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We consider a symmetrical network with k

servers and l Poisson input flows. The protocol
uses dynamic routing: each flow is assigned
to a subgroup of m servers, upon its arrival a
message is directed to the least busy of these
servers.

Under the condition that at least m servers
are overloaded the number of overloaded servers
depends on the rate of input flows.

For a circle of interacting servers this effect
is described in:

N.D. Vvedenskaya, E.A. Pechersky, Circle of
Interacting Servers: Spontanious Collective
Fluctuations in case of large Fluctuation, Probl.
Inform. Transmission, 2008, V. 44, No 4, P.
370-384.
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Some history.

Consider a system where the number of servers
k →∞. In case of dynamic routing where the
shortest of m queues is selected the stationary
distribution of queue lengths decreases

superexponentially:

Pr[queue length ≥ n] = λ
nm−1
m−1 .

For example, as m = 2

Pr[queue length ≥ n] = λn2−1.

N.D. Vvedenskaya, R.L. Dobrushin, F.I. Karpelevich,
A Queueing System with the Selection of
the Shortest of Two Queues, Asymptotical
Approach, Probl. Inform. Transmission, 1996,
V. 32, No 1, 15-27.

If k is finite the situation is quite different.
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Consider a symmetrical system S = S(k, m)

formed by k identical servers S = (s1, ..., sk)

and l =
(

k
m

)
independent Poisson flows F =

(fA1
, ..., fAl

), each of rate λ.

Here Aj = (j1, ..., jm) are the numbers of
servers SAj

= (sj1, ..., sjm) assigned to fAj
.

The servers have infinite buffers and operate
with equal rate 1.

Upon its arrival with fAj
a message is directed

to a server from SAj
that at the time of its

arrival has the smallest workload.
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The flows are described by the sequences of
independent pairs

(ξ
(Aj)
n , τ

(Aj)
n ), n = ...,−1,0,1, ..., j = 1, ..., l,

τ
(Aj)
n – the intervals between arrivals of two

messages, Pr(τ
(Aj)
n > t) = e−λt.

ξ
(Aj)
n – the message lengths.

The distributions of ξ
(Aj)
n are identical,

ϕ(θ) = Eeθξ
(Aj)
n < ∞, θ < θ+, lim

θ↑θ+
ϕ(θ) = ∞.

All variables are iid.
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The mean intensity of the sum of Poisson

flows upon one server is Λ =
λ( k

m)
k . The system

is in stationary state,

Λϕ′(0) < 1, λ < λ̂ = k
(
lϕ′(0)

)−1
.

If during some time period the flow intensity
is large the flow is said to be overheated, if
there is a lot of unserved messages in a buffer
of a server the server is said to be overloaded.

Let w(t) = (w1(t), ..., wk(t) be the load vector
that indicates the load of buffers.
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Virtual message arrive upon S at time moment
t = 0 with flow fA1

, has zero length and
is directed to the servers according to the
dynamic routing protocol. The delay (waiting
time) of virtual message is denoted by ω1.
The event {ω1 ≥ n} is denoted by Γ1(n) We
are interested in probability of Γ1(n), that is
exponential:

lim
n→∞

−1

n
lnPr[ω1 ≥ nd].

Logarithm of needed probability can be expressed
via rate function

I =
∫ ∞

0
sup
θ<θ+

{θẋ(t)− λ[ϕ(θ)− 1]}dt,

For x(t) that is a trajectory of flow f we call
ẋ the flow speed.
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One server.

For "optimal"trajectory ẋ(t) = a =const,

limn→∞ −1
n lnPr [ω > nd] = Id,

I = t supθ<θ+
{θa− λ[ϕ(θ)− 1]}

Optimization for a server of speed m

gives I = mθ where

mθ = λ[ϕ(θ)− 1].

λ1

λ2 > λ1

λ2

θ




























λ(ϕ(θ)− 1)
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System with k servers

For any k, k ≥ 3 there exist

λ(k), λ(k), 0 < λ(k) ≤ λ(k) < λ̂,

that depend on ξAj distribution such that

I If λ < λ(k), then the event Γ1 is mainly
defined by fA1

, only this flow is overheated

limn→∞ −1
n lnPr [Γ1(n)] = mθmd,

where θm is a positive root to equation

mθ = λ[ϕ(θ)− 1].

I If λ > λ(k), then all flows are overheated

limn→∞ −1
n lnPr [Γ1(n)] = kθkd,

where θk is a positive root to equation

kθ = λ
(

k
m

)
[ϕ(θ)− 1].
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The last statement is easy to explain formaly.
Let

mθm = λ[ϕ(θ)− 1],
kθk = λ

(
k
m

)
[ϕ(θ)− 1].

It easy to see that
mθm < kθk if λ is sufficiently small,
mθm > kθk if λ is sufficiently close to λ̂ =

k
(
lϕ′(0)

)−1.

λ1

λ2 > λ1

λ2

θ�
�

�
�

�
�

�
�

λ(ϕ(θ)− 1)

θ = λ[ϕ(θ)− 1].
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Consider an auxiliary system S(0) with similar
k servers and l flows. The realization of flows
in both systems are identical. At S(0) the
routing is random: a message of flow fAj

with given probability α(j, r) is directed to the
server sr, sr ∈ SAj

. The flows of S(0) upon
the servers are independent and Poisson.

Suppose the flows F have the speeds aA1
, ..., aAl

.
We call these flows balanced with respect to
servers S if for any j, r there exist such α(j, r)

and such b > 0 that

∑
j

α(j, r)aAj
=

∑l
j=1 aAj

k
= b.

.
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Now we compare the performance of systems
S and system S(0).

Let in both systems m′, m ≤ m′ ≤ k server be
equally overloaded.

In S0 the flows upon m′ servers are balanced.
For auxiliary system the difference
|wi(t)− wj(t)| = o (t).

It can be shown that the components of load
vector in main system are even more concentrated
in the neighborhood of bisectrix w1 = ... =

wm′ than similar components in the auxiliary
system.

Therefore the probability of events Γ1(n) in
the systems are equal in case where k′ server
are equally overloaded.
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It can be shown that if the event Γ1(n) takes
place (and may be some other servers are
also overloaded) the probability of this event
is not greater than the probability of similar
event where several servers are equally overloaded
and the overheated flows have equal speeds.

Therefore it is sufficient to consider the equal
overload of m′, k ≥ m′ ≥ m servers caused by
the equal overheat of several flows.

The formulas for probability of Γ1(n) presented
above are the formulas for probability of equally
overheated flows in auxiliary system
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Comparison of large delay probability for different
values of m′ brings the statement and formulas
presented above.

Example

The case of exponentially distributed ξ length,
Pr[ξ ≥ x] = e−x:

λ(k) = λ(k) =
(k −m)(

k
m

)
− 1

,

λ(k) = λ(k) → λ̂ as k increases.
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Constant message length, circle system.

Pr(ξ = x) = δ.

ϕ(θ) = eθ, λ < 1.

a) As 3 ≤ k ≤ 12 λk = λ(k).

For example λk ∼ 0.311 as k = 3;

λk ∼ 0.667 as k = 5.

b) As k > 12 : λk ∼ 0.888;

λ(k) ∼ 0.910 as k = 15
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