Limit Theorems for Optimal Mass Transportation and Applications to Networks

Gershon Wolansky

Department of Mathematics, Technion 32000 Haifa, ISRAEL

E-mail: gershonw@math.technion.ac.il

S. Petersburg, May 2010

 QQQ

不是 医牙

4 0 8

Review of Kantorovich metrics on the space of positive measures

← ロ ▶ → 伊

す唐をす

 \sim

 299

- Review of Kantorovich metrics on the space of positive measures
- Conditioned Kantorovich metrics and relation to metrics on 1-D graphs

 \leftarrow \Box

 QQ

- Review of Kantorovich metrics on the space of positive measures
- Conditioned Kantorovich metrics and relation to metrics on 1-D graphs
- Cost function for transporting networks

4 0 8

 QQQ

- Review of Kantorovich metrics on the space of positive measures
- Conditioned Kantorovich metrics and relation to metrics on 1-D graphs
- Cost function for transporting networks
- Replacing optimal networks by points allocation?

 \leftarrow

 200

- Review of Kantorovich metrics on the space of positive measures
- Conditioned Kantorovich metrics and relation to metrics on 1-D graphs
- **Cost function for transporting networks**
- Replacing optimal networks by points allocation?
- Generalization to Lagrangian action on compact manifolds

 200

Definition

The Kantorovich metric for $\lambda^-,\lambda^+\in\mathcal{B}_+$ satisfying $\int d\lambda^- = \int d\lambda^+$

$$
W_p(\lambda^+, \lambda^-) = \left\{ \inf_{\Lambda} \int_{\Omega} \int_{\Omega} |x - y|^p d\Lambda \right\}^{1/p}
$$

Where $\Lambda\in\mathcal{B}^{+}(\Omega\times\Omega)$, $\pi_{1,\#}\Lambda=\lambda^{+},$ $\pi_{2,\#}\Lambda=\lambda^{-}.$

KOD KARD KED KED B YOUR

Definition

The Kantorovich metric for $\lambda^-,\lambda^+\in\mathcal{B}_+$ satisfying $\int d\lambda^- = \int d\lambda^+$

$$
W_p(\lambda^+, \lambda^-) = \left\{ \inf_{\Lambda} \int_{\Omega} \int_{\Omega} |x - y|^p d\Lambda \right\}^{1/p}
$$

Where $\Lambda\in\mathcal{B}^{+}(\Omega\times\Omega)$, $\pi_{1,\#}\Lambda=\lambda^{+},$ $\pi_{2,\#}\Lambda=\lambda^{-}.$

In case $p=1$, $W_1(\lambda^+,\lambda^-)$ depends only on $\lambda=\lambda^+-\lambda^-\in\mathcal{B}_0.$

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『로 『 YO Q @

Definition

The Kantorovich metric for $\lambda^-,\lambda^+\in\mathcal{B}_+$ satisfying $\int d\lambda^- = \int d\lambda^+$

$$
W_p(\lambda^+, \lambda^-) = \left\{ \inf_{\Lambda} \int_{\Omega} \int_{\Omega} |x - y|^p d\Lambda \right\}^{1/p}
$$

Where $\Lambda\in\mathcal{B}^{+}(\Omega\times\Omega)$, $\pi_{1,\#}\Lambda=\lambda^{+},$ $\pi_{2,\#}\Lambda=\lambda^{-}.$

In case $p=1$, $W_1(\lambda^+,\lambda^-)$ depends only on $\lambda=\lambda^+-\lambda^-\in\mathcal{B}_0.$ An equivalent definition

Definition

$$
\mathsf{W}_1(\lambda)=\sup_{\phi\in \mathsf{Lip}_1(\Omega)}\int_\Omega \phi d\lambda
$$

Where $Lip_1(\Omega) := \{ \phi \in C(\Omega) : \phi(x) - \phi(y) \leq |x - y| \ \forall x, y \in \Omega \}$

KOD KARD KED KED B YOUR

Example:

If

$$
\lambda^+ = \sum_1^N m_i \delta_{x_i} \hspace{0.2cm}; \hspace{0.2cm} \lambda^- = \sum_1^N m_i^* \delta_{y_i} \hspace{1cm} (1)
$$

subjected to $\sum_1^N m_i = \sum_i^N m_i^* = 1$, then

 2990

イロト イ部 トメ ヨ トメ ヨト

Example:

If

$$
\lambda^+ = \sum_1^N m_i \delta_{x_i} \hspace{2mm}; \hspace{2mm} \lambda^- = \sum_1^N m_i^* \delta_{y_i} \hspace{2mm} (1)
$$

subjected to $\sum_1^N m_i = \sum_i^N m_i^* = 1$, then

$$
W_p(\lambda) = \left[\min_{\Lambda} \sum_{1}^{N} \sum_{1}^{N} \lambda^{i,j} |x_i - y_j|^p\right]^{1/p}
$$

where $\Lambda=\{\lambda^{i,j}\}$ ie the set of all non-negative $N\times N$ matrices satisfying

$$
\sum_{j=1}^n \lambda^{i,j} = m_i \quad ; \quad \sum_{i=1}^n \lambda^{i,j} = m_j^*
$$

 Ω

K ロンス 御 > ス ヨ > ス ヨ > 一 ヨ

Weak continuity: we may approximate λ^{\pm} by atomic measures.

 2990

←ロト ←何ト

医毛管 医牙

- Weak continuity: we may approximate λ^{\pm} by atomic measures.
- Then the optimal plan is an atomic measure as well, solvable in the set of bi-stochastic matrices $\{\Lambda_{i,j}\}.$

4 0 8

 Ω

- Weak continuity: we may approximate λ^{\pm} by atomic measures.
- Then the optimal plan is an atomic measure as well, solvable in the set of bi-stochastic matrices $\{\Lambda_{i,j}\}\)$.
- This "discrete" plan is an approximation in the weak topology of Λ.

 QQQ

- Weak continuity: we may approximate λ^{\pm} by atomic measures.
- Then the optimal plan is an atomic measure as well, solvable in the set of bi-stochastic matrices $\{\Lambda_{i,j}\}\)$.
- This "discrete" plan is an approximation in the weak topology of Λ.
- An optimal map is sometimes deterministic:

$$
W_p^p(\lambda^+, \lambda^-) = \inf_{T_{\#}\lambda^+ = \lambda^-} \int |x - T(x)|^p d\lambda^+
$$

where $\mathcal{T}_\# \lambda^+(B) = \lambda^-\left(\mathcal{T}^{-1}(B) \right)$. Then $\mathcal{N}(dxdy) = \lambda^+(d\mathsf{x})\delta_{y-\mathcal{T}(\mathsf{x})}dy$ is the optimal plan.

 QQQ

- Weak continuity: we may approximate λ^{\pm} by atomic measures.
- Then the optimal plan is an atomic measure as well, solvable in the set of bi-stochastic matrices $\{\Lambda_{i,j}\}\)$.
- This "discrete" plan is an approximation in the weak topology of Λ.
- An optimal map is sometimes deterministic:

$$
W_p^p(\lambda^+, \lambda^-) = \inf_{T_{\#}\lambda^+ = \lambda^-} \int |x - T(x)|^p d\lambda^+
$$

where $\mathcal{T}_\# \lambda^+(B) = \lambda^-\left(\mathcal{T}^{-1}(B) \right)$. Then $\mathcal{N}(dxdy) = \lambda^+(d\mathsf{x})\delta_{y-\mathcal{T}(\mathsf{x})}dy$ is the optimal plan.

• If $p > 1$ then T is obtained in terms of a "potential function" Φ . In particular, $p=2$ and λ^+ is continuous w.r to Lebesgue measure than $T(x) = \nabla \Phi(x)$ where Φ is a convex function, and this T is unique. (Brenier, McCann, Gangbo, Caffarelli)

 Ω

KONKAPIK KENYEN E

 $T(x) = x + t \nabla \phi(x)$

where t is unknown (change with x).

化重新润滑

4 0 8

 2990

 $T(x) = x + t\nabla\phi(x)$

where t is unknown (change with x).

• The solvability of optimal map in the metric case $(p = 1)$ is a difficult problem. First attempt by Sudakov (1979).

 QQ

 $T(x) = x + t\nabla\phi(x)$

where t is unknown (change with x).

- The solvability of optimal map in the metric case $(p = 1)$ is a difficult problem. First attempt by Sudakov (1979).
- Equivalent formulation (Beckmann (1952))

Definition

$$
W_1(\lambda) = \inf \int |d\vec{m}|
$$

subject to $\nabla \cdot \vec{m} = \lambda$.

IK BIN K BIN

 QQQ

 $T(x) = x + t\nabla\phi(x)$

where t is unknown (change with x).

- The solvability of optimal map in the metric case $(p = 1)$ is a difficult problem. First attempt by Sudakov (1979).
- Equivalent formulation (Beckmann (1952))

Definition

$$
W_1(\lambda) = \inf \int |d\vec{m}|
$$

subject to $\nabla \cdot \vec{m} = \lambda$.

• The optimal $\vec{m} := \rho \nabla \phi$ yields a complete information on T.

 QQQ

→ 何 ▶ → ヨ ▶ → ヨ ▶

4 0 8

 $T(x) = x + t\nabla\phi(x)$

where t is unknown (change with x).

- The solvability of optimal map in the metric case $(p = 1)$ is a difficult problem. First attempt by Sudakov (1979).
- Equivalent formulation (Beckmann (1952))

Definition

$$
W_1(\lambda) = \inf \int |d\vec{m}|
$$

subject to $\nabla \cdot \vec{m} = \lambda$.

- The optimal $\vec{m} := \rho \nabla \phi$ yields a complete information on T.
- **•** There is an interest in calculating the Transport Measure $\rho := |\vec{m}|$, and verifies

$$
\nabla \cdot (\rho \nabla \phi) = \lambda \; .
$$

 QQQ

イロト イ押ト イヨト イヨト

• Next attempts by Gangbo and Evans (1999): Approximating Lip_1 by $|\nabla \phi|_p$ where $p \to \infty$.

 \leftarrow \Box \rightarrow

 $A \equiv 3$

 QQ

• Next attempts by Gangbo and Evans (1999): Approximating Lip_1 by $|\nabla \phi|_p$ where $p \to \infty$. minimizing

$$
p^{-1}\int|\nabla\phi|^p-\int\phi d\lambda
$$

leads to

 $\nabla \cdot \left(|\nabla \phi|^{p-2} \nabla \phi \right) = \lambda$

 QQ

- 4 重 8 - 4 重 8

4 0 8

• Next attempts by Gangbo and Evans (1999): Approximating Lip_1 by $|\nabla \phi|_p$ where $p \to \infty$. minimizing

$$
\rho^{-1}\int|\nabla\phi|^p-\int\phi d\lambda
$$

leads to

$$
\nabla \cdot \left(|\nabla \phi|^{p-2} \nabla \phi \right) = \lambda
$$

and to the approximation $|\nabla \phi|^{p-2} \to \rho$ while $|\nabla \phi| \to 1$.

 Ω

医阿雷氏阿雷氏

4 0 8

• Next attempts by Gangbo and Evans (1999): Approximating Lip_1 by $|\nabla \phi|_p$ where $p \to \infty$. minimizing

$$
\rho^{-1}\int|\nabla\phi|^p-\int\phi d\lambda
$$

leads to

$$
\nabla \cdot \left(|\nabla \phi|^{p-2} \nabla \phi \right) = \lambda
$$

and to the approximation $|\nabla \phi|^{p-2} \to \rho$ while $|\nabla \phi| \to 1$.

Other approaches by Trudinger, Wang, Ma, Caffarelli, Feldman, McCann Ambrosio, Pratelli... in the last decade.

 Ω

メタトメ ミトメ ミト

Conditional W_1 distance

舌

 2990

メロトス部 トメミトメ

Conditional W_1 distance

Definition

Define, for $\mu\in\mathcal{B}_1^+(\Omega)$, $\lambda\in\mathcal{B}_0(\Omega)$ and $p>1$

$$
W_1^{(\rho)}(\lambda\|\mu):=\sup_{0\not\equiv\nabla\phi\in C^1(\Omega)}\frac{\int_\Omega\phi d\lambda}{\left(\int_\Omega|\nabla\phi|^q d\mu\right)^{1/q}}
$$

where $q = p/(p-1)$.

 Ω

メタト メミト メミト

 \leftarrow \Box

Theorem

$$
W_1(\lambda) = \inf_{\mu \in \mathcal{B}_1^+} W_1^{(\rho)}(\lambda \| \mu)
$$

If $p = 2$ then any minimizer μ is a Transport measure supported in an optimal plan of $W_1(\lambda)$.

4 0 8

- 4 n⊡ \rightarrow

- イヨト イヨト

 QQ

Theorem

$$
W_1(\lambda) = \inf_{\mu \in \mathcal{B}_1^+} W_1^{(\rho)}(\lambda \| \mu)
$$

If $p = 2$ then any minimizer μ is a Transport measure supported in an optimal plan of $W_1(\lambda)$.

Example: $\lambda = m_1 \delta_{x_1} + m_2 \delta_{x_2} - m_1^* \delta_{y_1} - m_2^* \delta_{y_2} - m_3^* \delta_{y_3}$

4 0 8

→ 何 ▶ → ヨ ▶ → ヨ ▶

 Ω

Theorem

$$
W_1(\lambda) = \inf_{\mu \in \mathcal{B}_1^+} W_1^{(\rho)}(\lambda \| \mu)
$$

If $p = 2$ then any minimizer μ is a Transport measure supported in an optimal plan of $W_1(\lambda)$.

Example: $\lambda = m_1 \delta_{x_1} + m_2 \delta_{x_2} - m_1^* \delta_{y_1} - m_2^* \delta_{y_2} - m_3^* \delta_{y_3}$

 QQ

→ 何 ▶ → ヨ ▶ → ヨ ▶

4 D F

Disadvantage of using $\mathcal{W}^{(p)}_1$ $\Lambda_1^{(\mu)}(\lambda\|\mu)$ for calculating transport measures:

 \leftarrow \Box

 \rightarrow \overline{m} \rightarrow \rightarrow \overline{m} \rightarrow \rightarrow

 -990

Disadvantage of using $\mathcal{W}^{(p)}_1$ $\Lambda_1^{(\mu)}(\lambda\|\mu)$ for calculating transport measures: $W_1^{(p)}$ $\int_1^{(\rho)}(\lambda\|\mu)$ is not continuous in μ .

 \leftarrow \Box \rightarrow

 Ω

 \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{AB} \rightarrow

Disadvantage of using $\mathcal{W}^{(p)}_1$ $\Lambda_1^{(\mu)}(\lambda\|\mu)$ for calculating transport measures: $W_1^{(p)}$ $\mathcal{L}^{(\mathcal{P})}_1(\lambda\|\mu)$ is not continuous in μ . In particular

> $W_1^{(p)}$ $\chi_1^{(p)}(\lambda\|\mu_n)=\infty$

for any atomic measure μ_n .

 Ω

Disadvantage of using $\mathcal{W}^{(p)}_1$ $\Lambda_1^{(\mu)}(\lambda\|\mu)$ for calculating transport measures: $W_1^{(p)}$ $\mathcal{L}^{(\mathcal{P})}_1(\lambda\|\mu)$ is not continuous in μ . In particular

> $W_1^{(p)}$ $\chi_1^{(p)}(\lambda\|\mu_n)=\infty$

for any atomic measure μ_n .

Thus, we cannot approximate μ as a limit of atomic measures.

 Ω

"Proof":

$$
\inf_{\mu\in\mathcal{B}_1^+}\sup_{0\not\equiv\phi\in\mathcal{C}^1(\Omega)}\frac{\int_\Omega\phi d\lambda}{\left(\int_\Omega|\nabla\phi|^q d\mu\right)^{1/q}}=\sup_{0\not\equiv\phi\in\mathcal{C}^1(\Omega)}\inf_{\mu\in\mathcal{B}_1^+}\frac{\int_\Omega\phi d\lambda}{\left(\int_\Omega|\nabla\phi|^q d\mu\right)^{1/q}}
$$

while

$$
\sup_{\mu \in \mathcal{B}_1^+} \int_{\Omega} |\nabla \phi|^q d\mu = \sup_{x \in \Omega} |\nabla \phi(x)|^q = Lip^q(\phi)
$$

 \equiv 990

メロトメ 伊 トメ 君 トメ 君 ト

"Proof":

$$
\inf_{\mu\in\mathcal{B}_1^+}\sup_{0\not\equiv\phi\in\mathcal{C}^1(\Omega)}\frac{\int_\Omega\phi d\lambda}{\left(\int_\Omega|\nabla\phi|^q d\mu\right)^{1/q}}=\sup_{0\not\equiv\phi\in\mathcal{C}^1(\Omega)}\inf_{\mu\in\mathcal{B}_1^+}\frac{\int_\Omega\phi d\lambda}{\left(\int_\Omega|\nabla\phi|^q d\mu\right)^{1/q}}
$$

while

$$
\sup_{\mu\in\mathcal{B}_1^+}\int_{\Omega}|\nabla\phi|^q d\mu=\sup_{x\in\Omega}|\nabla\phi(x)|^q=Lip^q(\phi)
$$

In case $\lambda^+=\sum_1^{\cal N}m_i\delta_{\chi_i}$; $\lambda^-=\sum_1^{\cal N}m_i^*\delta_{\chi_i}$ the optimal μ is given by

$$
\mu = \sum_{i}^{N} \sum_{i}^{N} \frac{\lambda^{i,j}}{|x_i - y_j|} \delta_{[x_i, y_j]}
$$

with $\sum_i \lambda^{i,j} = m_j^*$; $\sum_j \lambda^{i,j} = m_i$ are the optimal transports.

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『로 『 YO Q @
Theorem

For $p > 1$

$$
W_1^{(\rho)}(\lambda||\mu) = \Gamma - \lim_{\varepsilon \to 0} \varepsilon^{-1} W_\rho \left(\mu + \varepsilon \lambda^+, \mu + \varepsilon \lambda^-\right)
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 900

Theorem

For $p > 1$

$$
W_1^{(p)}(\lambda||\mu) = \Gamma - \lim_{\varepsilon \to 0} \varepsilon^{-1} W_p \left(\mu + \varepsilon \lambda^+, \mu + \varepsilon \lambda^-\right)
$$

$$
W_1(\lambda) = \lim_{\varepsilon \to 0} \varepsilon^{-1} \inf_{\mu \in \mathcal{B}_1^+} W_p \left(\mu + \varepsilon \lambda^+, \mu + \varepsilon \lambda^-\right)
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 900

Theorem

For $p > 1$

$$
W_1^{(p)}(\lambda||\mu) = \Gamma - \lim_{\varepsilon \to 0} \varepsilon^{-1} W_p \left(\mu + \varepsilon \lambda^+, \mu + \varepsilon \lambda^-\right)
$$

$$
W_1(\lambda) = \lim_{\varepsilon \to 0} \varepsilon^{-1} \inf_{\mu \in \mathcal{B}_1^+} W_p \left(\mu + \varepsilon \lambda^+, \mu + \varepsilon \lambda^- \right)
$$

Remark

$$
W_p^{\varepsilon}(\lambda \| \mu) := \varepsilon^{-1} W_p \left(\mu + \varepsilon \lambda^+, \mu + \varepsilon \lambda^- \right)
$$

is weakly continuous in μ .

Gershon Wolansky (Technion) **[Action principle and OMT](#page-0-0) Haifa, 2009** 12 / 37

一番。

 QQ

イロト イ部 トメ ヨ トメ ヨト

Let
$$
\lambda = \delta_x - \delta_y
$$
.

K ロ > K @ > K 할 > K 할 > (할 >) 외 Q Q Q

Let
$$
\lambda = \delta_x - \delta_y
$$
.

K ロ > K 御 > K 星 > K 星 > 「星」 の Q Q <

Let $\lambda = \delta_{x} - \delta_{y}$.

If $\varepsilon = 1/n$ then μ is displayed in the n– gray shadows

 QQ

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 900

 $M \cdots > \infty$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 900

K ロ > K @ > K 할 > K 할 > (할 >) 외 Q Q Q

Gershon Wolansky (Technion) **[Action principle and OMT](#page-0-0)** Haifa, 2009 15 / 37

活

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

Underlining idea: Cost of transforation depends on the flux as well. It is a increasing, concave function of the flux. (Butazzio, Xia, Stepanov)

4 0 8

 Ω

- Underlining idea: Cost of transforation depends on the flux as well. It is a increasing, concave function of the flux. (Butazzio, Xia, Stepanov)
- A different approach, using $\mathcal{W}^{(p)}_{1}$ $\frac{\Lambda^{(\nu)}(\lambda\|\mu)\cdot}{}$ Can we restrict the conditioning measure μ to obtain optimal networks?

 Ω

- Underlining idea: Cost of transforation depends on the flux as well. It is a increasing, concave function of the flux. (Butazzio, Xia, Stepanov)
- A different approach, using $\mathcal{W}^{(p)}_{1}$ $\frac{\Lambda^{(\nu)}(\lambda\|\mu)\cdot}{}$ Can we restrict the conditioning measure μ to obtain optimal networks?

• Suppose

$$
\widehat{W}^{\mathsf{F}}(\lambda) := \inf_{\mu} W_{1}^{(\rho)}(\lambda \| \mu)
$$

where we minimize on probability measures μ supported on a given graph Γ.

- Underlining idea: Cost of transforation depends on the flux as well. It is a increasing, concave function of the flux. (Butazzio, Xia, Stepanov)
- A different approach, using $\mathcal{W}^{(p)}_{1}$ $\frac{\Lambda^{(\nu)}(\lambda\|\mu)\cdot}{}$ Can we restrict the conditioning measure μ to obtain optimal networks?

• Suppose

 \bullet

$$
\widehat{W}^{\mathsf{F}}(\lambda) := \inf_{\mu} W_{1}^{(\rho)}(\lambda \| \mu)
$$

where we minimize on probability measures μ supported on a given graph Γ.

$$
\widehat{W}^{\Gamma}(\lambda) = \min_{\Lambda} \int \int D_{\Gamma}(x, y) d\Lambda(x, y)
$$

where D_{Γ} is the distance reduced to Γ .

- Underlining idea: Cost of transforation depends on the flux as well. It is a increasing, concave function of the flux. (Butazzio, Xia, Stepanov)
- A different approach, using $\mathcal{W}^{(p)}_{1}$ $\frac{\Lambda^{(\nu)}(\lambda\|\mu)\cdot}{}$ Can we restrict the conditioning measure μ to obtain optimal networks?

• Suppose

 \bullet

$$
\widehat{W}^{\mathsf{F}}(\lambda) := \inf_{\mu} W_{1}^{(\rho)}(\lambda \| \mu)
$$

where we minimize on probability measures μ supported on a given graph Γ.

$$
\widehat{W}^{\Gamma}(\lambda) = \min_{\Lambda} \int \int D_{\Gamma}(x, y) d\Lambda(x, y)
$$

where D_{Γ} is the distance reduced to Γ .

Can we obtain a formulation of "optimal network" by restricting to a set of probability measures supported of graphs of prescribed length?

 200

イロト イ押ト イヨト イヨト

- Underlining idea: Cost of transforation depends on the flux as well. It is a increasing, concave function of the flux. (Butazzio, Xia, Stepanov)
- A different approach, using $\mathcal{W}^{(p)}_{1}$ $\frac{\Lambda^{(\nu)}(\lambda\|\mu)\cdot}{}$ Can we restrict the conditioning measure μ to obtain optimal networks?

• Suppose

 \bullet

$$
\widehat{W}^{\mathsf{F}}(\lambda) := \inf_{\mu} W_{1}^{(\rho)}(\lambda \| \mu)
$$

where we minimize on probability measures μ supported on a given graph Γ.

$$
\widehat{W}^{\Gamma}(\lambda) = \min_{\Lambda} \int \int D_{\Gamma}(x, y) d\Lambda(x, y)
$$

where D_{Γ} is the distance reduced to Γ .

- Can we obtain a formulation of "optimal network" by restricting to a set of probability measures supported of graphs of prescribed length?
- Disadvantage: This is a formidable set, not natural, not compact.

 QQ

イロト イ部 トメ ヨ トメ ヨト

- Underlining idea: Cost of transforation depends on the flux as well. It is a increasing, concave function of the flux. (Butazzio, Xia, Stepanov)
- A different approach, using $\mathcal{W}^{(p)}_{1}$ $\frac{\Lambda^{(\nu)}(\lambda\|\mu)\cdot}{}$ Can we restrict the conditioning measure μ to obtain optimal networks?

• Suppose

 \bullet

$$
\widehat{W}^{\mathsf{F}}(\lambda) := \inf_{\mu} W_{1}^{(\rho)}(\lambda \| \mu)
$$

where we minimize on probability measures μ supported on a given graph Γ.

$$
\widehat{W}^{\Gamma}(\lambda) = \min_{\Lambda} \int \int D_{\Gamma}(x, y) d\Lambda(x, y)
$$

where D_{Γ} is the distance reduced to Γ .

Can we obtain a formulation of "optimal network" by restricting to a set of probability measures supported of graphs of prescribed length?

 Ω

Disadvantage: This is a formidable set, not natural, not compact. Certainly cannot be approximated by atomi[c](#page-51-0) [me](#page-53-0)[a](#page-45-0)[s](#page-46-0)[u](#page-52-0)[re](#page-53-0)[s!](#page-0-0) Gershon Wolansky (Technion) and [Action principle and OMT](#page-0-0) **Haifa, 2009** 16 / 37

Theorem

For $p > 1$

$$
\lim_{M \to \infty} M^{1-1/p} \min_{\mu \in \mathcal{B}_M^+} W_p \left(\mu + \lambda^+, \mu + \lambda^- \right) = W_1(\lambda^+, \lambda^-)
$$

where \mathcal{B}_{M}^{+} stands for the set of all positive Borel measures μ normalized by $\int d\mu = M$.

4 日下

 QQ

 \equiv

 \rightarrow \rightarrow \rightarrow

Theorem

For $p > 1$

$$
\lim_{M \to \infty} M^{1-1/p} \min_{\mu \in \mathcal{B}_M^+} W_p \left(\mu + \lambda^+, \mu + \lambda^- \right) = W_1(\lambda^+, \lambda^-)
$$

where \mathcal{B}_{M}^{+} stands for the set of all positive Borel measures μ normalized by $\int d\mu = M$.

Suppose we replace the condition $M \to \infty$ by the condition $n \to \infty$ where μ is restricted to the set of atomic measures $\mathcal{B}^{n,+}$ of (at most) n atoms?

 Ω

Theorem

For $p > 1$

$$
\lim_{M \to \infty} M^{1-1/p} \min_{\mu \in \mathcal{B}_M^+} W_p \left(\mu + \lambda^+, \mu + \lambda^- \right) = W_1(\lambda^+, \lambda^-)
$$

where \mathcal{B}_{M}^{+} stands for the set of all positive Borel measures μ normalized by $\int d\mu = M$.

Suppose we replace the condition $M \to \infty$ by the condition $n \to \infty$ where μ is restricted to the set of atomic measures $\mathcal{B}^{n,+}$ of (at most) n atoms?

Theorem

For any
$$
q > 1
$$
 and $\lambda = \sum_{1}^{N} m_i \delta_{x_i} - m_i^* \delta_{y_i}$.

Theorem

For $p > 1$

$$
\lim_{M \to \infty} M^{1-1/p} \min_{\mu \in \mathcal{B}_M^+} W_p \left(\mu + \lambda^+, \mu + \lambda^- \right) = W_1(\lambda^+, \lambda^-)
$$

where \mathcal{B}_{M}^{+} stands for the set of all positive Borel measures μ normalized by $\int d\mu = M$.

Suppose we replace the condition $M \to \infty$ by the condition $n \to \infty$ where μ is restricted to the set of atomic measures $\mathcal{B}^{n,+}$ of (at most) n atoms?

Theorem

For any
$$
q > 1
$$
 and $\lambda = \sum_{1}^{N} m_i \delta_{x_i} - m_i^* \delta_{y_i}$.

$$
\lim_{n\to\infty} n^{1-1/p} \inf_{\mu \in \mathcal{B}^{n,+}} W_p\left(\mu + \lambda^+, \mu + \lambda^-\right) = \widehat{W}^{(p)}(\lambda)
$$

Recall

Definition

$$
W_1(\lambda)=\inf\int |d\vec{m}|
$$

subject to $\nabla \cdot \vec{m} = \lambda$.

イロト イ部 トメ ヨ トメ ヨト

Recall

Definition

$$
W_1(\lambda)=\inf\int |d\vec{m}|
$$

subject to $\nabla \cdot \vec{m} = \lambda$.

Definition

(Xia) For $p > 1$ and λ an atomic metric

$$
\widehat{W}^{(p)}(\lambda) = \inf \int |\frac{d\vec{m}}{dH_1}|^{1/p} dH_1
$$

subject to $\nabla \cdot \vec{m} = \lambda$.

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『로 『 YO Q @

An oriented, weighted graph (γ, m) associated with λ is a graph γ composed of vertices $V(\gamma)$ and edges $\overline{E}(\gamma)$ and a function $m:E\to\mathbb{R}^+.$

 \leftarrow \Box

 QQ

An oriented, weighted graph (γ, m) associated with λ is a graph γ composed of vertices $V(\gamma)$ and edges $\overline{E}(\gamma)$ and a function $m:E\to\mathbb{R}^+.$

∢ ⊡

 Ω

Definition

• The set of all weighted graphs associated with λ is denoted by $\Gamma(\lambda)$.

4 0 8

Definition

 \bullet

• The set of all weighted graphs associated with λ is denoted by $\Gamma(\lambda)$.

$$
\widehat{W}^{(\rho)}(\lambda):=\inf_{(\gamma,m)\in\Gamma(\lambda)}\sum_{e\in E(\gamma)}|e|m_e^{1/p}
$$

Examples:

 $p = 1$ (Reduced to the metric Monge problem),

4 0 8

Definition

 \bullet

• The set of all weighted graphs associated with λ is denoted by $\Gamma(\lambda)$.

$$
\widehat{W}^{(\rho)}(\lambda):=\inf_{(\gamma,m)\in\Gamma(\lambda)}\sum_{e\in E(\gamma)}|e|m_e^{1/p}
$$

Examples:

- $p = 1$ (Reduced to the metric Monge problem),
- $p = 0$ (Reduced to Steiner problem of minimal graphs)

 \leftarrow

$$
e \Longleftrightarrow (i,j); \gamma_{i,j} > 0 \qquad , m_e = \gamma_{i,j}
$$

舌

 299

メロトス部 トメミトメ

$$
e \Longleftrightarrow (i,j); \gamma_{i,j} > 0 \qquad , m_e = \gamma_{i,j}
$$

Postulate

 $\bullet \{x_1, \ldots, y_1, \ldots\} \subset V(\gamma).$

 Ω

イロト イ押 トイヨト イヨ

$$
e \Longleftrightarrow (i,j); \gamma_{i,j} > 0 \qquad , m_e = \gamma_{i,j}
$$

Postulate

- $\circ \{x_1, \ldots, y_1, \ldots\} \subset V(\gamma).$
- For each $i\in\{1,N\}$, $\sum_{\{e,x_i\in\partial^+e\}}m_e=m_i$ and $\sum_{\{e,y_i\in\partial^-e\}}m_e=m_i^*$, where $\partial^{\pm} e := v_e^{\pm}$.

 Ω

$$
e \Longleftrightarrow (i,j); \gamma_{i,j} > 0 \qquad , m_e = \gamma_{i,j}
$$

Postulate

- $\bullet \{x_1, \ldots, y_1, \ldots\} \subset V(\gamma).$
- For each $i\in\{1,N\}$, $\sum_{\{e,x_i\in\partial^+e\}}m_e=m_i$ and $\sum_{\{e,y_i\in\partial^-e\}}m_e=m_i^*$, where $\partial^{\pm} e := v_e^{\pm}$.
- For each $v \in V(\gamma)-\{x_1,\ldots y_N\}$, $\sum_{\{e; v \in \partial^+e\}} m_e = \sum_{\{e; v \in \partial^-e\}} m_e$.

つへへ

$$
e \Longleftrightarrow (i,j); \gamma_{i,j} > 0 \qquad , m_e = \gamma_{i,j}
$$

Postulate

- $\bullet \{x_1, \ldots, y_1, \ldots\} \subset V(\gamma).$
- For each $i\in\{1,N\}$, $\sum_{\{e,x_i\in\partial^+e\}}m_e=m_i$ and $\sum_{\{e,y_i\in\partial^-e\}}m_e=m_i^*$, where $\partial^{\pm} e := v_e^{\pm}$.
- For each $v \in V(\gamma)-\{x_1,\ldots y_N\}$, $\sum_{\{e; v \in \partial^+e\}} m_e = \sum_{\{e; v \in \partial^-e\}} m_e$.

Lemma

There exists an optimal plan $\{\gamma\}$ whose graph contains at most $2N^3$ nodes of order $>$ 3.

 Ω

$$
\Sigma_o = m_o \qquad \Sigma_o = m_o^* \qquad \Sigma_o = \Sigma_o
$$

K ロ > K 御 > K 星 > K 星 > 「星」 の Q Q <

The set $\mathcal{B}^{n,+}$ is, evidently, not a compact one. Still we claim

Lemma

For each $n \in \mathbb{N}$, a minimizer $\mu_n \in \mathcal{B}^{n,+}$

$$
\overline{W}_q(\lambda) := \inf_{\mu \in \mathcal{B}^{n,+}} W_q(\mu + \lambda^+, \mu + \lambda^-) = W_q(\mu_n + \lambda^+, \mu_n + \lambda^-)
$$

exists.

← ロ ▶ → イ 同

 \equiv Ω

医毛囊 医牙关膜

The set $\mathcal{B}^{n,+}$ is, evidently, not a compact one. Still we claim

Lemma

For each $n \in \mathbb{N}$, a minimizer $\mu_n \in \mathcal{B}^{n,+}$

$$
\overline{W}_q(\lambda) := \inf_{\mu \in \mathcal{B}^{n,+}} W_q(\mu + \lambda^+, \mu + \lambda^-) = W_q(\mu_n + \lambda^+, \mu_n + \lambda^-)
$$

exists.

Theorem

Let μ_n be a regular minimizer of $W_q(\mu + \lambda^+, \mu + \lambda^-)$ in $\mathcal{B}^{n,+}$. Then the associated optimal plan spans a reduced weighted tree $(\hat{\gamma}_n, m_n)$ which converges (in Hausdorff metric) to an optimal graph $(\hat{\gamma}, m) \in \Gamma(\lambda)$ as $n \rightarrow \infty$.

 Ω
One direction

重 J.

メロト メ都 トメ ヨ トメ

 299

One direction

Definition

Reduced graph: Remove all nodes of degree $=2$.

4 0 8

 QQ

One direction

Definition

Reduced graph: Remove all nodes of degree $=2$.

Gershon Wolansky (Technion) **[Action principle and OMT](#page-0-0) Haifa, 2009** 24 / 37

 \leftarrow \Box

э

 QQQ

$$
\sum_{e\in E(\hat{\gamma})} m_e^{1/p} |e| \leq \left(\sum_{e\in E(\hat{\gamma})} m_e |e|^p\right)^{1/p} |E(\hat{\gamma})|^{(p-1)/p}\;.
$$

イロト (個) (量) (量) (量) 量 のQQ

$$
\sum_{e\in E(\hat{\gamma})} m_e^{1/p} |e| \leq \left(\sum_{e\in E(\hat{\gamma})} m_e |e|^p\right)^{1/p} |E(\hat{\gamma})|^{(p-1)/p}\;.
$$

$$
\sum_{e \in E(\hat{\gamma})} m_e |e|^p = W_p^p(\lambda^+ + \mu, \lambda^- + \mu)
$$

Gershon Wolansky (Technion) **[Action principle and OMT](#page-0-0)** Haifa, 2009 25 / 37

イロト (個) (量) (量) (量) 量 のQQ

$$
\sum_{e\in E(\hat{\gamma})} m_e^{1/p} |e| \leq \left(\sum_{e\in E(\hat{\gamma})} m_e |e|^p\right)^{1/p} |E(\hat{\gamma})|^{(p-1)/p}\;.
$$

$$
\sum_{e \in E(\hat{\gamma})} m_e |e|^p = W_p^p(\lambda^+ + \mu, \lambda^- + \mu)
$$

From Lemma: $|E(\hat{\gamma})|^{(p-1)/p} = n^{(p-1)/p} + o(n)$.

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 로 - K 9 Q @

$$
\sum_{e\in E(\hat{\gamma})} m_e^{1/p} |e| \leq \left(\sum_{e\in E(\hat{\gamma})} m_e |e|^p\right)^{1/p} |E(\hat{\gamma})|^{(p-1)/p}\;.
$$

$$
\sum_{e \in E(\hat{\gamma})} m_e |e|^p = W_p^p(\lambda^+ + \mu, \lambda^- + \mu)
$$

From Lemma: $|E(\hat{\gamma})|^{(p-1)/p} = n^{(p-1)/p} + o(n)$. Hence:

$$
n^{(1-p)/p}W_p(\lambda^+ + \mu, \lambda^- + \mu) \ge \sum_{e \in E(\hat{\gamma})} m_e^{1/p} |e|
$$

イロト イ母 トイミト イミト ニヨー りんぴ

Generalization to Lagrangian on manifolds and relation with the Weak KAM Theory

Lagrangian-Hamiltonian duality $(x, v) \in \mathbb{T}\Omega$:

$$
I(x,v)=\sup_{p\in T^*\Omega}\langle p,v\rangle-h(x,p)
$$

4 0 8

Generalization to Lagrangian on manifolds and relation with the Weak KAM Theory

Lagrangian-Hamiltonian duality $(x, v) \in \mathbb{T}\Omega$:

$$
I(x, v) = \sup_{p \in T^*\Omega} \langle p, v \rangle - h(x, p)
$$

$$
\sup_{\mu \in \mathcal{B}_1^+} \inf_{\phi \in C^1(\Omega)} \int_{\Omega} h(x, d\phi) d\mu = \underline{E} =: \inf_{\phi \in C^1(\Omega)} \sup_{x \in \Omega} h(x, d\phi)
$$

4 0 8

Generalization to Lagrangian on manifolds and relation with the Weak KAM Theory

Lagrangian-Hamiltonian duality $(x, v) \in \mathbb{T}\Omega$:

$$
I(x, v) = \sup_{p \in T^*\Omega} \langle p, v \rangle - h(x, p)
$$

$$
\sup_{\mu \in \mathcal{B}_1^+} \inf_{\phi \in C^1(\Omega)} \int_{\Omega} h(x, d\phi) d\mu = \underline{E} =: \inf_{\phi \in C^1(\Omega)} \sup_{x \in \Omega} h(x, d\phi)
$$

Example $I(x, v) = |v|^2/2 - V(x)$, $h(x, p) = |p|^2/2 + V(x)$

$$
\sup_{\mu\in\mathcal{B}_1^+}\inf_{\phi\in C^1(\Omega)}\int_\Omega\left(|\nabla\phi|^2/2+V(x)\right)d\mu=\sup_{x\in\Omega}V(x)\;.
$$

$$
C_T(x,y) := \inf_{\vec{z}(0)=x,\vec{z}(T)=y} \int_0^T I(\vec{z}(s),\dot{\vec{z}}(s)) ds , T > 0.
$$

イロト (個) (量) (量) (量) 量 のQQ

$$
C_T(x,y) := \inf_{\vec{z}(0)=x,\vec{z}(T)=y} \int_0^T I(\vec{z}(s),\dot{\vec{z}}(s)) ds , \quad T > 0.
$$

Then

$$
C_{\mathcal{T}}(\mu) := C_{\mathcal{T}}(\mu, \mu) = \min_{\Lambda \in \mathcal{P}(\mu, \mu)} \int_{M \times M} C_{\mathcal{T}}(x, y) d\Lambda(x, y)
$$

Gershon Wolansky (Technion) **[Action principle and OMT](#page-0-0)** Haifa, 2009 27 / 37

K ロ > K @ > K 할 > K 할 > 1 할 : K 9 Q Q*

$$
C_T(x,y) := \inf_{\vec{z}(0)=x,\vec{z}(T)=y} \int_0^T I(\vec{z}(s),\dot{\vec{z}}(s)) ds , \quad T > 0.
$$

Then

$$
C_{\mathcal{T}}(\mu) := C_{\mathcal{T}}(\mu, \mu) = \min_{\Lambda \in \mathcal{P}(\mu, \mu)} \int_{M \times M} C_{\mathcal{T}}(x, y) d\Lambda(x, y)
$$

Theorem

(Buffoni and Bernard)

$$
\min_{\mu \in \mathcal{B}_1^+} C_{\mathcal{T}}(\mu) = -T\underline{E}
$$

where the minimizers coincide, for any $T > 0$, with the projected Mather measure.

Gershon Wolansky (Technion) **[Action principle and OMT](#page-0-0) Haifa, 2009** 27 / 37

Definition

$$
(x,t)\in\Omega\times\Omega\mapsto D_E(x,y)=\inf_{T>0}C_T(x,y)+TE.
$$

 2990

イロト イ部 トメ ヨ トメ ヨト

Definition

$$
(x,t)\in\Omega\times\Omega\mapsto D_E(x,y)=\inf_{T>0}C_T(x,y)+TE.
$$

Lemma

$$
D_E(x,y) = -\infty \text{ for any } x, y \in \Omega \text{ if } E < \underline{E}.
$$

 $E = \Omega Q$

イロト イ部 トイヨ トイヨト

Definition

$$
(x,t)\in\Omega\times\Omega\mapsto D_E(x,y)=\inf_{T>0}C_T(x,y)+TE.
$$

Lemma

 $D_E(x, y) = -\infty$ for any $x, y \in \Omega$ if $E \le E$. If $E \ge E$ then $D_E(x, x) = 0$ for any $x \in \Omega$.

 QQ

イロト イ押ト イヨト イヨト

Definition

$$
(x,t)\in\Omega\times\Omega\mapsto D_E(x,y)=\inf_{T>0}C_T(x,y)+TE.
$$

Lemma

 $D_F(x, y) = -\infty$ for any $x, y \in \Omega$ if $E \lt E$. If $E \gt E$ then $D_F(x, x) = 0$ for any $x \in \Omega$.

Example

For $I(x, v) = |v|^2/2$ we get $C_{\mathcal{T}}(x, y) = |x - y|^2/2T$ while For $I(x, y) = |y|^{2}/2$ we get $C_{\mathcal{T}}(x, y) = |x - y|^{2}/2I$ while
 $D_{E}(x, y) = \sqrt{2E}|x - y|$ if $E \ge 0$, $D_{E}(x, y) = -\infty$ if $E < 0$. Here <u> $E = 0$ </u>.

 QQ

イロト イ何 トイヨ トイヨ トー ヨ

Definition

$$
(x,t)\in\Omega\times\Omega\mapsto D_E(x,y)=\inf_{T>0}C_T(x,y)+TE.
$$

Lemma

 $D_E(x, y) = -\infty$ for any $x, y \in \Omega$ if $E \le E$. If $E \ge E$ then $D_E(x, x) = 0$ for any $x \in \Omega$.

Example

For
$$
I(x, v) = |v|^2/2
$$
 we get $C_T(x, y) = |x - y|^2/2T$ while $D_E(x, y) = \sqrt{2E}|x - y|$ if $E \ge 0$, $D_E(x, y) = -\infty$ if $E < 0$. Here $\underline{E} = 0$.

Lemma

$$
D_E(\lambda):=D_E(\lambda^+, \lambda^-)=\sup\left\{\int \phi d\lambda\ ;\quad \phi(x)-\phi(y)\leq D_E(x,y)\right\}
$$

$$
\widehat{C}(\lambda;\mu):=\sup_{\phi\in C^1(\Omega)}\int_{\Omega}-h(x,d\phi)d\mu+\phi d\lambda
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 900

.

$$
\widehat{\mathcal{C}}(\lambda;\mu) := \sup_{\phi \in C^1(\Omega)} \int_{\Omega} -h(x, d\phi) d\mu + \phi d\lambda
$$

$$
\widehat{\mathcal{C}}(\lambda) := \inf_{\mu \in \mathcal{B}_1^+} \widehat{\mathcal{C}}(\lambda; \mu)
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 900

$$
\widehat{\mathcal{C}}(\lambda;\mu) := \sup_{\phi \in C^1(\Omega)} \int_{\Omega} -h(x, d\phi) d\mu + \phi d\lambda
$$

$$
\widehat{\mathcal{C}}(\lambda) := \inf_{\mu \in \mathcal{B}_1^+} \widehat{\mathcal{C}}(\lambda; \mu)
$$

Theorem

.

If $\lambda \in \mathcal{B}_0$, the following definitions are equivalent:

 298

イロト イ押 トイヨト イヨ

$$
\widehat{\mathcal{C}}(\lambda;\mu) := \sup_{\phi \in C^1(\Omega)} \int_{\Omega} -h(x, d\phi) d\mu + \phi d\lambda
$$

$$
\widehat{\mathcal{C}}(\lambda) := \inf_{\mu \in \mathcal{B}_1^+} \widehat{\mathcal{C}}(\lambda; \mu)
$$

Theorem

.

If $\lambda \in \mathcal{B}_0$, the following definitions are equivalent: $\widehat{\mathcal{C}}_{\mathcal{T}}(\lambda) := \mathcal{T}\widehat{\mathcal{C}}\left(\frac{\lambda}{\mathcal{T}}\right)$ $\frac{\lambda}{T}$

 Ω

イロト イ押 トイヨト イヨ

$$
\widehat{\mathcal{C}}(\lambda;\mu) := \sup_{\phi \in C^1(\Omega)} \int_{\Omega} -h(x, d\phi) d\mu + \phi d\lambda
$$

$$
\widehat{\mathcal{C}}(\lambda) := \inf_{\mu \in \mathcal{B}_1^+} \widehat{\mathcal{C}}(\lambda; \mu)
$$

Theorem

.

If $\lambda \in \mathcal{B}_0$, the following definitions are equivalent: $\widehat{\mathcal{C}}_{\mathcal{T}}(\lambda) := \mathcal{T}\widehat{\mathcal{C}}\left(\frac{\lambda}{\mathcal{T}}\right)$ $\frac{\lambda}{T}$ $\odot \widehat{C}_T(\lambda) := \sup_{E\geq \underline{E}} D_E(\lambda) - ET$.

4 日下

 Ω

医阿里氏阿里

$$
\widehat{\mathcal{C}}(\lambda;\mu) := \sup_{\phi \in C^1(\Omega)} \int_{\Omega} -h(x, d\phi) d\mu + \phi d\lambda
$$

$$
\widehat{\mathcal{C}}(\lambda) := \inf_{\mu \in \mathcal{B}_1^+} \widehat{\mathcal{C}}(\lambda; \mu)
$$

Theorem

.

If $\lambda \in \mathcal{B}_0$, the following definitions are equivalent: $\widehat{\mathcal{C}}_{\mathcal{T}}(\lambda) := \mathcal{T}\widehat{\mathcal{C}}\left(\frac{\lambda}{\mathcal{T}}\right)$ $\frac{\lambda}{T}$ $\odot \widehat{C}_T(\lambda) := \sup_{E\geq \underline{E}} D_E(\lambda) - E\overline{T}$. **3** $\hat{C}_{\mathcal{T}}(\lambda) := \inf_{\mu \in \mathcal{B}_1^+} \sup_{\phi \in C^1(M)} \int_M -Th(x, d\phi) d\mu + \phi d\lambda$.

4 日下

 200

 $-4.29 + 4.$

$$
\widehat{\mathcal{C}}(\lambda;\mu) := \sup_{\phi \in C^1(\Omega)} \int_{\Omega} -h(x, d\phi) d\mu + \phi d\lambda
$$

$$
\widehat{\mathcal{C}}(\lambda) := \inf_{\mu \in \mathcal{B}_1^+} \widehat{\mathcal{C}}(\lambda; \mu)
$$

Theorem

.

If $\lambda \in \mathcal{B}_0$, the following definitions are equivalent: $\widehat{\mathcal{C}}_{\mathcal{T}}(\lambda) := \mathcal{T}\widehat{\mathcal{C}}\left(\frac{\lambda}{\mathcal{T}}\right)$ $\frac{\lambda}{T}$ $\mathbf{Q} \widehat{C}_T(\lambda) := \sup_{E\geq E} D_E(\lambda) - ET$. **3** $\hat{C}_{\mathcal{T}}(\lambda) := \inf_{\mu \in \mathcal{B}_1^+} \sup_{\phi \in C^1(M)} \int_M -Th(x, d\phi) d\mu + \phi d\lambda$.

In particular, for $\lambda = \delta_{x} - \delta_{y}$,

$$
\widehat{\mathcal{C}}_{\mathcal{T}}(x,y) := \sup_{E \geq \underline{E}} D_E(x,y) - E\mathcal{T}
$$

 200

医毛囊 医牙关膜

4 0 8

 $C_T(x, y) \geq \widehat{C}_T(x, y)$

J.

 299

イロト イ御 トメ ミトメ 毛

 $C_T(x, y) \geq \widehat{C}_T(x, y)$

In general, strict inequality. However, if $T \ll 1$ we get equality under mild conditions.

4.0.3

 $C_T(x, y) \geq \widehat{C}_T(x, y)$

In general, strict inequality. However, if $T \ll 1$ we get equality under mild conditions.

Theorem

For any $\lambda \in \mathcal{B}_0$,

$$
\widehat{C}_{\mathcal{T}}(\lambda;\mu)=\Gamma-\lim_{\varepsilon\to 0}\varepsilon^{-1}\mathcal{C}_{\varepsilon\mathcal{T}}(\mu+\varepsilon\lambda^{-},\mu+\varepsilon\lambda^{+})\;.
$$

4 日下

- イ ヨ ト

 $C_T(x, y) \geq \widehat{C}_T(x, y)$

In general, strict inequality. However, if $T \ll 1$ we get equality under mild conditions.

Theorem

For any $\lambda \in \mathcal{B}_0$,

$$
\widehat{C}_T(\lambda;\mu) = \Gamma - \lim_{\varepsilon \to 0} \varepsilon^{-1} C_{\varepsilon T}(\mu + \varepsilon \lambda^-, \mu + \varepsilon \lambda^+) .
$$

$$
\widehat{C}_{\mathcal{T}}(\lambda) = \lim_{\varepsilon \to 0} \inf_{\mu \in \mathcal{B}_1^+} \varepsilon^{-1} C_{\varepsilon \mathcal{T}}(\mu + \varepsilon \lambda^-, \mu + \varepsilon \lambda^+) .
$$

Gershon Wolansky (Technion) and [Action principle and OMT](#page-0-0) **Haifa, 2009** 30 / 37

4 日下

- 4 三 ト 3

Gershon Wolansky (Technion) **[Action principle and OMT](#page-0-0) Haifa, 2009** 31 / 37

 2990

メロト メ都 トメ ヨ トメ ヨト

Easy Lemma

 2990

イロト イ部 トメ ヨ トメ ヨト

Easy Lemma

Lemma

For any
$$
\mu \in \mathcal{B}_1^+
$$
, $\lambda = \lambda^+ - \lambda^- \in \mathcal{B}_0$

$$
\liminf_{\varepsilon \to 0} \varepsilon^{-1} C_{\varepsilon} \tau(\mu + \varepsilon \lambda^{-}, \mu + \varepsilon \lambda^{+}) \geq \widehat{C}_{\mathcal{T}}(\lambda || \mu) .
$$

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 로 - K 9 Q @

Easy Lemma

Lemma

For any
$$
\mu \in \mathcal{B}_1^+
$$
, $\lambda = \lambda^+ - \lambda^- \in \mathcal{B}_0$

$$
\liminf_{\varepsilon \to 0} \varepsilon^{-1} C_{\varepsilon} \tau(\mu + \varepsilon \lambda^{-}, \mu + \varepsilon \lambda^{+}) \geq \widehat{C}_{\mathcal{T}}(\lambda || \mu) .
$$

Harder lemma

 2990

イロト イ部 トイヨ トイヨト

Easy Lemma

Lemma

For any
$$
\mu \in \mathcal{B}_1^+
$$
, $\lambda = \lambda^+ - \lambda^- \in \mathcal{B}_0$

$$
\liminf_{\varepsilon \to 0} \varepsilon^{-1} C_{\varepsilon} \tau(\mu + \varepsilon \lambda^{-}, \mu + \varepsilon \lambda^{+}) \geq \widehat{C}_{\mathcal{T}}(\lambda || \mu) .
$$

Harder lemma

Lemma

For $T > 0$.

$$
\widehat{C}_{\mathcal{T}}(\lambda) \geq \limsup_{\varepsilon \to 0} \varepsilon^{-1} \inf_{\mu \in \mathcal{B}_1^+} C_{\varepsilon \mathcal{T}}(\mu + \varepsilon \lambda^+, \mu + \varepsilon \lambda^-) .
$$

 298

イロト 不優 ト 不差 ト 不差 ト

Proof of "hard" Lemma

Gershon Wolansky (Technion) **[Action principle and OMT](#page-0-0) Haifa, 2009** 32 / 37

重

 2990

イロト イ部 トメ ヨ トメ ヨト

Proof of "hard" Lemma

Given $\varepsilon > 0$ let

$$
D_E^{\varepsilon}(x,y) := \inf_{n \in \mathbb{N}} [C_{\varepsilon nT}(x,y) + \varepsilon nET] .
$$

Evidently, $D_E^{\varepsilon}(x, y)$ is continuous on $M \times M$ locally uniformly in $E \geq \underline{E}$. Moreover,

$\lim_{\varepsilon \searrow 0} D_E^{\varepsilon} = D_E$

uniformly on $M \times M$ and locally uniformly in $E \geq \underline{E}$ as well.

 QQ

イロト イ押ト イヨト イヨト
Proof of "hard" Lemma

Given $\varepsilon > 0$ let

$$
D_E^{\varepsilon}(x,y) := \inf_{n \in \mathbb{N}} [C_{\varepsilon nT}(x,y) + \varepsilon nET] .
$$

Evidently, $D_E^{\varepsilon}(x, y)$ is continuous on $M \times M$ locally uniformly in $E \geq \underline{E}$. Moreover,

$\lim_{\varepsilon \searrow 0} D_E^{\varepsilon} = D_E$

uniformly on $M \times M$ and locally uniformly in $E > E$ as well. We now decompose $M \times M$ into mutually disjoint Borel sets Q_n .

$$
M \times M = \cup_n Q_n^{\varepsilon}, \quad Q_n^{\varepsilon} \cap Q_{E,n'}^{\varepsilon} = \emptyset \text{ if } n \neq n'
$$

such that

 $Q_n^{\varepsilon} \subset \{(x, y) \in M \times M ; D_{E}^{\varepsilon}(x, y) = C_{\varepsilon nT}(x, y) + \varepsilon nET \}$.

 200

Let $\Lambda_\varepsilon^E \in \mathcal{P}(\lambda^+, \lambda^-)$ be an optimal plan for

$$
\mathcal{D}_E^{\varepsilon}(\lambda)=\int_{M\times M}D_E^{\varepsilon}(x,y)d\Lambda_{\varepsilon}^E=\min_{\Lambda\in\mathcal{P}(\lambda^+,\lambda^-)}\int_{M\times M}D_E^{\varepsilon}(x,y)d\Lambda,
$$

and $\Lambda_{\varepsilon}^{n} = \Lambda_{\varepsilon}^{E} \lfloor_{Q_{n}^{\varepsilon}}$, the restriction of $\Lambda_{\varepsilon}^{E}$ to Q_{n}^{ε} .

 \leftarrow \Box

 $\mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A}$

 Ω

Let $\Lambda_\varepsilon^E \in \mathcal{P}(\lambda^+, \lambda^-)$ be an optimal plan for

$$
\mathcal{D}_E^{\varepsilon}(\lambda)=\int_{M\times M}D_E^{\varepsilon}(x,y)d\Lambda_{\varepsilon}^E=\min_{\Lambda\in\mathcal{P}(\lambda^+,\lambda^-)}\int_{M\times M}D_E^{\varepsilon}(x,y)d\Lambda,
$$

and $\Lambda^n_\varepsilon=\Lambda^E_\varepsilon\lfloor_{Q_n^\varepsilon}$, the restriction of Λ^E_ε to Q_n^ε . Set λ^\pm_n to be the marginals of Λ_ε^n on the first and second factors of $M\times M.$

 QQQ

Let $\Lambda_\varepsilon^E \in \mathcal{P}(\lambda^+, \lambda^-)$ be an optimal plan for

$$
\mathcal{D}_E^{\varepsilon}(\lambda)=\int_{M\times M}D_E^{\varepsilon}(x,y)d\Lambda_{\varepsilon}^E=\min_{\Lambda\in\mathcal{P}(\lambda^+,\lambda^-)}\int_{M\times M}D_E^{\varepsilon}(x,y)d\Lambda,
$$

and $\Lambda^n_\varepsilon=\Lambda^E_\varepsilon\lfloor_{Q_n^\varepsilon}$, the restriction of Λ^E_ε to Q_n^ε . Set λ^\pm_n to be the marginals of Λ^n_ε on the first and second factors of $M\times M$. Then $\sum_{n=1}^\infty \Lambda^n_\varepsilon=\Lambda^E_\varepsilon$ and

$$
\sum_{n=1}^{\infty} \lambda_n^{\pm} = \lambda^{\pm}
$$

Remark

Note that $Q_n^{\varepsilon} = \emptyset$ for all but a finite number of $n \in \mathbb{N}$. In particular, the sum contains only a finite number of non-zero terms.

 Ω

 -990

イロト 不優 ト 不差 ト 不差 トー 差

We observe that $\langle T\rangle^\varepsilon\in\partial_E\mathcal{D}^\varepsilon_E(\lambda)$, where ∂_E is the super gradient as a function of E. At this stage we choose E depending on ε , T such that

 $\langle T \rangle^{\varepsilon} = T + 2 \varepsilon T |\lambda^{\pm}|$

 QQ

We observe that $\langle T\rangle^\varepsilon\in\partial_E\mathcal{D}^\varepsilon_E(\lambda)$, where ∂_E is the super gradient as a function of E. At this stage we choose E depending on ε , T such that

$$
\langle T\rangle^{\varepsilon}=T+2\varepsilon T|\lambda^{\pm}|
$$

Let $\widehat{\Lambda}^n_\varepsilon \in \mathcal{B}^+(\mathcal{T}M)$ satisfying

$$
\left(I\oplus \text{Exp}_{(I)}^{(t=\varepsilon nT)}\right)_{\#}\widehat{\Lambda}_{\varepsilon}^{n}=\Lambda_{\varepsilon}^{n}
$$

 200

We observe that $\langle T\rangle^\varepsilon\in\partial_E\mathcal{D}^\varepsilon_E(\lambda)$, where ∂_E is the super gradient as a function of E. At this stage we choose E depending on ε , T such that

$$
\langle T\rangle^{\varepsilon}=T+2\varepsilon T|\lambda^{\pm}|
$$

Let $\widehat{\Lambda}^n_\varepsilon \in \mathcal{B}^+(\mathcal{T}M)$ satisfying

$$
\left(I\oplus \text{Exp}_{(I)}^{(t=\varepsilon nT)}\right)_{\#}\widehat{\Lambda}_{\varepsilon}^{n}=\Lambda_{\varepsilon}^{n}
$$

Use $\widehat{\Lambda}^n_{\varepsilon}$ to define

$$
\lambda_n^j := \left(\mathsf{Exp}_{(I)}^{(t = \varepsilon n \mathcal{T})} \right)_{\#} \widehat{\Lambda}_{\varepsilon}^n \in \mathcal{B}^+(M)
$$

for $i = 0, 1, \ldots n$.

We observe that $\langle T\rangle^\varepsilon\in\partial_E\mathcal{D}^\varepsilon_E(\lambda)$, where ∂_E is the super gradient as a function of E. At this stage we choose E depending on ε , T such that

$$
\langle T\rangle^{\varepsilon}=T+2\varepsilon T|\lambda^{\pm}|
$$

Let $\widehat{\Lambda}^n_\varepsilon \in \mathcal{B}^+(\mathcal{T}M)$ satisfying

$$
\left(I\oplus \text{Exp}_{(I)}^{(t=\varepsilon nT)}\right)_{\#}\widehat{\Lambda}_{\varepsilon}^{n}=\Lambda_{\varepsilon}^{n}
$$

Use $\widehat{\Lambda}^n_{\varepsilon}$ to define

$$
\lambda_n^j := \left(\mathsf{Exp}_{(I)}^{(t = \varepsilon nT)} \right)_{\#} \widehat{\Lambda}_\varepsilon^n \in \mathcal{B}^+(M)
$$

for $j = 0, 1 \ldots n$. Note that $\lambda_n^0 = \lambda_n^+ \quad , \lambda_n^n = \lambda_n^-$

We observe that $\langle T\rangle^\varepsilon\in\partial_E\mathcal{D}^\varepsilon_E(\lambda)$, where ∂_E is the super gradient as a function of E. At this stage we choose E depending on ε , T such that

$$
\langle T\rangle^{\varepsilon}=T+2\varepsilon T|\lambda^{\pm}|
$$

Let $\widehat{\Lambda}^n_\varepsilon \in \mathcal{B}^+(\mathcal{T}M)$ satisfying

$$
\left(I\oplus \text{Exp}_{(I)}^{(t=\varepsilon nT)}\right)_{\#}\widehat{\Lambda}_{\varepsilon}^{n}=\Lambda_{\varepsilon}^{n}
$$

Use $\widehat{\Lambda}^n_{\varepsilon}$ to define

$$
\lambda_n^j := \left(\mathsf{Exp}_{(I)}^{(t = \varepsilon nT)} \right)_{\#} \widehat{\Lambda}_\varepsilon^n \in \mathcal{B}^+(M)
$$

for $j = 0, 1 \ldots n$. Note that $\lambda_n^0 = \lambda_n^+ \quad , \lambda_n^n = \lambda_n^-$

$$
C_{\varepsilon n\mathcal{T}}(\lambda_n^+, \lambda_n^-) + \varepsilon nET|\lambda_n| = \sum_{j=0}^{n-1} \left[C_{\varepsilon \mathcal{T}}(\lambda_n^j, \lambda_n^{j+1}) + \varepsilon ET|\lambda_n| \right]
$$

$$
\mathcal{D}_{E}^{\varepsilon}(\lambda) = \sum_{n=1}^{\infty} D_{E}^{\varepsilon}(\lambda_{n}) = \sum_{n=1}^{\infty} \left[C_{\varepsilon n} \tau(\lambda_{n}^{+}, \lambda_{n}^{-}) + \varepsilon n E T |\lambda_{n}| \right]
$$

$$
= \sum_{n=1}^{\infty} \sum_{j=0}^{n-1} \left(C_{\varepsilon} \tau(\lambda_{n}^{j}, \lambda_{n}^{j+1}) + \varepsilon E T |\lambda_{n}| \right) . \quad (2)
$$

K ロ > K @ > K 할 > K 할 > (할 >) 외 Q Q Q

$$
\mathcal{D}_{E}^{\varepsilon}(\lambda) = \sum_{n=1}^{\infty} D_{E}^{\varepsilon}(\lambda_{n}) = \sum_{n=1}^{\infty} \left[C_{\varepsilon n} \tau(\lambda_{n}^{+}, \lambda_{n}^{-}) + \varepsilon n E T |\lambda_{n}| \right]
$$

$$
= \sum_{n=1}^{\infty} \sum_{j=0}^{n-1} \left(C_{\varepsilon} \tau(\lambda_{n}^{j}, \lambda_{n}^{j+1}) + \varepsilon E T |\lambda_{n}| \right) . \quad (2)
$$

Let now

$$
\mu^{\varepsilon,E} = \varepsilon \sum_{n=1}^{\infty} \sum_{j=1}^{n-1} \lambda_n^j.
$$

Gershon Wolansky (Technion) **[Action principle and OMT](#page-0-0)** Haifa, 2009 35 / 37

Ε.

 QQ

$$
\mathcal{D}_{E}^{\varepsilon}(\lambda) = \sum_{n=1}^{\infty} D_{E}^{\varepsilon}(\lambda_{n}) = \sum_{n=1}^{\infty} \left[C_{\varepsilon n} \tau(\lambda_{n}^{+}, \lambda_{n}^{-}) + \varepsilon n E T |\lambda_{n}| \right]
$$

$$
= \sum_{n=1}^{\infty} \sum_{j=0}^{n-1} \left(C_{\varepsilon} \tau(\lambda_{n}^{j}, \lambda_{n}^{j+1}) + \varepsilon E T |\lambda_{n}| \right) . \quad (2)
$$

Let now

$$
\mu^{\varepsilon,E} = \varepsilon \sum_{n=1}^{\infty} \sum_{j=1}^{n-1} \lambda_n^j.
$$

Note that

$$
\mu^{\varepsilon,E} = \varepsilon \sum_{n=1}^{\infty} \sum_{j=0}^{n} \lambda_n^j - \varepsilon \sum_{n=1}^{\infty} \lambda_n^0 - \varepsilon \sum_{\substack{n=1 \ \varepsilon \to \varepsilon(\mathbb{D}) \ \varepsilon \to \varepsilon(\mathbb{D})}}^{\infty} \lambda_n^n.
$$

 2980

$$
\left|\mu^{\varepsilon,E}\right|=\varepsilon\sum_{n=1}^\infty (n+1)|\lambda_n^\pm|-2\varepsilon|\lambda^\pm|=1\implies\mu^{\varepsilon,E}\in\mathcal{B}_1^+\;.
$$

 \equiv 990

$$
\left|\mu^{\varepsilon,E}\right|=\varepsilon\sum_{n=1}^\infty (n+1)|\lambda_n^\pm|-2\varepsilon|\lambda^\pm|=1\implies \mu^{\varepsilon,E}\in\mathcal{B}_1^+\;.
$$

$$
\sum_{n=1}^{\infty}\sum_{j=0}^{n-1}C_{\varepsilon\mathcal{T}}(\lambda_{n}^{j},\lambda_{n}^{j+1})
$$

 \equiv 990

$$
\left|\mu^{\varepsilon,E}\right|=\varepsilon\sum_{n=1}^\infty (n+1)|\lambda_n^\pm|-2\varepsilon|\lambda^\pm|=1\implies\mu^{\varepsilon,E}\in\mathcal{B}_1^+\;.
$$

$$
\sum_{n=1}^{\infty}\sum_{j=0}^{n-1}C_{\varepsilon\tau}(\lambda_n^j,\lambda_n^{j+1})
$$

$$
\geq C_{\varepsilon T}\left(\sum_{n=1}^{\infty}\sum_{j=0}^{n-1}\lambda_n^j,\sum_{n=1}^{\infty}\sum_{j=1}^n\lambda_n^{j+1}\right)=
$$

Gershon Wolansky (Technion) **[Action principle and OMT](#page-0-0)** Haifa, 2009 36 / 37

 \equiv 990

$$
\left|\mu^{\varepsilon,E}\right|=\varepsilon\sum_{n=1}^\infty (n+1)|\lambda_n^\pm|-2\varepsilon|\lambda^\pm|=1\implies \mu^{\varepsilon,E}\in\mathcal{B}_1^+\;.
$$

$$
\sum_{n=1}^{\infty}\sum_{j=0}^{n-1}C_{\varepsilon\tau}(\lambda_n^j,\lambda_n^{j+1})
$$

$$
\geq C_{\varepsilon}\tau\left(\sum_{n=1}^{\infty}\sum_{j=0}^{n-1}\lambda_n^j,\sum_{n=1}^{\infty}\sum_{j=1}^n\lambda_n^{j+1}\right)=
$$

$$
\varepsilon^{-1} C_{\varepsilon} \tau \left(\varepsilon \sum_{n=1}^{\infty} \sum_{j=0}^{n-1} \lambda_n^j, \varepsilon \sum_{n=1}^{\infty} \sum_{j=1}^n \lambda_n^{j+1} \right)
$$

Gershon Wolansky (Technion) **[Action principle and OMT](#page-0-0)** Haifa, 2009 36 / 37

 \equiv 990

メロト メ都 トメ ミトメ ミト

$$
\left|\mu^{\varepsilon,E}\right|=\varepsilon\sum_{n=1}^\infty (n+1)|\lambda_n^\pm|-2\varepsilon|\lambda^\pm|=1\implies \mu^{\varepsilon,E}\in\mathcal{B}_1^+\;.
$$

$$
\sum_{n=1}^{\infty}\sum_{j=0}^{n-1}C_{\varepsilon\tau}(\lambda_n^j,\lambda_n^{j+1})
$$

$$
\geq C_{\varepsilon T}\left(\sum_{n=1}^{\infty}\sum_{j=0}^{n-1}\lambda_n^j,\sum_{n=1}^{\infty}\sum_{j=1}^n\lambda_n^{j+1}\right)=
$$

$$
\varepsilon^{-1} C_{\varepsilon} \tau \left(\varepsilon \sum_{n=1}^{\infty} \sum_{j=0}^{n-1} \lambda_n^j, \varepsilon \sum_{n=1}^{\infty} \sum_{j=1}^n \lambda_n^{j+1} \right)
$$

= $\varepsilon^{-1} C_{\varepsilon} \tau \left(\mu^{\varepsilon, E} + \varepsilon \lambda^+, \mu^{\varepsilon, E} + \varepsilon \lambda^- \right).$

 2990

イロト イ部 トメ ヨ トメ ヨト

$$
\mathcal{D}_{\varepsilon}^{\varepsilon}(\lambda) - \langle \mathcal{T} \rangle^{\varepsilon} E \geq \varepsilon^{-1} C_{\varepsilon} \tau \left(\mu^{\varepsilon, \varepsilon} + \varepsilon \lambda^{+}, \mu^{\varepsilon, \varepsilon} + \varepsilon \lambda^{-} \right) \\
\geq \varepsilon^{-1} \inf_{\mu \in \mathcal{B}_{1}^{+}} C_{\varepsilon} \tau \left(\mu + \varepsilon \lambda^{+}, \mu + \varepsilon \lambda^{-} \right) .
$$
 (3)

イロト (個) (量) (量) (量) 量 のQQ

$$
\mathcal{D}_{\varepsilon}^{\varepsilon}(\lambda) - \langle \mathcal{T} \rangle^{\varepsilon} E \geq \varepsilon^{-1} C_{\varepsilon} \tau \left(\mu^{\varepsilon, E} + \varepsilon \lambda^{+}, \mu^{\varepsilon, E} + \varepsilon \lambda^{-} \right) \\
\geq \varepsilon^{-1} \inf_{\mu \in \mathcal{B}_{1}^{+}} C_{\varepsilon} \tau \left(\mu + \varepsilon \lambda^{+}, \mu + \varepsilon \lambda^{-} \right) . \tag{3}
$$

Finally,

 $\widehat{\mathcal{C}}_{\mathcal{T}}(\lambda) \geq \mathcal{D}_{\mathcal{E}}(\lambda) - \mathcal{T}\mathcal{E} =$ $\lim_{\varepsilon \to 0} \mathcal{D}_E^{\varepsilon}(\lambda) - \langle \mathcal{T} \rangle^{\varepsilon} E \ge \limsup_{\varepsilon \to 0}$ ε→0 ε^{-1} inf $\mu \in \mathcal{B}_1^+$ $\mathcal{C}_{\varepsilon\mathcal{T}}\left(\mu+\varepsilon\lambda^{+},\mu+\varepsilon\lambda^{-}\right)$. (4)

 QQ

イロト イ押ト イヨト イヨト ニヨ