backslash\left(K_{0} \cup K_{1}\right)}\left|D^{2} v(x)\right|^{2} d x+\alpha \mathcal{H}^{1}\left(K_{0}\right)+\beta \mathcal{H}^{1}\left(K_{1} \backslash K_{0}\right) \tag{11}
\end{align*}
$$

and the structural assumption $\beta \leq \alpha \leq 2 \beta$ will be always understood.

## Euler equations I : smooth variations

## Theorem

Any essential locally minimizing triplet $\left(K_{0}, K_{1}, u\right)$ for functional $F$ fulfils

$$
\Delta^{2} u+\mu(u-g)=0 \quad \text { in } \Omega \backslash\left(K_{0} \cup K_{1}\right) .
$$

Any essential locally minimizing triplet $\left(K_{0}, K_{1}, u\right)$ for the functional $E$ fulfils

$$
\Delta^{2} u=0 \quad \text { in } \Omega \backslash\left(K_{0} \cup K_{1}\right) .
$$

## Euler equations II : boundary-type conditions on singular set

Necessary conditions on jump discontinuity set $K_{0}$ for natural boundary operators

Assume $\left(K_{0}, K_{1}, u\right)$ is an essential locally minimizing triplet for the functional $E, B \subset \subset \Omega$ is an open disk such that $K_{0} \cap B$ is a diameter of the disk and $\left(K_{1} \backslash K_{0}\right) \cap B=\emptyset$. Then

$$
\begin{array}{ll}
\left(\frac{\partial^{2} u}{\partial N^{2}}\right)^{ \pm}=0 & \text { on } K_{0} \cap B \\
\left(\frac{\partial^{3} u}{\partial N^{3}}+2 \frac{\partial}{\partial N}\left(\frac{\partial^{2} u}{\partial \tau^{2}}\right)\right)^{ \pm}=0 & \text { on } K_{0} \cap B
\end{array}
$$

where $B^{+}, B^{-}$are the connected components of $B \backslash K_{0}, N$ is the unit normal to $K_{0}$ pointing toward $B^{+}, v^{+}, v^{-}$the traces of any $v$ on $K_{0}$ respectively from $B^{+}$and $B^{-}, \tau=\left(\tau_{1}, \tau_{2}\right)=\left(-N_{2}, N_{1}\right)$ the choice of the unit tangent vector to $K_{0}$.

## Euler equations III : singular set variations

Next we evaluate the first variation of the energy around a local minimizer $u$, under compactly supported smooth deformation of $K_{0}$ and $K_{1}$

## Integral Euler equation

If $\left(K_{0}, K_{1}, u\right)$ is a locally minimizing triplet of $E$. Then $\forall \eta \in C_{0}^{2}\left(\Omega, \mathbb{R}^{2}\right)$

$$
\begin{aligned}
& \int_{\Omega \backslash\left(K_{0} \cup K_{1}\right)}\left(\left|D^{2} u\right|^{2} \operatorname{div} \eta-2\left(D \eta D^{2} u+(D \eta)^{t} D^{2} u+D u D^{2} \eta\right): D^{2} u\right) d \mathbf{x} \\
& \quad+\alpha \int_{K_{0}} \operatorname{div}_{\mathrm{K}_{0}}^{\tau} \eta d \mathcal{H}^{1}+\beta \int_{K_{1} \backslash K_{0}} \operatorname{div}_{\mathrm{K}_{1} \backslash \mathrm{~K}_{0}}^{\tau} \eta d \mathcal{H}^{1}=0
\end{aligned}
$$

where $\operatorname{div}_{S}^{\tau}$ denotes the tangential (to set $S$ ) divergence and
$\left(D_{\eta} D^{2} u+(D \eta)^{t} D^{2} u+D u D^{2} \eta\right)_{i j}=$

$$
=\sum_{k}\left(D_{k} \eta_{i} D_{k j}^{2} u+D_{i} \eta_{k} D_{k j}^{2} u+D_{k} u D_{i j}^{2} \eta_{k}\right)
$$

## Curvature of jump set $K_{0}$ and squared hessian jump

If $\left(K_{0}, K_{1}, u\right)$ is an essential locally minimizing triplet for functional $E$,
$B \subset \subset U \subset \widetilde{\Omega}$ two open disks, s.t. $K_{0} \cap U$ is the graph of a $C^{4}$ function, $B^{+}$(resp. $B^{-}$) the open connected epigraph (resp. subgraph) of such function in $B$,.
$K_{1} \cap U=\emptyset$, and $u$ in $W^{4, r}\left(B^{+}\right) \cap W^{4, r}\left(B^{-}\right), r>1$.
Then

$$
\llbracket\left|D^{2} u\right|^{2} \rrbracket=\alpha \mathcal{K}\left(K_{0}\right) \quad \text { on } K_{0} \cap B .
$$

where we denote
by $\mathcal{K}$ the curvature and by $\llbracket w\rceil$ the jump of a function $w$ on $K_{0}$
Analogous results holds true for crease set $K_{1} \backslash K_{0}$ Both results follows by plugging (normal to singular set) vector fields in Integral Euler equation

## Crack-tip

Now we perform a qualitative analysis of the "boundary" of the singular set, by assuming it is manifold as smooth as required by the computation of boundary operators.
The strategy is a new choice of the test functions in Euler equation: a vector field $\eta$ tangential to $K_{0}$ (or $K_{1}$ ).

## Crack-tip Theorem

Assume $\left(K_{0}, K_{1}, u\right)$ is an essential locally minimizing triplet of $E$, $B=B\left(\mathbf{x}_{0}\right) \subset \Omega$ an open disk with center at $\mathbf{x}_{0}$ s.t. $\left(K_{1} \backslash K_{0}\right) \cap B=\emptyset$, $K_{0} \cap B=\overline{S_{u}} \cap B$ is a is a smooth curve from center to bdry of $B$ and

$$
\exists r>1: \quad u \in W^{4, r}\left(U \backslash\left(K_{0} \cup B_{\varepsilon}\left(\mathbf{x}_{0}\right)\right) \quad \forall \varepsilon>0\right.
$$

Then $u$ fulfils, for every $\eta \in C_{0}^{3}\left(B, \mathbb{R}^{2}\right)$ s.t. $\eta=\zeta \tau$
$\left(\zeta \in C_{0}^{\infty}(B), \tau \in C^{3}\left(B, S^{1}\right)\right.$ and
$\eta$ vector field tangent to $K_{0}$ pointing toward $K_{0}$ at $\mathbf{x}_{0}$ )

$$
\lim _{\varepsilon \rightarrow 0_{+}} \int_{\partial B_{\varepsilon}\left(\mathbf{x}_{0}\right) \backslash K_{0}} \mathcal{L}^{\eta}(u) d \mathcal{H}^{1}=\alpha \zeta\left(\mathbf{x}_{0}\right)
$$



Franco Tomarelli

## Summarizing:

- By performing suitable smooth variations we found Euler equation in $\left.\Omega \backslash \overline{K_{0}} \cup K_{1}\right)$ and jump conditions for $u$ and for $D u$ in $K_{0} \cup K_{1}$;
- by performing smooth variations of jump and crease sets $K_{0}, K_{1} \backslash K_{0}$ around a minimizer we found integral and geometric conditions on optimal segmentation sets.

In addition we proved:
(1) Caccioppoli inequality: as a consequence any locally minimizing triplet of $\mathcal{E}$ in $\mathbb{R}^{2}$ with finite energy and compact segmentation set $K_{0} \cup K_{1}$ actually must have empty segmentation;
(2) Liouville property:
$(\emptyset, \emptyset, u)$ with bi-harmonic $u$ is locally minimizing triplet of $\mathcal{E}$ in $\mathbb{R}^{n}$ iff $u$ is affine;
(3) neither a straight infinite wedge
nor a straight 1-dimensional uniform jump are locally minimizing triplets of $E$ in $\mathbb{R}^{2}$;
(4) $3 / 2$ homogeneity: .
any locally minimizing triplet $\left(K_{0}, K_{1}, u\right)$ is transformed in another locally minimizing triplet by all natural re-scaling centered at $\mathbf{x}_{0} \in \Omega$, which maps

$$
\begin{aligned}
& u(\mathbf{x}) \quad \text { to } \varrho^{-3 / 2} u\left(\mathbf{x}_{0}+\varrho \mathbf{x}\right), \\
& K_{j} \quad \text { to } \varrho^{-1}\left(K_{j}-\mathbf{x}_{0}\right), \quad \varrho>0, j=0,1 .
\end{aligned}
$$

## Mode 1 (JUMP) :

$$
\varrho^{3 / 2} \omega(\theta)=\varrho^{3 / 2}\left(\sin \frac{\theta}{2}-\frac{5}{3} \sin \left(\frac{3}{2} \theta\right)\right) \quad-\pi<\theta<\pi
$$

## Mode 2 (CREASE) :

$$
\varrho^{3 / 2} \mathrm{w}(\theta)=\varrho^{3 / 2}\left(\cos \frac{\theta}{2}-\frac{7}{3} \cos \left(\frac{3}{2} \theta\right)\right) \quad-\pi<\theta<\pi
$$

## CANDIDATE:

$$
W= \pm \sqrt{\frac{\alpha}{193 \pi}} \varrho^{3 / 2}(\sqrt{21} \omega(\theta) \pm \mathrm{w}(\theta)) \quad-\pi<\theta<\pi
$$

W fulfils all Euler equations,
all constraints on jump and curvature of singular set and
Energy equipartition: $\quad \int_{B_{e}(0)}\left|\nabla^{2} u\right|^{2} d \mathbf{x}=\alpha \varrho$

## Candidate conjecture

Assume $0<\beta \leq \alpha \leq 2 \beta<+\infty$.
Then triplet

$$
\left.\left(K_{0}=\text { negative real axis, } K_{1}=\emptyset, \text { function } W\right)\right)
$$

is a locally minimizing triplet for $E$ in $\mathbb{R}^{2}$.
Moreover we conjecture that there are no other nontrivial locally minimizing triplets with non empty jump set and different from triplets

$$
\begin{gathered}
\left(K_{0}=\text { closed negative real axis, } K_{1}=\emptyset, \Phi\right) \\
\Phi=(A \omega(\vartheta)+B w(\vartheta)) r^{3 / 2}, \quad 35 A^{2}+37 B^{2}=\frac{4 \alpha}{\pi}, \quad A \neq 0
\end{gathered}
$$

possibly swayed by rigid motions of $\mathbb{R}^{2}$ co-ordinates and/or addition of affine functions.

Proving the minimality of a given candidate for a free discontinuity problem is a difficult task in general.

As far as we know, neither the calibration techniques [Alberti, Bouchitte, DalMaso], nor the method used by [Bonnet, David] (both successfully applied to Mumford \& Shah functional to test non trivial minimizers) seem to apply to the present context of second order functionals.

Even the excess identity approach of [Percivale \& T.], which succeeds with second order functionals related to elasto-plastic plates, does not apply to the present context since Blake \& Zisserman functional do not control $\int_{S_{D v}}|[D v]| d \mathcal{H}^{1}$.

## Mumford-Shah functional

## Theorem [M.Carriero, A.Leaci, D.Pallara, E.Pascali]

If $\left(\mathbb{R}^{-}, u\right)$ is a local minimizer of

$$
\int_{B_{1}}|\nabla v|^{2}+\alpha \mathcal{H}^{1}\left(S_{v}\right)
$$

then

$$
\left.u(\rho, \theta)=a_{0} \pm u^{S}(\rho, \theta)+u^{R}(\rho, \theta)\right)
$$

where

$$
u^{S}(\rho, \theta)=\sqrt{\frac{2 \alpha}{\pi}} \rho^{1 / 2} \sin \frac{\theta}{2}, \quad u^{R}(\rho, \theta)=o\left(\rho^{1-\varepsilon}\right)
$$

## CONJECTURE ( E.De Giorgi )

$$
\psi(\rho, \theta)=\sqrt{\frac{2 \alpha}{\pi}} \rho^{1 / 2} \sin \frac{\theta}{2}
$$

is a local minimizer of Mumford-Shah functional in $\mathbb{R}^{2}$. $\psi$ is the only non trivial local minimizer in $\mathbb{R}^{2}$
(up to the sign and/or a rigid motion and constant addition)
where local minimizer of $\mathrm{M}-\mathrm{S}$ functional refers to
compactly-supported variation
(without topological restrictions)
With a slightly different definition
competitor for $(u, K)$ : any pair ( $w, H$ ) s.t. ....... ...... and if $x, y \in \mathbb{R}^{2} \backslash\left(K \cup B_{R}\right)$ are separated by $K$, then also $H$ separates them,
A.Bonnet \& G.David proved the conjecture in a weak form. (the difference does not play any role for candidate $\psi$.)

## Theorem - Uniform density estimates up to the bdry [C-L-T, Pure Math.Appl., 2009]

## (Density upper bound for the functional $F$ )

Let ( $K_{0}, K_{1}, u$ ) be an essential locally minimizing triplet for the functional $F$ under structural assumptions, $g \in L_{l o c}^{4}(\Omega)$, and

$$
\exists \bar{\varrho}>0: \mathcal{H}^{1}\left(\partial \Omega \cap B_{\varrho}(\mathbf{x})\right)<C \varrho \quad \forall \mathbf{x} \in \partial \Omega, \forall \varrho \leq \bar{\varrho} .
$$

Then for every $0<\varrho \leq(\bar{\varrho} \wedge 1)$ and for every $x \in \bar{\Omega}$ such that $\bar{B}_{\varrho}(x) \subset \widetilde{\Omega}$ we have

$$
F_{\bar{B}_{e}(x) \cap \bar{\Omega}}\left(K_{0}, K_{1}, u\right) \leq c_{0} \varrho
$$

where $c_{0}=C^{2} \pi+2 \pi^{\frac{1}{2}} \mu\left(\|w\|_{L^{4}\left(B_{e}(\mathbf{x})\right)}^{2}+\|g\|_{L^{4}\left(B_{e}(\mathbf{x})\right)}^{2}\right)+(2 \pi+C) \alpha$.

## Theorem - Uniform density estimates up to the bdry [C-L-T, Comm.Pure Appl.Anal. 2010]

Let $\left(K_{0}, K_{1}, u\right)$ be an essential locally minimizing triplet for the functional $F$ under structural assumptions, $g \in L_{l o c}^{4}(\Omega)$, and

$$
\exists \bar{\varrho}>0: \mathcal{H}^{1}\left(\partial \Omega \cap B_{\varrho}(\mathbf{x})\right)<C \varrho \quad \forall \mathbf{x} \in \partial \Omega, \forall \varrho \leq \varrho \bar{\varrho} .
$$

(Density lower bound for the functional $F$ )
Then there exist $\varepsilon_{0}>0, \varrho_{0}>0$ such that, for every $0<\varrho \leq(\varrho \wedge 1)$ and for every $x \in \bar{\Omega}$ such that $\bar{B}_{\varrho}(x) \subset \widetilde{\Omega}$ we have

$$
F_{B_{e}(\mathbf{x})}\left(K_{0}, K_{1}, u\right) \geq \varepsilon_{0} \varrho \quad \forall x \in\left(K_{0} \cup K_{1}\right) \cap \bar{\Omega}, \quad \forall \varrho \leq \varrho_{0}
$$

(Density lower bound for the segmentation length) and there exist $\varepsilon_{1}>0, \varrho_{1}>0$ such that

$$
\mathcal{H}^{1}\left(\left(K_{0} \cup K_{1}\right) \cap B_{\varrho}(\mathbf{x})\right) \geq \varepsilon_{1} \varrho \quad \forall x \in\left(K_{0} \cup K_{1}\right) \cap \bar{\Omega}, \quad \forall \varrho \leq \varrho_{1} .
$$

## Theorem - Uniform density estimates up to the bdry [C-L-T, Comm.Pure Appl.Anal. 2010]

(Elimination property) Let ( $K_{0}, K_{1}, u$ ) be an essential locally minimizing triplet for the functional $F$ under structural assumptions, $g \in L_{\text {loc }}^{4}(\Omega)$, and

$$
\exists \bar{\varrho}>0: \mathcal{H}^{1}\left(\partial \Omega \cap B_{\varrho}(\mathbf{x})\right)<C \varrho \quad \forall \mathbf{x} \in \partial \Omega, \forall \varrho \leq \bar{\varrho} .
$$

Then and let $\varepsilon_{1}>0, \varrho_{1}>0$ as above. If $x \in \bar{\Omega}$ and

$$
\mathcal{H}^{1}\left(\left(K_{0} \cup K_{1}\right) \cap B_{\varrho}(\mathbf{x})\right)<\frac{\varepsilon_{1}}{2} \varrho
$$

then

$$
\left(K_{0} \cup K_{1}\right) \cap B_{\varrho / 2}(\mathbf{x})=\emptyset .
$$

## Theorem - Uniform density estimates up to the bdry [C-L-T, Comm.Pure Appl.Anal. 2010]

(Minkowski content of the segmentation)
Let ( $K_{0}, K_{1}, u$ ) be an essential locally minimizing triplet for the functional $F$ under structural assumptions and $g \in L^{4}(\widetilde{\Omega})$.

Then $K_{0} \cup K_{1}$ is $\left(\mathcal{H}^{1}, 1\right)$ rectifiable and

$$
\lim _{\varrho \downarrow 0} \frac{\left|\left\{\mathbf{x} \in \Omega_{\varepsilon} ; \operatorname{dist}\left(\mathbf{x},\left(K_{0} \cup K_{1}\right) \cap \bar{\Omega}\right)<\varrho\right\}\right|}{2 \varrho}=\mathcal{H}^{1}\left(K_{0} \cup K_{1}\right) .
$$

## Numerical experiments

- [F.Doveri] proved the $\Gamma$ convergence and implemented the GNC algorithm proposed by Blake \& Zisserman.
- [G.Bellettini, A.Coscia] ( $n=1$ ) approximation by elliptic functionals.
- [L.Ambrosio, L.Faina, R.March] ( $\mathrm{n}=2$ ) variational approximation of $B \& Z$ fctl:

$$
\begin{aligned}
\mathcal{F}_{\varepsilon}(u, s, \sigma) & =\int_{\Omega}\left(\left(\sigma^{2}+\kappa_{\varepsilon}\right)\left|\nabla^{2} u\right|^{2}\right)+\mu|u-g|^{2} d \mathbf{x}+ \\
& +(\alpha-\beta) \mathcal{G}_{\varepsilon}(s)+\beta \mathcal{G}_{\varepsilon}(\sigma)+\xi_{\varepsilon} \int_{\Omega}\left(s^{2}+\xi_{\varepsilon}\right)|\nabla u|^{\gamma} d \mathbf{x}
\end{aligned}
$$

with $\kappa_{\varepsilon}, \xi_{\varepsilon}, \zeta_{\varepsilon}$ suitable infinitesimal weights and

$$
\mathcal{G}_{\varepsilon}(s)=\int_{\Omega}\left(\varepsilon|\nabla s|^{2}+\frac{(s-1)^{2}}{4 \varepsilon}\right) d \mathbf{x}
$$

- [M.Carriero, I.Farina, A.Sgura] implemented a finite difference approach via Euler-Lagrange equations.



## Franco Tomarelli

Blake \& Zisserman functional Euler equations





## Theorem - Asymptotic expansion of loc.min. triplets with crack-tip

Assume $(\Gamma, \emptyset, u)$ is a locally minimizing triplet of $E$ in $\mathbb{R}^{2}$, where $\Gamma=$ denotes the closed negative real axis.
Then there are constants $A, B$ with $(A, B) \neq(0,0)$ and $A_{h}, B_{h}$ s.t.

$$
\begin{aligned}
& u(r, \theta)= \\
& \begin{array}{l}
=r^{3 / 2}\left(A\left(\sin \left(\frac{\theta}{2}\right)-\frac{5}{3} \sin \left(\frac{3}{2} \theta\right)\right)+B\left(\cos \left(\frac{\theta}{2}\right)-\frac{7}{3} \cos \left(\frac{3}{2} \theta\right)\right)\right)+ \\
\\
\quad+\sum_{h=1}^{+\infty} r^{h+\frac{3}{2}}\left(A_{h} \cos \left(\left(h+\frac{3}{2}\right) \theta\right)+B_{h} \sin \left(\left(h+\frac{3}{2}\right) \theta\right)+\right. \\
\\
\left.\quad-\frac{2 h+3}{2 h+7} A_{h} \cos \left(\left(h-\frac{1}{2}\right) \theta\right)-\frac{2 h+3}{2 h-5} B_{h} \sin \left(\left(h-\frac{1}{2}\right) \theta\right)\right)
\end{array}
\end{aligned}
$$

where $u$ is expressed by polar coordinates in $\mathbb{R}^{2}$
with $\theta \in(-\pi, \pi)$ and $r \in(0,+\infty)$.
This expansion is strongly convergent in $H^{2}\left(B_{\varrho} \backslash \Gamma\right)$, moreover ...
... the lower order term $(h=0)$ in the expansion must have the following form

$$
\left\{\begin{array}{cl}
W_{0}=(A \omega(\vartheta)+B w(\vartheta)) r^{3 / 2} & \text { in } B_{\varrho} \backslash \Gamma, \text { referring to modes: } \\
\text { Mode } 1 \text { (Jump) } & \omega(\vartheta)=\left(\sin \left(\frac{\vartheta}{2}\right)-\frac{5}{3} \sin \left(\frac{3}{2} \vartheta\right)\right) \\
& \text { Mode 2 (Crease) }
\end{array} \quad w(\vartheta)=\left(\cos \left(\frac{\vartheta}{2}\right)-\frac{7}{3} \cos \left(\frac{3}{2} \vartheta\right)\right), ~ \$\right.
$$

where $\vartheta \in(-\pi, \pi)$ and constants $A, B$ verify

$$
35 A^{2}+37 B^{2}=\frac{4 \alpha}{\pi}, \quad A \neq 0
$$


[^0]:    joint research with
    Michele carriero \& Antonio Leaci ( Università del Salento, Italy )

