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Review of Kantorovich metrics on the space of positive measures

Conditioned Kantorovich metrics and relation to metrics on 1-D
graphs

Cost function for transporting networks

Replacing optimal networks by points allocation?

Generalization to Lagrangian action on compact manifolds
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Definition
The Kantorovich metric for A=, AT € By satisfying [d\™ = [ dAT

1/p
Wo(AT, A7) = {inf//|x—y!pd/\}
A JaJa

Where A € B+(Q X Q), 7T17#/\ = )\+, 71'27#/\ ="
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Definition
The Kantorovich metric for A=, AT € By satisfying [d\™ = [ dAT

1/p
Wp()\+,)\_):{inf//]x—y]pd/\}
A JaJa

Where A € BT(Q x Q), mpuh = AT, mouh= A"

In case p =1, Wi(AT,\7) depends only on A = AT — A\~ € By.
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Definition
The Kantorovich metric for A=, AT € By satisfying [d\™ = [ dAT

1/p
Wp()\+,)\_):{inf//x—y]pdA}
A JaJa

Where A € BF(Q x Q), mgA=X", muh=X".

In case p =1, Wi(AT,\7) depends only on A = AT — X\~ € By. An
equivalent definition

Definition

Wi(\) = sup / opd A

¢ELip1 (2
Where Lip1(Q2) := {¢ € C(Q) : d(x) — ¢(y) < [x —y| Vx,y € 2}
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Example:

If

N
)\Jr = Z m,-5xl.
1

subjected to SN m; = SN m* =1, then
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Example:

If N "
AT = Z midy, ; A~ = Z mj 6, (1)
1 1

subjected to SN m; = SN m* =1, then

1/p

N N
W) = |min >3 \bi = yl”

where A = {\'V} ie the set of all non-negative N x N matrices satisfying

n n

Z)\i*j:m; ; Z/\iJ:mjf

j=1 i=1
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@ Weak continuity: we may approximate A\* by atomic measures.
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e Weak continuity: we may approximate A* by atomic measures.

@ Then the optimal plan is an atomic measure as well, solvable in the
set of bi-stochastic matrices {A;;}.
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@ This "discrete” plan is an approximation in the weak topology of A.
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e Weak continuity: we may approximate A* by atomic measures.

@ Then the optimal plan is an atomic measure as well, solvable in the
set of bi-stochastic matrices {A;}. .

@ This "discrete” plan is an approximation in the weak topology of A.

@ An optimal map is sometimes deterministic:

WEP(AT, A7) = _ inf /\x— x)|PdAT
TuAt=A—

where TuAT(B) =A™ (T Y(B)). Then
A(dxdy) = A" (dx)d,_7(x)dy is the optimal plan.
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Weak continuity: we may approximate A* by atomic measures.

@ Then the optimal plan is an atomic measure as well, solvable in the
set of bi-stochastic matrices {A;}. .

@ This "discrete” plan is an approximation in the weak topology of A.
@ An optimal map is sometimes deterministic:
WEP(AT, A7) = _ inf /x — T(x)|PdAT
Ty t=A—

where TuAT(B) =A™ (T Y(B)). Then

A(dxdy) = A" (dx)d,_7(x)dy is the optimal plan.
o If p > 1 then T is obtained in terms of a "potential function” ®. In

particular, p = 2 and A" is continuous w.r to Lebesgue measure than

T(x) = V®(x) where ® is a convex function, and this T is unique.
(Brenier, McCann, Gangbo, Caffarelli)
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@ For the case p = 1, the optimal potential ¢ gives only partial
information on the optimal mapping

T(x) =x+ tVe(x)

where t is unknown (change with x).
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@ For the case p = 1, the optimal potential ¢ gives only partial
information on the optimal mapping

T(x) = x+ tV¢(x)

where t is unknown (change with x).
@ The solvability of optimal map in the metric case (p = 1) is a difficult
problem. First attempt by Sudakov (1979).
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where t is unknown (change with x).
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e Equivalent formulation (Beckmann (1952))

Definition
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@ For the case p = 1, the optimal potential ¢ gives only partial
information on the optimal mapping

T(x) =x+ tVe(x)

where t is unknown (change with x).

@ The solvability of optimal map in the metric case (p = 1) is a difficult
problem. First attempt by Sudakov (1979).

e Equivalent formulation (Beckmann (1952))

Definition
Wi(\) = inf/|drﬁ|

subject to V- m = A.

@ The optimal m := pV¢ yields a complete information on T.
@ There is an interest in calculating the Transport Measure p := |m|,
and verifies
V- (pVe) =X
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o Next attempts by Gangbo and Evans (1999): Approximating Lip; by
|Vé|p where p — oo.
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o Next attempts by Gangbo and Evans (1999): Approximating Lip; by

|Vé|p where p — oo.
pt [ 1vap -~ [ oax

minimizing
leads to
V- (|Ve[P2Ve) = A
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o Next attempts by Gangbo and Evans (1999): Approximating Lip; by

|Vé|p where p — oo.
pt [ 1vap -~ [ oax

minimizing
leads to
V- (|Ve[P2Ve) = A

and to the approximation |[V¢[P~2 — p while [V¢| — 1.
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o Next attempts by Gangbo and Evans (1999): Approximating Lip; by

|Vé|p where p — oo.
pt [ 1vap -~ [ oax

minimizing
leads to
V- ([VelP?Ve) = A

and to the approximation |V¢|P~2 — p while V| — 1.

@ Other approaches by Trudinger, Wang, Ma, Caffarelli, Feldman,
McCann Ambrosio, Pratelli... in the last decade.
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Conditional W; distance

Definition

Define, for 1 € B (Q), A € Bo(R) and p > 1

WP (Alu) = sup

Jo #dA

0£VeCH(Q) ([q |V¢|qdu)l/q
where g = p/(p — 1).
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Theorem

Wi() = inf WP ()

neBy
If p =2 then any minimizer v is a Transport measure supported in an
optimal plan of Wy ().
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Theorem
Wi(x) = inf WP (]|w)
neBy

If p =2 then any minimizer i is a Transport measure supported in an
optimal plan of Wi(\).

. _ * * *
Example: A = m1d,, + mody, — mjd,, — m36,, — m36,,
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Theorem
Wi(A) = inf WP (]|u)
neBy

If p =2 then any minimizer i is a Transport measure supported in an
optimal plan of Wi(\).

Example: A = mid,, + mady, — mjéd,, — m36,, — m3é,,

Y
X
2
Kz
Y3
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Disadvantage of using Wl(p)()\H,u) for calculating transport measures:
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Disadvantage of using Wl(p)()\H,u) for calculating transport measures:
Wl(p)()\H,u) is not continuous in p.
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Disadvantage of using Wl(p)()\||,u) for calculating transport measures:
Wl(p)()\H,u) is not continuous in w. In particular

WP (A1) = o0

for any atomic measure p,.
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Disadvantage of using Wl(p)()\||,u) for calculating transport measures:
Wl(p)()\H,u) is not continuous in w. In particular

WP (A1) = o0

for any atomic measure fi,.
Thus, we cannot approximate p as a limit of atomic measures.
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"Proof”:

inf su

Jo @dX

sup
neBT 0£peCl(Q) (fQ |V¢|qdﬂ)

inf qubd/\
orsccr@ues! ([, [Velidp)?
while

sup
peEBy

/ V6|7dp = sup [V ()| = Lip(6)
Q xeN
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"Proof”:

o ddA o pdA
inf sup L = sup inf jﬂd}

neBf ozoech@) ([, [Voladu)' /9 ozpecia) neBy (o \V¢|qdu)1/q

while

sup_ [ 19017 = sup [Vo(x)| = Lip%(6)
Q xeQ

peBy
In case At = SV mid,. ; A~ =N m4,, the optimal 1 is given by

N N

\id
K= ZZ |X/ y| [XHyJ

with > AW = mr o> MY = m; are the optimal transports.
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Theorem

Forp>1

P (\[|u) =T — lim e Wy (- eXT, X))
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Theorem

Forp>1

WP () =T — lim eTIW, (n+ext,p+ex’)
E—
Wi(A) = lime™

e—0

inf W, (u+eXT, p+eX”)
pneBy
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Theorem

Forp>1

WP (All) = T — fim =™ W (s + X", o+ 2X°)

Wi()\) = m)s—l

inf W, (u+eXT, p+eX”)
pneBy

Remark

WEA|) := e "W, (4 eXT u+eX7)
is weakly continuous in (.
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Let A =6, — 6.
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Let A =6, — 6.

* O

If e =1/n then p is displayed in the n— gray shadows

OB EEEENEQ
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Optimal Networks

@ Underlining idea: Cost of transforation depends on the flux as well. It
is a increasing, concave function of the flux. (Butazzio, Xia, Stepanov

)
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Optimal Networks

@ Underlining idea: Cost of transforation depends on the flux as well. It
is a increasing, concave function of the flux. (Butazzio, Xia, Stepanov

)

o A different approach, using Wl(p)(/\H/J,):Can we restrict the
conditioning measure p to obtain optimal networks?
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Optimal Networks

@ Underlining idea: Cost of transforation depends on the flux as well. It
is a increasing, concave function of the flux. (Butazzio, Xia, Stepanov

o A different approach, using W (/\H/J) Can we restrict the
conditioning measure y to obtam optimal networks?

@ Suppose
W) = inf WP ()

where we minimize on probablllty measures u supported on a given
graph I,
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@ Underlining idea: Cost of transforation depends on the flux as well. It
is a increasing, concave function of the flux. (Butazzio, Xia, Stepanov

o A different approach, using W (/\H/J) Can we restrict the
conditioning measure y to obtam optimal networks?

@ Suppose
W) = inf WP ()

where we minimize on probability measures p supported on a given
graph I,

W) =min [ [ r(x.y)dhix.y)

where Dr is the distance reduced to I.
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Optimal Networks

@ Underlining idea: Cost of transforation depends on the flux as well. It
is a increasing, concave function of the flux. (Butazzio, Xia, Stepanov
o A different approach, using Wl(p)(/\H/J,):Can we restrict the
conditioning measure p to obtain optimal networks?
@ Suppose
W) = inf W (A1)

where we minimize on probability measures p supported on a given
graph I,

W) =min [ [ r(x.y)dhix.y)

where Dr is the distance reduced to I.
@ Can we obtain a formulation of "optimal network” by restricting to a
set of probability measures supported of graphs of prescribed length?
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Optimal Networks

@ Underlining idea: Cost of transforation depends on the flux as well. It
is a increasing, concave function of the flux. (Butazzio, Xia, Stepanov
o A different approach, using Wl(p)(/\H/J,):Can we restrict the
conditioning measure p to obtain optimal networks?
@ Suppose
W) = inf W (A1)

where we minimize on probability measures p supported on a given
graph I,

W) =min [ [ Dr(x.y)dn(x.)

where Dr is the distance reduced to I.
@ Can we obtain a formulation of "optimal network” by restricting to a
set of probability measures supported of graphs of prescribed length?
o Disadvantage: This is a formidable set, not natural, not compact.

Gershon Wolansky (Technion) Action principle and OMT Haifa, 2009 16 / 37



Optimal Networks

@ Underlining idea: Cost of transforation depends on the flux as well. It
is a increasing, concave function of the flux. (Butazzio, Xia, Stepanov
o A different approach, using Wl(p)(/\H/J,):Can we restrict the
conditioning measure p to obtain optimal networks?
@ Suppose
W) = inf W (A1)

where we minimize on probability measures p supported on a given
graph I,

W) =min [ [ Dr(x.y)dn(x.)

where Dr is the distance reduced to I.
@ Can we obtain a formulation of "optimal network” by restricting to a
set of probability measures supported of graphs of prescribed length?
o Disadvantage: This is a formidable set, not natural, not compact.

Eertainli cannot be ai iroximated bi atomic measures!
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Equivalent formulation:

Theorem
Forp>1

M2 min Wy (-4 X A7) = WA, A7)
M

where BL stands for the set of all positive Borel measures p. normalized
by [du= M.
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Equivalent formulation:

Theorem
Forp>1

Jim M —1/p Mrgligrl W, (0 + AT+ 27) = Wa(AT, A7)
M

where BL stands for the set of all positive Borel measures p. normalized
by [du= M.

Suppose we replace the condition M — oo by the condition n — oo where
p is restricted to the set of atomic measures B™" of (at most) n atoms?

v
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Equivalent formulation:

Theorem
Forp>1

lim M*YP min W, (u+ AT 0+ A7) = Wi(AF, A7)

+
M—oo rneBy,

where BL stands for the set of all positive Borel measures p. normalized
by [du= M.

v

Suppose we replace the condition M — oo by the condition n — oo where
p is restricted to the set of atomic measures B™" of (at most) n atoms?

Theorem
For any g > 1 and A = SN m;6,, — m*6,..

V.
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Equivalent formulation:

Theorem
Forp>1

lim M*YP min W, (u+ AT 0+ A7) = Wi(AF, A7)
M—oo MEB

where BL stands for the set of all positive Borel measures p. normalized
by [du= M.

Suppose we replace the condition M — oo by the condition n — oo where
p is restricted to the set of atomic measures B™" of (at most) n atoms?

v

Theorem
For any g > 1 and A = Eiv mjdy, — midy,.

!

—

lim n'~1/P |nf Wy (p+ AT p+27) = WP (\)
ne

n—o0

V.
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Recall

Definition

subject to V - m = .

Wi(\) = inf/ \d |
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Recall

Definition

Wi(A) = inf/|dr77|
subject to V- m = A

Definition

(Xia) For p > 1 and A an atomic metric

WP(\) = mf/ |——|/PdH;
subject to V- m = .
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An oriented, weighted graph (-, m) associated with X is a graph
composed of vertices V/(7) and edges E(v) and a function m: E — R™:
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An oriented, weighted graph (-, m) associated with X is a graph
composed of vertices V/(7) and edges E(v) and a function m: E — R™:
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Definition

@ The set of all weighted graphs associated with \ is denoted by ().
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Definition
@ The set of all weighted graphs associated with \ is denoted by ().

WP\ =  inf emi/p
e o 2 e

et Gy

Examples:

o p =1 (Reduced to the metric Monge problem),
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Definition
@ The set of all weighted graphs associated with \ is denoted by ().

WP\ =  inf emi/p
e o 2 e

et Gy

Examples:
o p =1 (Reduced to the metric Monge problem),
@ p =0 (Reduced to Steiner problem of minimal graphs)
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We may associate a weighted graph (v, m) with an optimal plan
e<=(i,j);7ij>0

y Me = 7ij
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Postulate

® {xi,.

e<=(i,j);7ij>0

s Y1, } C V(PY)

y Me = 7ij

We may associate a weighted graph (v, m) with an optimal plan:
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We may associate a weighted graph (v, m) with an optimal plan:

e<=(i,j);7ij>0
Postulate

y Me = 7ij
® {xi,.

7}/1’---} C V(PY)
where 0Fe == v

@ Foreachic {1,N}, E{eyxieaJre} me = m; and Z{e,y,-ea—e} (Mhig
+

e -

— *
=m7,
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We may associate a weighted graph (v, m) with an optimal plan:

e<=(i,j);7ij>0 ,Me = 7jj

Postulate
C {Xla"'ayla"'} - V(’Y)
o Foreachi€ {1, N}, Yoo corey Me =mi and 3 ¢, ooy Me = My,
where 0Fe == v .

® Foreachv € V(v) = {x1,...yn}, X(eveore} Me = D feveo—e} Me-
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We may associate a weighted graph (v, m) with an optimal plan:

e <= (i,));vij>0 s Me = 7ij

Postulate
C {Xla"'>yl7"'} - V(’Y)
o Foreachi€ {1, N}, Yoo corey Me =mi and 3 ¢, ooy Me = My,
where 0Fe == v .

® Foreachv € V(v) = {x1,...yn}, X(eveore} Me = D feveo—e} Me-

Lemma

There exists an optimal plan {v} whose graph contains at most 2N° nodes
of order > 3.

v
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The set B™T is, evidently, not a compact one. Still we claim

Lemma

For each n € N, a minimizer j, € B™*

WqX) = inf Wy (2% 0+ A7) = Wa (pn+ X7, 0 A7)

exists.
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The set B™T is, evidently, not a compact one. Still we claim

Lemma

For each n € N, a minimizer j, € B™*

Wefeye= 5 Wl s 2 = Wiy (i 52 7= )

exists.

Theorem

Let un be a regular minimizer of Wy (ju + A", -+ A7) in B™*. Then the
associated optimal plan spans a reduced weighted tree (7,, m,) which
converges (in Hausdorff metric) to an optimal graph (7, m) € T'(\) as
n— oo,
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One direction
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One direction

Definition

Reduced graph: Remove all nodes of degree =2.
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One direction

w2
—
. -
= =
= o
. e
g
X
o

Definition
Reduced graph: Remove all nodes of degree =2.
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1/p

Z mPlel < | ) melelP | [E(3)[/P

ecE(¥ ecE(%)

o = E E z 9ace
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1/p

Z mPlel < | Y melelP | [E(3)[7VP.

ecE(¥ ecE(%)

> melelP = WP + A + 1)
ecE(¥)
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1/p
Z mY/Ple| < Z me|e|?
ecE(¥

‘E(@)|(pf1)/p
ecE(%)

> melelP = WP + 1A+ p)
ecE(3)

From Lemma ]E(f“y)|(P_1)/P: n(P—1)/p 4 (n)
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1/p
Z mY/Ple| < Z me|e|?
ecE(¥

‘E(,Ay)|(pf1)/p
ecE(%)

> melelP = WP + 1A+ p)
e€E(9)
From Lemma: |E(%)|(P~1/P = n(P=1)/P 4 o(n). Hence

W=PYPWL (AT 4, A + )

1
= > melPlel

ecE(9)
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Generalization to Lagrangian on manifolds and relation
with the Weak KAM Theory

Lagrangian-Hamiltonian duality (x, v) € TQ:

I(x,v) = sup (p,v) — h(x,p)
peT*Q
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Generalization to Lagrangian on manifolds and relation
with the Weak KAM Theory
Lagrangian-Hamiltonian duality (x, v) € TQ:

(x,v) = sup {p,v) — h(x.p)
peT*Q

sup inf /hx,dqb du=E

peBy $€CH Q) Ja ( )

inf  sup h(x,d
¢€C1(Q)x€g ( ¢)
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Generalization to Lagrangian on manifolds and relation
with the Weak KAM Theory

Lagrangian-Hamiltonian duality (x, v) € TQ:

I(x,v) = sup (p,v) — h(x,p)
peT*Q

su inf /hx,d du=E=: inf suph(x,d
Nel%%@(ﬂ) Q b do)dn ¢€C1(Q)XGSPZ (. d9)

Example /(x,v) = |v[?/2 — V(x) , h(x,p) = |p|?/2 + V(x)

sup inf / V| /2 + V(x)) du = sup V(x) .
peB} 9€CHQ) Q(| I/ () d x€Q )
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Cr(x,y) = inf

T .
I(Z(s),Z(s))ds , T >0.
2(0)=x,2(T):y/0 ( (), 2( ))
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Then

Cr(p) = Cr(p, n) =

min
NEP (p,p0)

/ Cr(x,y)dA(x, )
Mx M
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Cr(x,y) = infT):y/OT/<z(s),§(s)) ds . T>0.

2(0)=x,2(

Then

Cr(p) = Crlu) = min /M  Crlxy)dn(x.y)
) X

Theorem

(Buffoni and Bernard)
min Cr(p)=—-TE
peBY

where the minimizers coincide, for any T > 0, with the projected Mather
measure.

v
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The action Ct induces a "metric” on €Q:
Definition

(x,t) € Q2 x Q'+ De(x,y) = 7i_nfO Cr(x,y)+ TE .
>
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The action Ct induces a "metric” on €Q:
Definition

(x,t) € Q2 x Q'+ De(x,y) = 7i_nf0 Cr(x,y)+ TE
>

Lemma

De(x,y) = —oo for any x,y € Q if E < E.

Gershon Wolansky (Technion)

&
Action principle and OMT




The action Ct induces a "metric” on €Q:
Definition

(x,t) € Q2 x Q'+ De(x,y) = 7i_nf0 Cr(x,y)+ TE .
>

Lemma

De(x,y) = —oo for any x,y € Q if E < E. If E > E then Dg(x,x) =0
for any x € Q.
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The action Ct induces a "metric” on €Q:
Definition

(x,t) € Q2 x Q'+ De(x,y) = 7i_nf0 Cr(x,y)+ TE .
>

Lemma
De(x,y) = —oo for any x,y € Q if E < E. If E > E then Dg(x,x) =0
for any x € Q.

Example

For I(x,v) = |v|?/2 we get C1(x,y) = |x — y|?/2T while
De(x,y) = V2E|x —y| if E >0, Dg(x,y) = —oo if E < 0. Here E = 0.

v
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The action Ct induces a "metric” on €Q:
Definition

(x,t) € Q2 x Q'+ De(x,y) = 7i_nf0 Cr(x,y)+ TE .
>

Lemma
De(x,y) = —oo for any x,y € Q if E < E. If E > E then Dg(x,x) =0
for any x € Q.

Example

For I(x,v) = |v|?/2 we get C7(x,y) = |x — y|?/2T while
De(x,y) = V2E|x —y| if E >0, Dg(x,y) = —oo if E < 0. Here E = 0.

v

Lemma

B0 = B ) — s { [oax: o - o) < DE(x,y>}
Ty




Definition

C(A\;p) == sup

/ _h(x, dd)dy + ddA
seCl(Q)Ja
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Definition

C(A\;p) == sup
PeCH(Q)

étA)._

/ _h(x, dd)dy + ddA
Q

inf C(\; )
peBy
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Definition

C(A\;p) == sup /—h(x,d(b)du—i-(bd)\
peCi(Q)Ja
élA)._

inf C(\; )

peBy
Theorem

If X\ € By, the following definitions are equivalent:
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Definition

C(A\;p) == sup /—h(x,d(b)du—i-(bd)\
peCi(Q)Ja
élA)._

inf C(\; )

peBy
Theorem

If X\ € By, the following definitions are equivalent:
@ Cr()) = TC(3)
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Definition

C(A\;p) == sup /—h(x,d¢)du+</>d)\
peCi(Q)Ja
élA)._

inf C(\; )

peBy
Theorem

If X\ € By, the following definitions are equivalent:
@ Cr()) = TC(3)

@ Cr()\) :=supgsg De(\) — ET
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Definition

C(A\p) :== sup /—h(x,dgb)du—i—d)d)\
pecl(@) Ja

5()x) = inf 5(A;u)

peBy

Theorem
If X € By, the following definitions are equivalent:

@ Cr(\)=TC(3)
@ Cr()\) i=supg=g De(\) — ET .
© Cr(A) == inf,cpr supseciqmy Sy — Th(x, dg)dp + ¢d .
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Definition

C(A\p) :== sup /—h(x,dgﬁ)du—i—d)d)\
pecl(@) Ja

o~

CA()\) = inf C(\;p)

peBy

Theorem
If X € By, the following definitions are equivalent:

@ Cr()):=TC(3)
@ Cr()\) i=supg=g De(\) — ET .
© Cr(A) == inf,cpr supseciqmy Sy — Th(x, dg)dp + ¢d .

In particular, for A\ = 6, — 9,

~

CT(X,)/) ‘= sup DE(va) —ET
E>E

Gershon Wolansky (Technion) Action principle and OMT Haifa, 2009
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From definition

Gershon Wolansky (Technion)

CT(X7y) > é\T(Xay)
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From definition N
CT(X7y) 2 CT(Xv)/)

In general, strict inequality. However, if T << 1 we get equality under
mild conditions.
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From definition N
CT(X7y) 2 CT(Xv)/)

In general, strict inequality. However, if T << 1 we get equality under
mild conditions.

Theorem
For any )\ € By,

Cr(\ip)=T— Iirrg)s_ngT(,u +eAT, p+ext).
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From definition N
CT(X7y) 2 CT(Xv)/)

In general, strict inequality. However, if T << 1 we get equality under
mild conditions.

Theorem
For any )\ € By,

Cr(\ip)=T— Iirrg)s_ngT(,u +eAT, p+ext).

Cr(\) = lim inf e Cr(p+er™, u+ert).
€—>0u681‘
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Sketch of proof

Gershon Wolansky (Technion)

Action principle and OMT



Sketch of proof

Easy Lemma
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Sketch of proof
Easy Lemma
Lemma

Foranype B, A=\t -\~ € B

lim igfs_ngr(,u + X, p+ert) > Cr(A|p) .
e—

o F
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Sketch of proof
Easy Lemma
Lemma

Foranype B, A=\t -\~ € B

lim igf e Cr(u+er", n+ert) > Cr(A|w) -
e—

Harder lemma

o F
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Sketch of proof
Easy Lemma
Lemma

Foranype B, A=\t -\~ € B

lim igf e Cr(p+erT, p+ert) > Cr(\u) -
e—

Harder lemma

Lemma
For T >0,
Cr(\) > limsupe™t inf Cor(u+eXT,u+er7).
e—0 MEBT
[m] = =
Gershon Wolansky (Technion)
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Proof of "hard” Lemma
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Proof of "hard” Lemma
Given € > 0 let

Dg(x,y) := inf [C.p7(x,y) +€nET] .
neN
Evidently, Dg(x,y) is continuous on M x M locally uniformly in E > E.
Moreover,
lim Dz = D
o ETE

uniformly on M x M and locally uniformly in E > E as well.
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Proof of "hard” Lemma
Given € > 0 let

Dg(x,y) := Agg [ConT(X,y) +€nET] .

Evidently, Dg(x,y) is continuous on M x M locally uniformly in E > E.
Moreover,

lim D = D
o ETE

uniformly on M x M and locally uniformly in E > E as well.
We now decompose M x M into mutually disjoint Borel sets Qp:

MxM=U,Q;, QNQL =0 ifn#n

such that

Q, C{(x,y) e Mx M; Dg(x,y)= Cnr(x,¥)+enET} .
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Let AE € P(AT, A7) be an optimal plan for

De(N) =

Di(x,y)dAE = min
/MxM elxy)dh: /\673(/\|+,/\—)
and A7 = AE| g, the restriction of Af to Q5.

Gershon Wolansky (Technion)

Action principle and OMT

/ DE(x,y)dA |
MxM

it
S

p)



Let AE € P(AT, A7) be an optimal plan for

DE()\) = DE(x, y)dAE = i / Dz(x,y)dA ,
V= [ Dilxy)anf= min [ Dixy)

and A2 = AE |, the restriction of AE to Q5. Set AF to be the marginals
of A7 on the first and second factors of M x M.
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Let /\EE € P(AT, ™) be an optimal plan for

DE()\) = DE(x, y)dAE = i / Di(x,y)dA ,
V= [ Dilxy)anf= min [ Dixy)

and A2 = AE |, the restriction of AE to Q5. Set AF to be the marginals
of A7 on the first and second factors of M x M. Then >°° A" = AE and

i Ay = AT
n=1

Remark

Note that Q5 = () for all but a finite number of n € N. In particular, the
sum contains only a finite number of non-zero terms.
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Let || == [y, dAE

S AN, The averaged flight time is

(T)*:=eT> nlA|
n=1
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Let [An| := [}, dAE = [)). 0 AN The averaged flight time is

(T)® = ETZ n|An|
n=1

We observe that (T)¢ € OgDg(\), where O is the super gradient as a
function of E. At this stage we choose E depending on €, T such that

(T) = T + 2T\
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Let [An| := [}, dAE = [)). 0 AN The averaged flight time is

(T)® = ETZ n|An|
n=1

We observe that (T)¢ € OgDg(\), where O is the super gradient as a
function of E. At this stage we choose E depending on €, T such that

(T) = T + 2T\
Let A" € BT(TM) satisfying

(/ ® Exp((,t)ZE"T))# AP = AT
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Let [An| := [}, dAE = [)). 0 AN The averaged flight time is

(T)® = ETZ n|An|
n=1

We observe that (T)¢ € OgDg(\), where O is the super gradient as a
function of E. At this stage we choose E depending on €, T such that

(T) = T + 2T\
Let A" € BT(TM) satisfying

(/ ® Exp((,t)ZE"T))# AT = AT
Use KQ to define

[ =enT An
N = (Exp((,f) : ))# AT € BH(M)

forj=0,1...n.
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Let [An| := [}, dAE = [)). 0 AN The averaged flight time is

(T)® = ETZ n|An|
n=1

We observe that (T)¢ € OgDg(\), where O is the super gradient as a
function of E. At this stage we choose E depending on €, T such that

(T) = T + 2T\
Let A" € BT(TM) satisfying

(/ ® Exp((,t)ZE"T))# AP = AT

Use KQ to define

[ =enT An
N = (Exp((,f) : ))# AT € BH(M)

for j=0,1...n. Notethat \O = \F A7 =)\~
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Let [An| := [}, dAE = [)). 0 AN The averaged flight time is

(T)® = ETZ n|An|
n=1

We observe that (T)¢ € OgDg(\), where O is the super gradient as a

function of E. At this stage we choose E depending on €, T such that
(T)® =T +2eT|\F|

Let A" € BT(TM) satisfying

(/ ® Exp((,t)ZE"T))# AP = AT

Use KQ to define

[ =enT An
N = (Exp((,f) : ))# AT € BH(M)

for j=0,1...n. Note that \J = X\[ A7 =X\,
n—1
Con(A\g s A) +enET g = D [Cr (W, M) + 2ET A ]
j=0
Haifa, 2000 34 /37



DE(N\) = Z Dz(An Z enT(A )+ enET|\|]
n=1

Z (C.r(N, M) +2ETIN]) - (2)

o = E E z 9ace




HM8

DE(\) = > Dg(M, Cont(AF,A,) + €nET|A|]
n=1

oonl

(CrM XY +ETIN]) - (2)

M

n=1 j=0

Let now
oo n—1

—522)\1 :

n=1 j=1
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6nT

Mg

De(A) =) _ Di(\

n=1

oo n—1

=2

n=1 j=0
Let now
oo n—1
E
=Y S
n=1 j=1

Note that

)+ enET|\|]

(CrM XY +ETIN]) - (2)




We obtain

o
’ e (n+ 1IN - 263 F =1 = poF € B
n=1
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We obtain

co n—1

Z Z Cor(M, M

o
=Y (n+D)AF|—2e]\F[ =1 = poF e Bf
n=1

n=1 j=0
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We obtain

o

’ e (n+ 1IN - 263 F =1 = poF € B
n=1

co n—1

ZZQT(/\J' pYARS
n=1 j=0
oo n—1 co n
e (LY MM =
n=1 j=0 n=1 j=1
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We obtain

00
MaaE]: S (n+1)NE - 2ePpE =1 = poF € Bf
n=1
oo n—1
S5 crod
n=1 j=0
oo n—1 co n
s (S Yy

n=1 j=0 n=1 j=1

oo n—1
e 1Cr (e E

n=1 j=0

YN Z Z AR

n=1 j=1
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We obtain

ua’E’: i(n—i—l)\kﬂ 2¢e| MV =1 = poF e Bf
n=1
co n—1
ZZCT/\J )\J+1
n=1 j=0
co n—1 oo n
Cr| 22 M 2 2 X"
n=1 j=0

n=1 j=1

oo n—1
j+1
PRI Y
=1 j=0 n=1 j=1
E E -
—lCr (;ﬁ» Feat, uSE 4 e )
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DE(\) — (TVE > e Cor (°E + 20", u7E +207)
>t

inf Cr(p+eXT, p+er™)
neBy

(3)
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DE(\) — (TVE > e Cor (°E + 20", u7E +207)
>t
Finally,

inf Cr(p+eXT, p+er™)
neBy

Cr(A\) > De(\) — TE =
lim DE(A) — (T)
e—

(3)

“E >limsupe™! inf Cor (u+eXt,u+er)
e—0 MEBT

(4)
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