Limit Theorems for Optimal Mass Transportation and Applications to Networks

Gershon Wolansky

Department of Mathematics, Technion 32000 Haifa, ISRAEL

E-mail: gershonw@math.technion.ac.il

S. Petersburg, May 2010

()

• Review of Kantorovich metrics on the space of positive measures

• = • •

- Review of Kantorovich metrics on the space of positive measures
- Conditioned Kantorovich metrics and relation to metrics on 1-D graphs

3 ×

- Review of Kantorovich metrics on the space of positive measures
- Conditioned Kantorovich metrics and relation to metrics on 1-D graphs
- Cost function for transporting networks

- Review of Kantorovich metrics on the space of positive measures
- Conditioned Kantorovich metrics and relation to metrics on 1-D graphs
- Cost function for transporting networks
- Replacing optimal networks by points allocation?

- Review of Kantorovich metrics on the space of positive measures
- Conditioned Kantorovich metrics and relation to metrics on 1-D graphs
- Cost function for transporting networks
- Replacing optimal networks by points allocation?
- Generalization to Lagrangian action on compact manifolds

Definition

The Kantorovich metric for $\lambda^-, \lambda^+ \in \mathcal{B}_+$ satisfying $\int d\lambda^- = \int d\lambda^+$

$$W_{\rho}(\lambda^+,\lambda^-) = \left\{ \inf_{\Lambda} \int_{\Omega} \int_{\Omega} |x-y|^{\rho} d\Lambda
ight\}^{1/\rho}$$

Where $\Lambda \in \mathcal{B}^+(\Omega \times \Omega)$, $\pi_{1,\#}\Lambda = \lambda^+$, $\pi_{2,\#}\Lambda = \lambda^-$.

Definition

The Kantorovich metric for $\lambda^-, \lambda^+ \in \mathcal{B}_+$ satisfying $\int d\lambda^- = \int d\lambda^+$

$$W_p(\lambda^+,\lambda^-) = \left\{ \inf_{\Lambda} \int_{\Omega} \int_{\Omega} |x-y|^p d\Lambda \right\}^{1/p}$$

Where $\Lambda \in \mathcal{B}^+(\Omega \times \Omega)$, $\pi_{1,\#}\Lambda = \lambda^+$, $\pi_{2,\#}\Lambda = \lambda^-$.

In case p = 1, $W_1(\lambda^+, \lambda^-)$ depends only on $\lambda = \lambda^+ - \lambda^- \in \mathcal{B}_0$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

Definition

The Kantorovich metric for $\lambda^-, \lambda^+ \in \mathcal{B}_+$ satisfying $\int d\lambda^- = \int d\lambda^+$

$$W_p(\lambda^+,\lambda^-) = \left\{ \inf_{\Lambda} \int_{\Omega} \int_{\Omega} |x-y|^p d\Lambda
ight\}^{1/p}$$

Where $\Lambda \in \mathcal{B}^+(\Omega \times \Omega)$, $\pi_{1,\#}\Lambda = \lambda^+$, $\pi_{2,\#}\Lambda = \lambda^-$.

In case p = 1, $W_1(\lambda^+, \lambda^-)$ depends only on $\lambda = \lambda^+ - \lambda^- \in \mathcal{B}_0$. An equivalent definition

Definition

$$W_1(\lambda) = \sup_{\phi \in Lip_1(\Omega)} \int_{\Omega} \phi d\lambda$$

Where $Lip_1(\Omega) := \{ \phi \in C(\Omega) ; \phi(x) - \phi(y) \le |x - y| \; \; \forall x, y \in \Omega \}$

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ - 画 - のへ⊙

Example:

lf

$$\lambda^{+} = \sum_{1}^{N} m_{i} \delta_{x_{i}} \quad ; \quad \lambda^{-} = \sum_{1}^{N} m_{i}^{*} \delta_{y_{i}} \tag{1}$$

subjected to $\sum_{1}^{N} m_{i} = \sum_{i}^{N} m_{i}^{*} = 1$, then

・ロン ・四 ・ ・ ヨン ・ ヨン

Example:

lf

$$\lambda^{+} = \sum_{1}^{N} m_{i} \delta_{x_{i}} \quad ; \quad \lambda^{-} = \sum_{1}^{N} m_{i}^{*} \delta_{y_{i}} \tag{1}$$

subjected to $\sum_{1}^{N} m_{i} = \sum_{i}^{N} m_{i}^{*} = 1$, then

$$W_{p}(\lambda) = \left[\min_{\Lambda} \sum_{1}^{N} \sum_{1}^{N} \lambda^{i,j} |x_{i} - y_{j}|^{p}\right]^{1/p}$$

where $\Lambda = \{\lambda^{i,j}\}$ ie the set of all non-negative $N \times N$ matrices satisfying

$$\sum_{j=1}^n \lambda^{i,j} = m_i \quad ; \quad \sum_{i=1}^n \lambda^{i,j} = m_j^*$$

・ロン ・四 ・ ・ ヨン ・ ヨン

• Weak continuity: we may approximate λ^{\pm} by atomic measures.

- Weak continuity: we may approximate λ^{\pm} by atomic measures.
- Then the optimal plan is an atomic measure as well, solvable in the set of bi-stochastic matrices {Λ_{i,i}}.

- Weak continuity: we may approximate λ^{\pm} by atomic measures.
- Then the optimal plan is an atomic measure as well, solvable in the set of bi-stochastic matrices {Λ_{i,j}}.
- This "discrete" plan is an approximation in the weak topology of Λ .

- Weak continuity: we may approximate λ^{\pm} by atomic measures.
- Then the optimal plan is an atomic measure as well, solvable in the set of bi-stochastic matrices {Λ_{i,i}}.
- This "discrete" plan is an approximation in the weak topology of A.
- An optimal map is sometimes deterministic:

$$W^p_p(\lambda^+,\lambda^-) = \inf_{T_{\#}\lambda^+=\lambda^-} \int |x-T(x)|^p d\lambda^+$$

where $T_{\#}\lambda^+(B) = \lambda^- (T^{-1}(B))$. Then $\Lambda(dxdy) = \lambda^+(dx)\delta_{y-T(x)}dy$ is the optimal plan.

- Weak continuity: we may approximate λ^{\pm} by atomic measures.
- Then the optimal plan is an atomic measure as well, solvable in the set of bi-stochastic matrices {Λ_{i,j}}.
- This "discrete" plan is an approximation in the weak topology of A.
- An optimal map is sometimes deterministic:

$$W_p^p(\lambda^+,\lambda^-) = \inf_{T_{\#}\lambda^+=\lambda^-} \int |x-T(x)|^p d\lambda^+$$

where $T_{\#}\lambda^{+}(B) = \lambda^{-}(T^{-1}(B))$. Then $\Lambda(dxdy) = \lambda^{+}(dx)\delta_{y-T(x)}dy$ is the optimal plan.

• If p > 1 then T is obtained in terms of a "potential function" Φ . In particular, p = 2 and λ^+ is continuous w.r to Lebesgue measure than $T(x) = \nabla \Phi(x)$ where Φ is a convex function, and this T is unique. (Brenier, McCann, Gangbo, Caffarelli)

(本間) (本語) (本語) (語)

• For the case p = 1, the optimal potential ϕ gives only partial information on the optimal mapping

 $T(x) = x + t\nabla\phi(x)$

where t is unknown (change with x).

- 4 回 ト - 4 回 ト

 For the case p = 1, the optimal potential φ gives only partial information on the optimal mapping

 $T(x) = x + t\nabla\phi(x)$

where t is unknown (change with x).

• The solvability of optimal map in the metric case (p = 1) is a difficult problem. First attempt by Sudakov (1979).

 For the case p = 1, the optimal potential φ gives only partial information on the optimal mapping

 $T(x) = x + t\nabla\phi(x)$

where t is unknown (change with x).

- The solvability of optimal map in the metric case (*p* = 1) is a difficult problem. First attempt by Sudakov (1979).
- Equivalent formulation (Beckmann (1952))

Definition

$$W_1(\lambda) = \inf \int |d\vec{m}|$$

subject to $\nabla \cdot \vec{m} = \lambda$.

★ 圖 ▶ ★ 国 ▶ ★ 国 ▶

 For the case p = 1, the optimal potential φ gives only partial information on the optimal mapping

 $T(x) = x + t\nabla\phi(x)$

where t is unknown (change with x).

- The solvability of optimal map in the metric case (p = 1) is a difficult problem. First attempt by Sudakov (1979).
- Equivalent formulation (Beckmann (1952))

Definition

$$W_1(\lambda) = \inf \int |d\vec{m}|$$

subject to $\nabla \cdot \vec{m} = \lambda$.

• The optimal $\vec{m} := \rho \nabla \phi$ yields a complete information on T.

- 4 同 6 4 日 6 4 日 6

• For the case p = 1, the optimal potential ϕ gives only partial information on the optimal mapping

 $T(x) = x + t\nabla\phi(x)$

where t is unknown (change with x).

- The solvability of optimal map in the metric case (*p* = 1) is a difficult problem. First attempt by Sudakov (1979).
- Equivalent formulation (Beckmann (1952))

Definition

$$W_1(\lambda) = \inf \int |d\vec{m}|$$

subject to $\nabla \cdot \vec{m} = \lambda$.

- The optimal $\vec{m} := \rho \nabla \phi$ yields a complete information on T.
- There is an interest in calculating the Transport Measure $\rho := |\vec{m}|$, and verifies

$$abla \cdot (
ho
abla \phi) = \lambda$$
 .

イロト 不得下 イヨト イヨト 二日

• Next attempts by Gangbo and Evans (1999): Approximating Lip_1 by $|\nabla \phi|_p$ where $p \to \infty$.

< 回 ト < 三 ト < 三 ト

• Next attempts by Gangbo and Evans (1999): Approximating Lip_1 by $|\nabla \phi|_p$ where $p \to \infty$. minimizing

$$p^{-1}\int |
abla \phi|^p - \int \phi d\lambda$$

leads to

 $\nabla \cdot \left(|\nabla \phi|^{p-2} \nabla \phi \right) = \lambda$

・ 同 ト ・ 三 ト ・ 三 ト

• Next attempts by Gangbo and Evans (1999): Approximating Lip_1 by $|\nabla \phi|_p$ where $p \to \infty$. minimizing

$$p^{-1}\int |
abla \phi|^p - \int \phi d\lambda$$

leads to

$$\nabla \cdot \left(|\nabla \phi|^{p-2} \nabla \phi \right) = \lambda$$

and to the approximation $|\nabla \phi|^{p-2} \to \rho$ while $|\nabla \phi| \to 1$.

くほと くほと くほと

• Next attempts by Gangbo and Evans (1999): Approximating Lip_1 by $|\nabla \phi|_p$ where $p \to \infty$. minimizing

$$p^{-1}\int |
abla \phi|^p - \int \phi d\lambda$$

leads to

$$\nabla \cdot \left(|\nabla \phi|^{p-2} \nabla \phi \right) = \lambda$$

and to the approximation $|\nabla \phi|^{p-2} \to \rho$ while $|\nabla \phi| \to 1$.

• Other approaches by Trudinger, Wang, Ma, Caffarelli, Feldman, McCann Ambrosio, Pratelli... in the last decade.

イロト 不得下 イヨト イヨト 二日

Conditional W_1 distance

-

・ロト ・ 日 ト ・ 田 ト ・

Conditional W_1 distance

Definition

Define, for $\mu \in \mathcal{B}_1^+(\Omega)$, $\lambda \in \mathcal{B}_0(\Omega)$ and p > 1

$$W_1^{(p)}(\lambda\|\mu) := \sup_{0
ot\equiv
abla \phi \in C^1(\Omega)} rac{\int_\Omega \phi d\lambda}{\left(\int_\Omega |
abla \phi|^q d\mu
ight)^{1/q}}$$

where q = p/(p - 1).

(日) (周) (三) (三)

Theorem

$$W_1(\lambda) = \inf_{\mu \in \mathcal{B}_1^+} W_1^{(p)}(\lambda \| \mu)$$

If p = 2 then any minimizer μ is a Transport measure supported in an optimal plan of $W_1(\lambda)$.

イロト イポト イヨト イヨト

Theorem

$$W_1(\lambda) = \inf_{\mu \in \mathcal{B}_1^+} W_1^{(p)}(\lambda \| \mu)$$

If p = 2 then any minimizer μ is a Transport measure supported in an optimal plan of $W_1(\lambda)$.

Example: $\lambda = m_1 \delta_{x_1} + m_2 \delta_{x_2} - m_1^* \delta_{y_1} - m_2^* \delta_{y_2} - m_3^* \delta_{y_3}$

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Theorem

$$W_1(\lambda) = \inf_{\mu \in \mathcal{B}_1^+} W_1^{(p)}(\lambda \| \mu)$$

If p = 2 then any minimizer μ is a Transport measure supported in an optimal plan of $W_1(\lambda)$.

Example: $\lambda = m_1 \delta_{x_1} + m_2 \delta_{x_2} - m_1^* \delta_{y_1} - m_2^* \delta_{y_2} - m_3^* \delta_{y_3}$

(日) (周) (三) (三)

Disadvantage of using $W_1^{(p)}(\lambda \| \mu)$ for calculating transport measures:

・ 回 ト ・ ヨ ト ・

Disadvantage of using $W_1^{(p)}(\lambda \| \mu)$ for calculating transport measures: $W_1^{(p)}(\lambda \| \mu)$ is not continuous in μ .

過入 イヨト イヨト 二日

Disadvantage of using $W_1^{(p)}(\lambda \| \mu)$ for calculating transport measures: $W_1^{(p)}(\lambda \| \mu)$ is not continuous in μ . In particular

 $W_1^{(p)}(\lambda \| \mu_n) = \infty$

for any atomic measure μ_n .

超す イヨト イヨト ニヨ

Disadvantage of using $W_1^{(p)}(\lambda \| \mu)$ for calculating transport measures: $W_1^{(p)}(\lambda \| \mu)$ is not continuous in μ . In particular

 $W_1^{(p)}(\lambda \| \mu_n) = \infty$

for any atomic measure μ_n .

Thus, we cannot approximate μ as a limit of atomic measures.

"Proof":

$$\inf_{\mu \in \mathcal{B}_1^+} \sup_{0 \not\equiv \phi \in C^1(\Omega)} \frac{\int_\Omega \phi d\lambda}{\left(\int_\Omega |\nabla \phi|^q d\mu\right)^{1/q}} = \sup_{0 \not\equiv \phi \in C^1(\Omega)} \inf_{\mu \in \mathcal{B}_1^+} \frac{\int_\Omega \phi d\lambda}{\left(\int_\Omega |\nabla \phi|^q d\mu\right)^{1/q}}$$

while

$$\sup_{\mu\in\mathcal{B}_{1}^{+}}\int_{\Omega}|\nabla\phi|^{q}d\mu=\sup_{x\in\Omega}|\nabla\phi(x)|^{q}=Lip^{q}(\phi)$$

▲口> ▲圖> ▲屋> ▲屋>

"Proof":

$$\inf_{\mu \in \mathcal{B}_1^+} \sup_{0 \not\equiv \phi \in C^1(\Omega)} \frac{\int_{\Omega} \phi d\lambda}{\left(\int_{\Omega} |\nabla \phi|^q d\mu\right)^{1/q}} = \sup_{0 \not\equiv \phi \in C^1(\Omega)} \inf_{\mu \in \mathcal{B}_1^+} \frac{\int_{\Omega} \phi d\lambda}{\left(\int_{\Omega} |\nabla \phi|^q d\mu\right)^{1/q}}$$

while

$$\sup_{\mu\in\mathcal{B}_1^+}\int_{\Omega}|
abla \phi|^q d\mu = \sup_{x\in\Omega}|
abla \phi(x)|^q = Lip^q(\phi)$$

In case $\lambda^+ = \sum_1^N m_i \delta_{x_i}$; $\lambda^- = \sum_1^N m_i^* \delta_{y_i}$ the optimal μ is given by

$$\mu = \sum_{i}^{N} \sum_{i}^{N} \frac{\lambda^{i,j}}{|\mathbf{x}_{i} - \mathbf{y}_{j}|} \delta_{[\mathbf{x}_{i},\mathbf{y}_{j}]}$$

with $\sum_i \lambda^{i,j} = m_j^*$; $\sum_j \lambda^{i,j} = m_i$ are the optimal transports.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙
Theorem

For p > 1

$$W_{1}^{(\rho)}(\lambda||\mu) = \Gamma - \lim_{\varepsilon \to 0} \varepsilon^{-1} W_{\rho} \left(\mu + \varepsilon \lambda^{+}, \mu + \varepsilon \lambda^{-} \right)$$

Theorem

For p > 1

$$W_{1}^{(p)}(\lambda||\mu) = \Gamma - \lim_{\varepsilon \to 0} \varepsilon^{-1} W_{p} \left(\mu + \varepsilon \lambda^{+}, \mu + \varepsilon \lambda^{-}\right)$$
$$W_{1}(\lambda) = \lim_{\varepsilon \to 0} \varepsilon^{-1} \inf_{\mu \in \mathcal{B}_{1}^{+}} W_{p} \left(\mu + \varepsilon \lambda^{+}, \mu + \varepsilon \lambda^{-}\right)$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへで

Theorem

For p > 1

$$W_1^{(p)}(\lambda||\mu) = \Gamma - \lim_{\varepsilon \to 0} \varepsilon^{-1} W_p \left(\mu + \varepsilon \lambda^+, \mu + \varepsilon \lambda^- \right)$$

$$W_{1}(\lambda) = \lim_{\varepsilon \to 0} \varepsilon^{-1} \inf_{\mu \in \mathcal{B}_{1}^{+}} W_{\rho} \left(\mu + \varepsilon \lambda^{+}, \mu + \varepsilon \lambda^{-} \right)$$

Remark

$$W_{p}^{\varepsilon}(\lambda \| \mu) := \varepsilon^{-1} W_{p} \left(\mu + \varepsilon \lambda^{+}, \mu + \varepsilon \lambda^{-}
ight)$$

is weakly continuous in μ .

Gershon Wolansky (Technion)

イロン イヨン イヨン イヨン

Let
$$\lambda = \delta_x - \delta_y$$
.

Let
$$\lambda = \delta_x - \delta_y$$
.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ○ < ○

Let $\lambda = \delta_x - \delta_y$.

If $\varepsilon = 1/n$ then μ is displayed in the n- gray shadows

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ○ < ○

M---> \infty

・ロト・(局)・(目)・(目)・(日)・(の)

Gershon Wolansky (Technion)

Action principle and OMT

▶ < ≣ ▶ ≣ ∽ < < Haifa, 2009 15 / 37

▲□▶ ▲圖▶ ▲厘▶ ▲厘≯

 Underlining idea: Cost of transforation depends on the flux as well. It is a increasing, concave function of the flux. (Butazzio, Xia, Stepanov)

< ∃ > <

- Underlining idea: Cost of transforation depends on the flux as well. It is a increasing, concave function of the flux. (Butazzio, Xia, Stepanov)
- A different approach, using W₁^(p)(λ||μ):Can we restrict the conditioning measure μ to obtain optimal networks?

- Underlining idea: Cost of transforation depends on the flux as well. It is a increasing, concave function of the flux. (Butazzio, Xia, Stepanov)
- A different approach, using W₁^(p)(λ||μ):Can we restrict the conditioning measure μ to obtain optimal networks?
- Suppose

$$\widehat{W}^{\Gamma}(\lambda) := \inf_{\mu} W_1^{(p)}(\lambda \| \mu)$$

where we minimize on probability measures μ supported on a given graph Γ .

- Underlining idea: Cost of transforation depends on the flux as well. It is a increasing, concave function of the flux. (Butazzio, Xia, Stepanov)
- A different approach, using W₁^(p)(λ||μ):Can we restrict the conditioning measure μ to obtain optimal networks?

Suppose

$$\widehat{W}^{\Gamma}(\lambda) := \inf_{\mu} W_1^{(p)}(\lambda \| \mu)$$

where we minimize on probability measures μ supported on a given graph Γ .

$$\widehat{W}^{\Gamma}(\lambda) = \min_{\Lambda} \int \int D_{\Gamma}(x, y) d\Lambda(x, y)$$

where D_{Γ} is the distance reduced to Γ .

- Underlining idea: Cost of transforation depends on the flux as well. It is a increasing, concave function of the flux. (Butazzio, Xia, Stepanov)
- A different approach, using W₁^(p)(λ||μ):Can we restrict the conditioning measure μ to obtain optimal networks?

Suppose

$$\widehat{W}^{\Gamma}(\lambda) := \inf_{\mu} W_1^{(p)}(\lambda \| \mu)$$

where we minimize on probability measures μ supported on a given graph Γ .

$$\widehat{W}^{\Gamma}(\lambda) = \min_{\Lambda} \int \int D_{\Gamma}(x, y) d\Lambda(x, y)$$

where D_{Γ} is the distance reduced to Γ .

• Can we obtain a formulation of "optimal network" by restricting to a set of probability measures supported of graphs of prescribed length?

(日) (周) (三) (三)

- Underlining idea: Cost of transforation depends on the flux as well. It is a increasing, concave function of the flux. (Butazzio, Xia, Stepanov)
- A different approach, using W₁^(p)(λ||μ):Can we restrict the conditioning measure μ to obtain optimal networks?

Suppose

۵

$$\widehat{W}^{\Gamma}(\lambda) := \inf_{\mu} W_1^{(p)}(\lambda \| \mu)$$

where we minimize on probability measures μ supported on a given graph Γ .

$$\widehat{W}^{\Gamma}(\lambda) = \min_{\Lambda} \int \int D_{\Gamma}(x, y) d\Lambda(x, y)$$

where D_{Γ} is the distance reduced to Γ .

- Can we obtain a formulation of "optimal network" by restricting to a set of probability measures supported of graphs of prescribed length?
- Disadvantage: This is a formidable set, not natural, not compact.

イロト イヨト イヨト

- Underlining idea: Cost of transforation depends on the flux as well. It is a increasing, concave function of the flux. (Butazzio, Xia, Stepanov)
- A different approach, using W₁^(p)(λ||μ):Can we restrict the conditioning measure μ to obtain optimal networks?

Suppose

$$\widehat{W}^{\mathsf{\Gamma}}(\lambda) := \inf_{\mu} W^{(p)}_1(\lambda \| \mu)$$

where we minimize on probability measures μ supported on a given graph Γ .

$$\widehat{W}^{\Gamma}(\lambda) = \min_{\Lambda} \int \int D_{\Gamma}(x, y) d\Lambda(x, y)$$

where D_{Γ} is the distance reduced to Γ .

• Can we obtain a formulation of "optimal network" by restricting to a set of probability measures supported of graphs of prescribed length?

16 / 37

• Disadvantage: This is a formidable set, not natural, not compact. Certainly cannot be approximated by atomic measures!

Theorem

For p > 1

$$\lim_{M \to \infty} M^{1-1/p} \min_{\mu \in \mathcal{B}_M^+} W_p \left(\mu + \lambda^+, \mu + \lambda^- \right) = W_1(\lambda^+, \lambda^-)$$

where \mathcal{B}_{M}^{+} stands for the set of all positive Borel measures μ normalized by $\int d\mu = M$.

(本部)と 本語 と 本語を

Theorem

For p > 1

$$\lim_{M \to \infty} M^{1-1/p} \min_{\mu \in \mathcal{B}_M^+} W_p \left(\mu + \lambda^+, \mu + \lambda^- \right) = W_1(\lambda^+, \lambda^-)$$

where \mathcal{B}_{M}^{+} stands for the set of all positive Borel measures μ normalized by $\int d\mu = M$.

Suppose we replace the condition $M \to \infty$ by the condition $n \to \infty$ where μ is restricted to the set of atomic measures $\mathcal{B}^{n,+}$ of (at most) *n* atoms?

くほと くほと くほと

Theorem

For p > 1

$$\lim_{M \to \infty} M^{1-1/p} \min_{\mu \in \mathcal{B}_M^+} W_p \left(\mu + \lambda^+, \mu + \lambda^- \right) = W_1(\lambda^+, \lambda^-)$$

where \mathcal{B}_{M}^{+} stands for the set of all positive Borel measures μ normalized by $\int d\mu = M$.

Suppose we replace the condition $M \to \infty$ by the condition $n \to \infty$ where μ is restricted to the set of atomic measures $\mathcal{B}^{n,+}$ of (at most) *n* atoms?

Theorem

For any
$$q > 1$$
 and $\lambda = \sum_{i=1}^{N} m_i \delta_{x_i} - m_i^* \delta_{y_i}$.

Theorem

For p > 1

$$\lim_{M \to \infty} M^{1-1/p} \min_{\mu \in \mathcal{B}_M^+} W_p \left(\mu + \lambda^+, \mu + \lambda^- \right) = W_1(\lambda^+, \lambda^-)$$

where \mathcal{B}_{M}^{+} stands for the set of all positive Borel measures μ normalized by $\int d\mu = M$.

Suppose we replace the condition $M \to \infty$ by the condition $n \to \infty$ where μ is restricted to the set of atomic measures $\mathcal{B}^{n,+}$ of (at most) *n* atoms?

Theorem

For any
$$q>1$$
 and $\lambda=\sum_{1}^{N}m_{i}\delta_{x_{i}}-m_{i}^{*}\delta_{y_{i}}$.

$$\lim_{n\to\infty} n^{1-1/\rho} \inf_{\mu\in\mathcal{B}^{n,+}} W_{\rho}\left(\mu+\lambda^+,\mu+\lambda^-\right) = \widehat{W}^{(\rho)}(\lambda)$$

Recall

Definition

$$W_1(\lambda) = \inf \int |dec{m}|$$

subject to $\nabla \cdot \vec{m} = \lambda$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Recall

Definition

$$W_1(\lambda) = \inf \int |dec{m}|$$

subject to $\nabla \cdot \vec{m} = \lambda$.

Definition

(Xia) For p > 1 and λ an atomic metric

$$\widehat{W}^{(p)}(\lambda) = \inf \int |rac{dec{m}}{dH_1}|^{1/p} dH_1$$

subject to $\nabla \cdot \vec{m} = \lambda$.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

An oriented, weighted graph (γ, m) associated with λ is a graph γ composed of vertices $V(\gamma)$ and edges $E(\gamma)$ and a function $m : E \to \mathbb{R}^+$:

- 4 同 6 4 三 6 4

An oriented, weighted graph (γ, m) associated with λ is a graph γ composed of vertices $V(\gamma)$ and edges $E(\gamma)$ and a function $m : E \to \mathbb{R}^+$:

Definition

• The set of all weighted graphs associated with λ is denoted by $\Gamma(\lambda)$.

< ∃ >

Definition

۲

• The set of all weighted graphs associated with λ is denoted by $\Gamma(\lambda)$.

$$\widehat{W}^{(p)}(\lambda) := \inf_{(\gamma,m)\in\Gamma(\lambda)} \sum_{e\in E(\gamma)} |e| m_e^{1/F}$$

Examples:

• p = 1 (Reduced to the metric Monge problem),

★ ∃ →

Definition

۲

• The set of all weighted graphs associated with λ is denoted by $\Gamma(\lambda)$.

$$\widehat{W}^{(p)}(\lambda) := \inf_{(\gamma,m)\in\Gamma(\lambda)} \sum_{e\in E(\gamma)} |e| m_e^{1/F}$$

Examples:

- p = 1 (Reduced to the metric Monge problem),
- p = 0 (Reduced to Steiner problem of minimal graphs)

$$e \iff (i,j); \gamma_{i,j} > 0 \qquad , m_e = \gamma_{i,j}$$

(日) (周) (三) (三)

$$e \iff (i,j); \gamma_{i,j} > 0 \qquad , m_e = \gamma_{i,j}$$

Postulate

• $\{x_1,\ldots,y_1,\ldots\} \subset V(\gamma).$

(日) (周) (三) (三)

$$e \iff (i,j); \gamma_{i,j} > 0 \qquad , m_e = \gamma_{i,j}$$

Postulate

- $\{x_1,\ldots,y_1,\ldots\} \subset V(\gamma).$
- For each $i \in \{1, N\}$, $\sum_{\{e, x_i \in \partial^+ e\}} m_e = m_i$ and $\sum_{\{e, y_i \in \partial^- e\}} m_e = m_i^*$, where $\partial^{\pm} e := v_e^{\pm}$.

- 4 個 ト 4 国 ト - 4 国 ト - 三日

$$e \iff (i,j); \gamma_{i,j} > 0 \qquad , m_e = \gamma_{i,j}$$

Postulate

- $\{x_1,\ldots,y_1,\ldots\} \subset V(\gamma).$
- For each $i \in \{1, N\}$, $\sum_{\{e, x_i \in \partial^+ e\}} m_e = m_i$ and $\sum_{\{e, y_i \in \partial^- e\}} m_e = m_i^*$, where $\partial^{\pm} e := v_e^{\pm}$.
- For each $v \in V(\gamma) \{x_1, \dots, y_N\}$, $\sum_{\{e; v \in \partial^+ e\}} m_e = \sum_{\{e; v \in \partial^- e\}} m_e$.

イロト 不得下 イヨト イヨト 二日

$$e \iff (i,j); \gamma_{i,j} > 0 \qquad , m_e = \gamma_{i,j}$$

Postulate

- $\{x_1,\ldots,y_1,\ldots\} \subset V(\gamma).$
- For each $i \in \{1, N\}$, $\sum_{\{e, x_i \in \partial^+ e\}} m_e = m_i$ and $\sum_{\{e, y_i \in \partial^- e\}} m_e = m_i^*$, where $\partial^{\pm} e := v_e^{\pm}$.
- For each $v \in V(\gamma) \{x_1, \dots, y_N\}$, $\sum_{\{e; v \in \partial^+ e\}} m_e = \sum_{\{e; v \in \partial^- e\}} m_e$.

Lemma

There exists an optimal plan $\{\gamma\}$ whose graph contains at most $2N^3$ nodes of order ≥ 3 .

$$\Sigma_o = m_o$$
 $\Sigma_o = m_o^*$ $\Sigma_o = \Sigma_o$

・ロト・(局)・(目)・(目)・(日)・(の)

The set $\mathcal{B}^{n,+}$ is, evidently, not a compact one. Still we claim

Lemma

For each $n \in \mathbb{N}$, a minimizer $\mu_n \in \mathcal{B}^{n,+}$

$$\overline{W}_{\boldsymbol{q}}(\lambda) := \inf_{\mu \in \mathcal{B}^{n,+}} W_{\boldsymbol{q}}\left(\mu + \lambda^{+}, \mu + \lambda^{-}\right) = W_{\boldsymbol{q}}\left(\mu_{n} + \lambda^{+}, \mu_{n} + \lambda^{-}\right)$$

exists.

イロト イポト イヨト イヨト

The set $\mathcal{B}^{n,+}$ is, evidently, not a compact one. Still we claim

Lemma

For each $n \in \mathbb{N}$, a minimizer $\mu_n \in \mathcal{B}^{n,+}$

$$\overline{W}_{m{q}}(\lambda):=\inf_{\mu\in\mathcal{B}^{n,+}}W_{m{q}}\left(\mu+\lambda^{+},\mu+\lambda^{-}
ight)=W_{m{q}}\left(\mu_{n}+\lambda^{+},\mu_{n}+\lambda^{-}
ight)$$

exists.

Theorem

Let μ_n be a regular minimizer of $W_q(\mu + \lambda^+, \mu + \lambda^-)$ in $\mathcal{B}^{n,+}$. Then the associated optimal plan spans a reduced weighted tree $(\hat{\gamma}_n, m_n)$ which converges (in Hausdorff metric) to an optimal graph $(\hat{\gamma}, m) \in \Gamma(\lambda)$ as $n \to \infty$,

- 4回 ト 4 ヨ ト - 4 ヨ ト - ヨ
One direction

イロト イヨト イヨト イヨト

One direction

Definition

Reduced graph: Remove all nodes of degree =2.

One direction

Definition

Reduced graph: Remove all nodes of degree =2.

3 ×

$$\sum_{e \in E(\hat{\gamma})} m_e^{1/p} |e| \le \left(\sum_{e \in E(\hat{\gamma})} m_e |e|^p \right)^{1/p} |E(\hat{\gamma})|^{(p-1)/p} .$$

$$\sum_{e \in E(\hat{\gamma})} m_e^{1/p} |e| \le \left(\sum_{e \in E(\hat{\gamma})} m_e |e|^p \right)^{1/p} |E(\hat{\gamma})|^{(p-1)/p} .$$

$$\sum_{e \in E(\hat{\gamma})} m_e |e|^p = W_p^p (\lambda^+ + \mu, \lambda^- + \mu)$$

Gershon Wolansky (Technion)

Action principle and OMT

Haifa, 2009 25 / 37

$$\sum_{e\in E(\hat{\gamma})} m_e^{1/p} |e| \leq \left(\sum_{e\in E(\hat{\gamma})} m_e |e|^p\right)^{1/p} |E(\hat{\gamma})|^{(p-1)/p} .$$

$$\sum_{e \in E(\hat{\gamma})} m_e |e|^p = W^p_p(\lambda^+ + \mu, \lambda^- + \mu)$$

From Lemma: $|E(\hat{\gamma})|^{(p-1)/p} = n^{(p-1)/p} + o(n)$.

$$\sum_{e\in E(\hat{\gamma})} m_e^{1/p} |e| \leq \left(\sum_{e\in E(\hat{\gamma})} m_e |e|^p\right)^{1/p} |E(\hat{\gamma})|^{(p-1)/p} .$$

$$\sum_{e \in E(\hat{\gamma})} m_e |e|^p = W_p^p (\lambda^+ + \mu, \lambda^- + \mu)$$

From Lemma: $|E(\hat{\gamma})|^{(p-1)/p} = n^{(p-1)/p} + o(n)$. Hence:

$$n^{(1-p)/p}W_p(\lambda^++\mu,\lambda^-+\mu)\geq \sum_{e\in E(\hat{\gamma})}m_e^{1/p}|e|$$

Gershon Wolansky (Technion)

Generalization to Lagrangian on manifolds and relation with the Weak KAM Theory

Lagrangian-Hamiltonian duality $(x, v) \in \mathbb{T}\Omega$:

$$l(x,v) = \sup_{p \in T^*\Omega} \langle p, v \rangle - h(x,p)$$

Generalization to Lagrangian on manifolds and relation with the Weak KAM Theory

Lagrangian-Hamiltonian duality $(x, v) \in \mathbb{T}\Omega$:

$$I(x,v) = \sup_{p \in T^*\Omega} \langle p, v \rangle - h(x,p)$$

$$\sup_{\mu\in\mathcal{B}_1^+}\inf_{\phi\in C^1(\Omega)}\int_{\Omega}h(x,d\phi)d\mu=\underline{E}=:\inf_{\phi\in C^1(\Omega)}\sup_{x\in\Omega}h(x,d\phi)$$

Generalization to Lagrangian on manifolds and relation with the Weak KAM Theory

Lagrangian-Hamiltonian duality $(x, v) \in \mathbb{T}\Omega$:

$$l(x,v) = \sup_{p \in T^*\Omega} \langle p, v \rangle - h(x,p)$$

$$\sup_{\mu\in\mathcal{B}_1^+}\inf_{\phi\in C^1(\Omega)}\int_{\Omega}h(x,d\phi)d\mu=\underline{E}=:\inf_{\phi\in C^1(\Omega)}\sup_{x\in\Omega}h(x,d\phi)$$

Example $I(x, v) = |v|^2/2 - V(x)$, $h(x, p) = |p|^2/2 + V(x)$

$$\sup_{\mu\in\mathcal{B}_1^+}\inf_{\phi\in C^1(\Omega)}\int_{\Omega}\left(|\nabla\phi|^2/2+V(x)\right)d\mu=\sup_{x\in\Omega}V(x)\;.$$

$$C_T(x,y) := \inf_{\vec{z}(0)=x, \vec{z}(T)=y} \int_0^T I\left(\vec{z}(s), \dot{\vec{z}}(s)\right) ds \ , \ T > 0 \ .$$

$$C_T(x,y) := \inf_{\vec{z}(0)=x, \vec{z}(T)=y} \int_0^T I\left(\vec{z}(s), \dot{\vec{z}}(s)\right) ds \ , \ T > 0 \ .$$

Then

$$C_{\mathcal{T}}(\mu) := C_{\mathcal{T}}(\mu,\mu) = \min_{\Lambda \in \mathcal{P}(\mu,\mu)} \int_{M \times M} C_{\mathcal{T}}(x,y) d\Lambda(x,y)$$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三国

$$C_T(x,y) := \inf_{\vec{z}(0)=x, \vec{z}(T)=y} \int_0^T I\left(\vec{z}(s), \dot{\vec{z}}(s)\right) ds \ , \ T > 0 \ .$$

Then

$$C_{\mathcal{T}}(\mu) := C_{\mathcal{T}}(\mu,\mu) = \min_{\Lambda \in \mathcal{P}(\mu,\mu)} \int_{M \times M} C_{\mathcal{T}}(x,y) d\Lambda(x,y)$$

Theorem

(Buffoni and Bernard)

$$\min_{\iota\in\mathcal{B}_1^+}C_{\mathcal{T}}(\mu)=-T\underline{E}$$

where the minimizers coincide, for any T > 0, with the projected Mather measure.

Gershon Wolansky (Technion)

Action principle and OM7

Definition

$$(x,t) \in \Omega \times \Omega \mapsto D_E(x,y) = \inf_{T>0} C_T(x,y) + TE$$
.

Definition

$$(x,t) \in \Omega \times \Omega \mapsto D_E(x,y) = \inf_{T>0} C_T(x,y) + TE$$
.

Lemma

 $D_E(x,y) = -\infty$ for any $x, y \in \Omega$ if $E < \underline{E}$.

Definition

$$(x,t) \in \Omega \times \Omega \mapsto D_E(x,y) = \inf_{T>0} C_T(x,y) + TE$$
.

Lemma

 $D_E(x, y) = -\infty$ for any $x, y \in \Omega$ if $E < \underline{E}$. If $E \ge \underline{E}$ then $D_E(x, x) = 0$ for any $x \in \Omega$.

(日) (周) (三) (三)

Definition

$$(x,t) \in \Omega \times \Omega \mapsto D_E(x,y) = \inf_{T>0} C_T(x,y) + TE$$
.

Lemma

 $D_E(x,y) = -\infty$ for any $x, y \in \Omega$ if $E < \underline{E}$. If $E \ge \underline{E}$ then $D_E(x,x) = 0$ for any $x \in \Omega$.

Example

For $l(x, v) = |v|^2/2$ we get $C_T(x, y) = |x - y|^2/2T$ while $D_E(x, y) = \sqrt{2E}|x - y|$ if $E \ge 0$, $D_E(x, y) = -\infty$ if E < 0. Here $\underline{E} = 0$.

イロト イポト イヨト イヨト 二日

Definition

$$(x,t) \in \Omega \times \Omega \mapsto D_E(x,y) = \inf_{T>0} C_T(x,y) + TE$$
.

Lemma

 $D_E(x,y) = -\infty$ for any $x, y \in \Omega$ if $E < \underline{E}$. If $E \ge \underline{E}$ then $D_E(x,x) = 0$ for any $x \in \Omega$.

Example

For
$$l(x, v) = |v|^2/2$$
 we get $C_T(x, y) = |x - y|^2/2T$ while
 $D_E(x, y) = \sqrt{2E}|x - y|$ if $E \ge 0$, $D_E(x, y) = -\infty$ if $E < 0$. Here $\underline{E} = 0$.

Lemma

$$D_E(\lambda) := D_E(\lambda^+, \lambda^-) = \sup \left\{ \int \phi d\lambda ; \phi(x) - \phi(y) \le D_E(x, y) \right\}$$

$$\widehat{\mathcal{C}}(\lambda;\mu) := \sup_{\phi \in C^1(\Omega)} \int_{\Omega} -h(x,d\phi) d\mu + \phi d\lambda$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$\widehat{\mathcal{C}}(\lambda;\mu) := \sup_{\phi \in C^1(\Omega)} \int_{\Omega} -h(x,d\phi)d\mu + \phi d\lambda$$
 $\widehat{\mathcal{C}}(\lambda) := \inf_{\mu \in \mathcal{B}_1^+} \widehat{\mathcal{C}}(\lambda;\mu)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$egin{aligned} \widehat{\mathcal{C}}(\lambda;\mu) &:= \sup_{\phi \in \mathcal{C}^1(\Omega)} \int_{\Omega} -h(x,d\phi) d\mu + \phi d\lambda \ \widehat{\mathcal{C}}(\lambda) &:= \inf_{\mu \in \mathcal{B}^1_1} \widehat{\mathcal{C}}(\lambda;\mu) \end{aligned}$$

Theorem

If $\lambda \in \mathcal{B}_0$, the following definitions are equivalent:

Gershon Wolansky (Technion)

< ロ > < 同 > < 三 > < 三

$$egin{aligned} \widehat{\mathcal{C}}(\lambda;\mu) &:= \sup_{\phi \in C^1(\Omega)} \int_\Omega -h(x,d\phi) d\mu + \phi d\lambda \ \widehat{\mathcal{C}}(\lambda) &:= \inf_{\mu \in \mathcal{B}^+_1} \widehat{\mathcal{C}}(\lambda;\mu) \end{aligned}$$

Theorem

If $\lambda \in \mathcal{B}_0$, the following definitions are equivalent: **1** $\widehat{\mathcal{C}}_{\mathcal{T}}(\lambda) := \mathcal{T}\widehat{\mathcal{C}}\left(\frac{\lambda}{\mathcal{T}}\right)$

< ロ > < 同 > < 三 > < 三

$$egin{aligned} \widehat{\mathcal{C}}(\lambda;\mu) &:= \sup_{\phi \in C^1(\Omega)} \int_\Omega -h(x,d\phi) d\mu + \phi d\lambda \ \widehat{\mathcal{C}}(\lambda) &:= \inf_{\mu \in \mathcal{B}^+_1} \widehat{\mathcal{C}}(\lambda;\mu) \end{aligned}$$

Theorem

If $\lambda \in \mathcal{B}_0$, the following definitions are equivalent: **1** $\widehat{\mathcal{C}}_T(\lambda) := T\widehat{\mathcal{C}}\left(\frac{\lambda}{T}\right)$ **2** $\widehat{\mathcal{C}}_T(\lambda) := \sup_{E \ge E} D_E(\lambda) - ET$.

イロト イヨト イヨト イヨト

$$egin{aligned} \widehat{\mathcal{C}}(\lambda;\mu) &:= \sup_{\phi \in \mathcal{C}^1(\Omega)} \int_\Omega -h(x,d\phi) d\mu + \phi d\lambda \ \widehat{\mathcal{C}}(\lambda) &:= \inf_{\mu \in \mathcal{B}^1_1} \widehat{\mathcal{C}}(\lambda;\mu) \end{aligned}$$

Theorem

If $\lambda \in \mathcal{B}_0$, the following definitions are equivalent: (a) $\widehat{\mathcal{C}}_{\mathcal{T}}(\lambda) := \mathcal{T}\widehat{\mathcal{C}}\left(\frac{\lambda}{\mathcal{T}}\right)$ (c) $\widehat{\mathcal{C}}_{\mathcal{T}}(\lambda) := \sup_{E \ge \underline{E}} D_E(\lambda) - E\mathcal{T}$. (c) $\widehat{\mathcal{C}}_{\mathcal{T}}(\lambda) := \inf_{\mu \in \mathcal{B}_1^+} \sup_{\phi \in \mathcal{C}^1(M)} \int_M -\mathcal{T}h(x, d\phi) d\mu + \phi d\lambda$.

くほと くほと くほと

$$egin{aligned} \widehat{\mathcal{C}}(\lambda;\mu) &:= \sup_{\phi \in C^1(\Omega)} \int_{\Omega} -h(x,d\phi) d\mu + \phi d\lambda \ \widehat{\mathcal{C}}(\lambda) &:= \inf_{\mu \in \mathcal{B}^1_1} \widehat{\mathcal{C}}(\lambda;\mu) \end{aligned}$$

Theorem

If $\lambda \in \mathcal{B}_0$, the following definitions are equivalent: (a) $\widehat{C}_T(\lambda) := T\widehat{C}\left(\frac{\lambda}{T}\right)$ (c) $\widehat{C}_T(\lambda) := \sup_{E \ge \underline{E}} D_E(\lambda) - ET$. (c) $\widehat{C}_T(\lambda) := \inf_{\mu \in \mathcal{B}_1^+} \sup_{\phi \in C^1(M)} \int_M -Th(x, d\phi) d\mu + \phi d\lambda$.

In particular, for $\lambda = \delta_x - \delta_y$,

$$\widehat{\mathcal{C}}_{\mathcal{T}}(x,y) := \sup_{E \ge \underline{E}} D_E(x,y) - ET$$

くほと くほと くほと

 $C_T(x,y) \geq \widehat{C}_T(x,y)$

<ロ> (日) (日) (日) (日) (日)

 $C_T(x, y) \geq \widehat{C}_T(x, y)$

In general, strict inequality. However, if $\mathcal{T}<<1$ we get equality under mild conditions.

< A

→ ∃ →

 $C_T(x, y) \geq \widehat{C}_T(x, y)$

In general, strict inequality. However, if T << 1 we get equality under mild conditions.

Theorem

For any $\lambda \in \mathcal{B}_0$,

$$\widehat{\mathcal{C}}_{\mathcal{T}}(\lambda;\mu) = \Gamma - \lim_{\varepsilon \to 0} \varepsilon^{-1} C_{\varepsilon \mathcal{T}}(\mu + \varepsilon \lambda^{-}, \mu + \varepsilon \lambda^{+}) \;.$$

 $C_T(x,y) \geq \widehat{C}_T(x,y)$

In general, strict inequality. However, if T << 1 we get equality under mild conditions.

Theorem

For any $\lambda \in \mathcal{B}_0$,

$$\widehat{\mathcal{C}}_{\mathcal{T}}(\lambda;\mu) = \Gamma - \lim_{\varepsilon \to 0} \varepsilon^{-1} \mathcal{C}_{\varepsilon \mathcal{T}}(\mu + \varepsilon \lambda^{-}, \mu + \varepsilon \lambda^{+}) .$$

$$\widehat{\mathcal{C}}_{\mathcal{T}}(\lambda) = \lim_{\varepsilon \to 0} \inf_{\mu \in \mathcal{B}_1^+} \varepsilon^{-1} \mathcal{C}_{\varepsilon \mathcal{T}}(\mu + \varepsilon \lambda^-, \mu + \varepsilon \lambda^+) .$$

Gershon Wolansky (Technion)

< ロ > < 同 > < 三 > < 三

Gershon Wolansky (Technion)

Easy Lemma

Easy Lemma

Lemma

For any
$$\mu\in\mathcal{B}_1^+$$
, $\lambda=\lambda^+-\lambda^-\in\mathcal{B}_0$

$$\liminf_{\varepsilon \to 0} \varepsilon^{-1} C_{\varepsilon T}(\mu + \varepsilon \lambda^{-}, \mu + \varepsilon \lambda^{+}) \geq \widehat{\mathcal{C}}_{T}(\lambda \| \mu) \;.$$

Easy Lemma

Lemma

For any
$$\mu \in \mathcal{B}_1^+$$
, $\lambda = \lambda^+ - \lambda^- \in \mathcal{B}_0$

$$\liminf_{\varepsilon \to 0} \varepsilon^{-1} C_{\varepsilon T}(\mu + \varepsilon \lambda^{-}, \mu + \varepsilon \lambda^{+}) \geq \widehat{\mathcal{C}}_{T}(\lambda \| \mu) \;.$$

Harder lemma

<ロ> (日) (日) (日) (日) (日)

Easy Lemma

Lemma

For any
$$\mu \in \mathcal{B}_1^+$$
, $\lambda = \lambda^+ - \lambda^- \in \mathcal{B}_0$

$$\liminf_{\varepsilon \to 0} \varepsilon^{-1} C_{\varepsilon T}(\mu + \varepsilon \lambda^{-}, \mu + \varepsilon \lambda^{+}) \geq \widehat{C}_{T}(\lambda \| \mu) .$$

Harder lemma

Lemma

For T > 0,

$$\widehat{\mathcal{C}}_{\mathcal{T}}(\lambda) \geq \limsup_{\varepsilon \to 0} \varepsilon^{-1} \inf_{\mu \in \mathcal{B}_{1}^{+}} \mathcal{C}_{\varepsilon \mathcal{T}}(\mu + \varepsilon \lambda^{+}, \mu + \varepsilon \lambda^{-}) \ .$$

▲□▶ ▲圖▶ ▲温▶ ▲温≯

Proof of "hard" Lemma

Gershon Wolansky (Technion)

Proof of "hard" Lemma

Given $\varepsilon > 0$ let

$$D_E^{\varepsilon}(x,y) := \inf_{n \in \mathbb{N}} \left[C_{\varepsilon nT}(x,y) + \varepsilon nET \right]$$

Evidently, $D_E^{\varepsilon}(x, y)$ is continuous on $M \times M$ locally uniformly in $E \geq \underline{E}$. Moreover,

$\lim_{\varepsilon\searrow 0}D_E^\varepsilon=D_E$

uniformly on $M \times M$ and locally uniformly in $E \geq \underline{E}$ as well.

- 本間 と えき と えき とうき
Proof of "hard" Lemma

Given $\varepsilon > 0$ let

$$D_E^{\varepsilon}(x,y) := \inf_{n \in \mathbb{N}} \left[C_{\varepsilon nT}(x,y) + \varepsilon nET \right]$$

Evidently, $D_E^{\varepsilon}(x, y)$ is continuous on $M \times M$ locally uniformly in $E \geq \underline{E}$. Moreover,

$\lim_{\varepsilon\searrow 0}D_E^\varepsilon=D_E$

uniformly on $M \times M$ and locally uniformly in $E \ge \underline{E}$ as well. We now decompose $M \times M$ into mutually disjoint Borel sets Q_n :

$$M \times M = \cup_n Q_n^{\varepsilon}$$
, $Q_n^{\varepsilon} \cap Q_{E,n'}^{\varepsilon} = \emptyset$ if $n \neq n'$

such that

$$Q_n^{\varepsilon} \subset \{(x,y) \in M \times M ; \quad D_E^{\varepsilon}(x,y) = C_{\varepsilon nT}(x,y) + \varepsilon nET\}$$
.

Let $\Lambda_{\varepsilon}^{\mathcal{E}} \in \mathcal{P}(\lambda^+, \lambda^-)$ be an optimal plan for

$$\mathcal{D}_{E}^{\varepsilon}(\lambda) = \int_{M \times M} D_{E}^{\varepsilon}(x, y) d\Lambda_{\varepsilon}^{E} = \min_{\Lambda \in \mathcal{P}(\lambda^{+}, \lambda^{-})} \int_{M \times M} D_{E}^{\varepsilon}(x, y) d\Lambda ,$$

and $\Lambda_{\varepsilon}^{n} = \Lambda_{\varepsilon}^{E} \lfloor_{Q_{n}^{\varepsilon}}$, the restriction of $\Lambda_{\varepsilon}^{E}$ to Q_{n}^{ε} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

Let $\Lambda_{\varepsilon}^{\mathcal{E}} \in \mathcal{P}(\lambda^+, \lambda^-)$ be an optimal plan for

$$\mathcal{D}_{E}^{\varepsilon}(\lambda) = \int_{M \times M} D_{E}^{\varepsilon}(x, y) d\Lambda_{\varepsilon}^{E} = \min_{\Lambda \in \mathcal{P}(\lambda^{+}, \lambda^{-})} \int_{M \times M} D_{E}^{\varepsilon}(x, y) d\Lambda ,$$

and $\Lambda_{\varepsilon}^{n} = \Lambda_{\varepsilon}^{E} \lfloor_{Q_{n}^{\varepsilon}}$, the restriction of $\Lambda_{\varepsilon}^{E}$ to Q_{n}^{ε} . Set λ_{n}^{\pm} to be the marginals of $\Lambda_{\varepsilon}^{n}$ on the first and second factors of $M \times M$.

イロト 不得下 イヨト イヨト 二日

Let $\Lambda_{\varepsilon}^{\mathcal{E}} \in \mathcal{P}(\lambda^+, \lambda^-)$ be an optimal plan for

$$\mathcal{D}_{E}^{\varepsilon}(\lambda) = \int_{M \times M} D_{E}^{\varepsilon}(x, y) d\Lambda_{\varepsilon}^{E} = \min_{\Lambda \in \mathcal{P}(\lambda^{+}, \lambda^{-})} \int_{M \times M} D_{E}^{\varepsilon}(x, y) d\Lambda ,$$

and $\Lambda_{\varepsilon}^{n} = \Lambda_{\varepsilon}^{E} \lfloor_{Q_{n}^{\varepsilon}}$, the restriction of $\Lambda_{\varepsilon}^{E}$ to Q_{n}^{ε} . Set λ_{n}^{\pm} to be the marginals of $\Lambda_{\varepsilon}^{n}$ on the first and second factors of $M \times M$. Then $\sum_{n=1}^{\infty} \Lambda_{\varepsilon}^{n} = \Lambda_{\varepsilon}^{E}$ and

$$\sum_{n=1}^{\infty} \lambda_n^{\pm} = \lambda^{\pm}$$

Remark

Note that $Q_n^{\varepsilon} = \emptyset$ for all but a finite number of $n \in \mathbb{N}$. In particular, the sum contains only a finite number of non-zero terms.

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

・ロト ・聞 ト ・ 国 ト ・ 国 ト … 国

We observe that $\langle T \rangle^{\varepsilon} \in \partial_E \mathcal{D}_E^{\varepsilon}(\lambda)$, where ∂_E is the super gradient as a function of E. At this stage we choose E depending on ε , T such that

 $\langle T \rangle^{\varepsilon} = T + 2\varepsilon T |\lambda^{\pm}|$

We observe that $\langle T \rangle^{\varepsilon} \in \partial_E \mathcal{D}_E^{\varepsilon}(\lambda)$, where ∂_E is the super gradient as a function of E. At this stage we choose E depending on ε , T such that

$$\langle T \rangle^{\varepsilon} = T + 2\varepsilon T |\lambda^{\pm}|$$

Let $\widehat{\Lambda}^n_{\varepsilon} \in \mathcal{B}^+(TM)$ satisfying

$$\left(I \oplus Exp_{(I)}^{(t=arepsilon nT)}
ight)_{\#} \widehat{\Lambda}_{arepsilon}^{n} = \Lambda_{arepsilon}^{n}$$

We observe that $\langle T \rangle^{\varepsilon} \in \partial_E \mathcal{D}_E^{\varepsilon}(\lambda)$, where ∂_E is the super gradient as a function of E. At this stage we choose E depending on ε , T such that

$$\langle T \rangle^{\varepsilon} = T + 2\varepsilon T |\lambda^{\pm}|$$

Let $\widehat{\Lambda}^n_{\varepsilon} \in \mathcal{B}^+(TM)$ satisfying

$$\left(I \oplus Exp_{(I)}^{(t=\varepsilon nT)}\right)_{\#} \widehat{\Lambda}_{\varepsilon}^{n} = \Lambda_{\varepsilon}^{n}$$

Use $\widehat{\Lambda}^n_{\varepsilon}$ to define

$$\lambda_n^j := \left(\mathsf{Exp}_{(I)}^{(t=\varepsilon nT)} \right)_{\#} \widehat{\Lambda}_{\varepsilon}^n \in \mathcal{B}^+(M)$$

for j = 0, 1 ... n.

We observe that $\langle T \rangle^{\varepsilon} \in \partial_E \mathcal{D}_E^{\varepsilon}(\lambda)$, where ∂_E is the super gradient as a function of E. At this stage we choose E depending on ε , T such that

$$\langle T \rangle^{\varepsilon} = T + 2\varepsilon T |\lambda^{\pm}|$$

Let $\widehat{\Lambda}^n_{\varepsilon} \in \mathcal{B}^+(TM)$ satisfying

$$\left(I \oplus Exp_{(I)}^{(t=\varepsilon nT)}\right)_{\#} \widehat{\Lambda}_{\varepsilon}^{n} = \Lambda_{\varepsilon}^{n}$$

Use $\widehat{\Lambda}^n_{\varepsilon}$ to define

$$\lambda_n^j := \left(Exp_{(I)}^{(t=\varepsilon nT)} \right)_{\#} \widehat{\Lambda}_{\varepsilon}^n \in \mathcal{B}^+(M)$$

for $j = 0, 1 \dots n$. Note that $\lambda_n^0 = \lambda_n^+$, $\lambda_n^n = \lambda_n^-$

We observe that $\langle T \rangle^{\varepsilon} \in \partial_E \mathcal{D}_E^{\varepsilon}(\lambda)$, where ∂_E is the super gradient as a function of E. At this stage we choose E depending on ε , T such that

$$\langle T \rangle^{\varepsilon} = T + 2\varepsilon T |\lambda^{\pm}|$$

Let $\widehat{\Lambda}^n_{\varepsilon} \in \mathcal{B}^+(TM)$ satisfying

$$\left(I \oplus Exp_{(I)}^{(t=\varepsilon nT)}\right)_{\#} \widehat{\Lambda}_{\varepsilon}^{n} = \Lambda_{\varepsilon}^{n}$$

Use $\widehat{\Lambda}^n_{\varepsilon}$ to define

$$\lambda_n^j := \left(Exp_{(I)}^{(t=\varepsilon nT)} \right)_{\#} \widehat{\Lambda}_{\varepsilon}^n \in \mathcal{B}^+(M)$$

for $j = 0, 1 \dots n$. Note that $\lambda_n^0 = \lambda_n^+$, $\lambda_n^n = \lambda_n^-$

$$C_{\varepsilon nT}(\lambda_n^+,\lambda_n^-) + \varepsilon nET|\lambda_n| = \sum_{j=0}^{n-1} \left[C_{\varepsilon T}(\lambda_n^j,\lambda_n^{j+1}) + \varepsilon ET|\lambda_n| \right]$$

$$\mathcal{D}_{E}^{\varepsilon}(\lambda) = \sum_{n=1}^{\infty} D_{E}^{\varepsilon}(\lambda_{n}) = \sum_{n=1}^{\infty} \left[C_{\varepsilon nT}(\lambda_{n}^{+}, \lambda_{n}^{-}) + \varepsilon nET |\lambda_{n}| \right]$$
$$= \sum_{n=1}^{\infty} \sum_{j=0}^{n-1} \left(C_{\varepsilon T}(\lambda_{n}^{j}, \lambda_{n}^{j+1}) + \varepsilon ET |\lambda_{n}| \right) . \quad (2)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

$$\mathcal{D}_{E}^{\varepsilon}(\lambda) = \sum_{n=1}^{\infty} D_{E}^{\varepsilon}(\lambda_{n}) = \sum_{n=1}^{\infty} \left[C_{\varepsilon nT}(\lambda_{n}^{+}, \lambda_{n}^{-}) + \varepsilon nET |\lambda_{n}| \right]$$
$$= \sum_{n=1}^{\infty} \sum_{j=0}^{n-1} \left(C_{\varepsilon T}(\lambda_{n}^{j}, \lambda_{n}^{j+1}) + \varepsilon ET |\lambda_{n}| \right) . \quad (2)$$

Let now

$$\mu^{\varepsilon,E} = \varepsilon \sum_{n=1}^{\infty} \sum_{j=1}^{n-1} \lambda_n^j \quad .$$

Gershon Wolansky (Technion)

Action principle and OMT

▶ < 불 ▷ 불 · ○ < ○ Haifa, 2009 35 / 37

▲□▶ ▲圖▶ ▲温▶ ▲温≯

$$\mathcal{D}_{E}^{\varepsilon}(\lambda) = \sum_{n=1}^{\infty} D_{E}^{\varepsilon}(\lambda_{n}) = \sum_{n=1}^{\infty} \left[C_{\varepsilon nT}(\lambda_{n}^{+}, \lambda_{n}^{-}) + \varepsilon nET |\lambda_{n}| \right]$$
$$= \sum_{n=1}^{\infty} \sum_{j=0}^{n-1} \left(C_{\varepsilon T}(\lambda_{n}^{j}, \lambda_{n}^{j+1}) + \varepsilon ET |\lambda_{n}| \right) . \quad (2)$$

Let now

$$\mu^{\varepsilon,E} = \varepsilon \sum_{n=1}^{\infty} \sum_{j=1}^{n-1} \lambda_n^j \quad .$$

Note that

$$\mu^{\varepsilon,E} = \varepsilon \sum_{n=1}^{\infty} \sum_{j=0}^{n} \lambda_n^j - \varepsilon \sum_{n=1}^{\infty} \lambda_n^0 - \varepsilon \sum_{n=1}^{\infty} \lambda_n^n .$$

$$\left|\mu^{\varepsilon,E}\right| = \varepsilon \sum_{n=1}^{\infty} (n+1)|\lambda_n^{\pm}| - 2\varepsilon |\lambda^{\pm}| = 1 \implies \mu^{\varepsilon,E} \in \mathcal{B}_1^+.$$

$$\left|\mu^{\varepsilon, \mathcal{E}}\right| = \varepsilon \sum_{n=1}^{\infty} (n+1) |\lambda_n^{\pm}| - 2\varepsilon |\lambda^{\pm}| = 1 \implies \mu^{\varepsilon, \mathcal{E}} \in \mathcal{B}_1^+ .$$

$$\sum_{n=1}^{\infty}\sum_{j=0}^{n-1}C_{\varepsilon T}(\lambda_n^j,\lambda_n^{j+1})$$

$$\left|\mu^{\varepsilon,\mathcal{E}}\right| = \varepsilon \sum_{n=1}^{\infty} (n+1)|\lambda_n^{\pm}| - 2\varepsilon |\lambda^{\pm}| = 1 \implies \mu^{\varepsilon,\mathcal{E}} \in \mathcal{B}_1^+.$$

$$\sum_{n=1}^{\infty}\sum_{j=0}^{n-1}C_{\varepsilon T}(\lambda_n^j,\lambda_n^{j+1})$$

$$\geq C_{\varepsilon T} \left(\sum_{n=1}^{\infty} \sum_{j=0}^{n-1} \lambda_n^j, \sum_{n=1}^{\infty} \sum_{j=1}^n \lambda_n^{j+1} \right) =$$

Gershon Wolansky (Technion)

Action principle and OMT

▶ < ≣ ▶ ≣ ∽ < < Haifa, 2009 36 / 37

$$\left|\mu^{\varepsilon,\mathcal{E}}\right| = \varepsilon \sum_{n=1}^{\infty} (n+1)|\lambda_n^{\pm}| - 2\varepsilon |\lambda^{\pm}| = 1 \implies \mu^{\varepsilon,\mathcal{E}} \in \mathcal{B}_1^+.$$

$$\sum_{n=1}^{\infty}\sum_{j=0}^{n-1}C_{\varepsilon T}(\lambda_n^j,\lambda_n^{j+1})$$

$$\geq C_{\varepsilon T} \left(\sum_{n=1}^{\infty} \sum_{j=0}^{n-1} \lambda_n^j, \sum_{n=1}^{\infty} \sum_{j=1}^n \lambda_n^{j+1} \right) = \\ \varepsilon^{-1} C_{\varepsilon T} \left(\varepsilon \sum_{n=1}^{\infty} \sum_{j=0}^{n-1} \lambda_n^j, \varepsilon \sum_{n=1}^{\infty} \sum_{j=1}^n \lambda_n^{j+1} \right)$$

Gershon Wolansky (Technion)

$$\left|\mu^{\varepsilon,\mathcal{E}}\right| = \varepsilon \sum_{n=1}^{\infty} (n+1)|\lambda_n^{\pm}| - 2\varepsilon |\lambda^{\pm}| = 1 \implies \mu^{\varepsilon,\mathcal{E}} \in \mathcal{B}_1^+ .$$

$$\sum_{n=1}^{\infty} \sum_{j=0}^{n-1} C_{\varepsilon T} (\lambda_n^j, \lambda_n^{j+1})$$

$$\geq C_{\varepsilon T} \left(\sum_{n=1}^{\infty} \sum_{j=0}^{n-1} \lambda_n^j, \sum_{n=1}^{\infty} \sum_{j=1}^n \lambda_n^{j+1} \right) =$$

$$\varepsilon^{-1} C_{\varepsilon T} \left(\varepsilon \sum_{n=1}^{\infty} \sum_{j=0}^{n-1} \lambda_n^j, \varepsilon \sum_{n=1}^{\infty} \sum_{j=1}^n \lambda_n^{j+1} \right)$$

$$=\varepsilon^{-1}C_{\varepsilon T}\left(\mu^{\varepsilon,E}+\varepsilon\lambda^{+},\mu^{\varepsilon,E}+\varepsilon\lambda^{-}\right)$$

Gershon Wolansky (Technion)

.

$$\mathcal{D}_{E}^{\varepsilon}(\lambda) - \langle T \rangle^{\varepsilon} E \geq \varepsilon^{-1} C_{\varepsilon T} \left(\mu^{\varepsilon, E} + \varepsilon \lambda^{+}, \mu^{\varepsilon, E} + \varepsilon \lambda^{-} \right) \\ \geq \varepsilon^{-1} \inf_{\mu \in \mathcal{B}_{1}^{+}} C_{\varepsilon T} \left(\mu + \varepsilon \lambda^{+}, \mu + \varepsilon \lambda^{-} \right) .$$
(3)

$$\mathcal{D}_{E}^{\varepsilon}(\lambda) - \langle T \rangle^{\varepsilon} E \geq \varepsilon^{-1} C_{\varepsilon T} \left(\mu^{\varepsilon, E} + \varepsilon \lambda^{+}, \mu^{\varepsilon, E} + \varepsilon \lambda^{-} \right) \\ \geq \varepsilon^{-1} \inf_{\mu \in \mathcal{B}_{1}^{+}} C_{\varepsilon T} \left(\mu + \varepsilon \lambda^{+}, \mu + \varepsilon \lambda^{-} \right) .$$
(3)

Finally,

 $\widehat{\mathcal{C}}_{\mathcal{T}}(\lambda) \geq \mathcal{D}_{\mathcal{E}}(\lambda) - \mathcal{T}\mathcal{E} = \lim_{\varepsilon \to 0} \mathcal{D}_{\mathcal{E}}^{\varepsilon}(\lambda) - \langle \mathcal{T} \rangle^{\varepsilon} \mathcal{E} \geq \limsup_{\varepsilon \to 0} \varepsilon^{-1} \inf_{\mu \in \mathcal{B}_{1}^{+}} \mathcal{C}_{\varepsilon \mathcal{T}} \left(\mu + \varepsilon \lambda^{+}, \mu + \varepsilon \lambda^{-} \right) .$ (4)

イロト 不得 トイヨト イヨト 二日