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Monge-Ampère equation: det ‖uxi,xj‖ = f (x)

• The “2nd order divergence” form
• The Fourier integral form
• The convolution integral form
• A test problem with a cosmological flavour
• Numerical solution:

– Fixed point algorithm for the regular part of the MAE
– Algorithm with continuation in a parameter

and discrepancy minimisation
– Algorithm with improvement of convexity

and discrepancy minimisation
• Results of solution of the test problem



Existence and regularity of solutions to the MAE:
• A.V. Pogorelov. The Minkowski multidimensional problem. Nauka, Moscow, 1975.
(Geometric approach, convexity.)
• I.J. Bakelman. Convex analysis and nonlinear geometric elliptic equations. Springer-Verlag,
1994.
• L.A. Caffarelli, X. Cabré. Fully nonlinear elliptic equations. American Mathematical
Society colloquium publications, vol. 43. Amer. Math. Soc., Providence, Rhode Island, 1995.
(The PDE approach, viscous solutions.)

Methods for discrete optimal transportation problem: ask Andrei Sobolevsky.

Numerical algorithms linked to the geometric interpretation of the MAE:

• V.I. Oliker, L.D. Prussner. On the numerical solution of the equation
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and its discretizations, I. Numerische Mathematik, 54 (1988) 271–293. (A mesh comprised of
25 points.)
• D. Michaelis, S. Kudaev, R. Steinkopf, A. Gebhardt, P. Schreiber, A. Bräuer. Incoherent
beam shaping with freeform mirror. Nonimaging optics and efficient illumination systems V.
Eds. R. Winston, R.J. Koshel. Proc. of SPIE, vol. 7059 (2008) 705905. (A 55 × 55 mesh,
15 min. of a Pentium 4.)



Application of algorithms for saddle-point optimisation to the two-dimensional MAE:
• J.-D. Benamou, Y. Brenier. A computational fluid mechanics solution to the Monge–
Kantorovich mass transfer problem. Numerische Mathematik, 84 (2000) 375–393.
• E.J. Dean, R. Glowinski. Numerical solution of the two-dimensional elliptic Monge–Ampère
equation with Dirichlet boundary conditions: an augmented Lagrangian approach. C. R.
Acad. Sci. Paris, Ser. I, 336 (2003) 779–784.

Various numerical approaches:
• E.J. Dean, R. Glowinski. Numerical solution of the two-dimensional elliptic Monge–Ampère
equation with Dirichlet boundary conditions: a least-squares approach. C. R. Acad. Sci.
Paris, Ser. I, 339 (2004) 887–892.
• E.J. Dean, R. Glowinski. Numerical methods for fully nonlinear elliptic equations of the
Monge–Ampère type. Comput. Methods Appl. Mech. Engrg. 195 (2006) 1344–1386.
• X. Feng, M. Neilan. Galerkin methods for the fully nonlinear Monge–Ampère equation
(arXiv:0712.1240).
• X. Feng, M. Neilan. Mixed finite element methods for the fully nonlinear Monge–Ampère
equation based on the vanishing moment method (arXiv:0712.1241).
• G. Loeper, F. Rapetti. Numerical solution of the Monge–Ampère equation by a Newton’s
algorithm. C. R. Acad. Sci. Paris, Ser. I, 340 (2005) 319–324. (A pseudospectral Newton’s
algorithm.)



• J.-D. Benamou, B.D. Froese, A.M. Oberman. Two numerical methods for the elliptic Mon-
ge–Ampère equation. Preprint, 2009 [www.divbyzero.ca/froese/w/images/4/40/MA.pdf].
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An iterative Newton–Krylov solver with preconditioning (finite differences,
modest accuracy required, discrepancies the order of 10−3 − 10−4 acceptable):
• G.L. Delzanno, L. Chacón, J.M. Finn, Y. Chung, G. Lapenta. An optimal robust equidis-
tribution method for two-dimensional grid adaptation based on Monge–Kantorovich opti-
mization. J. Comput. Physics, 227 (2008) 9841–9864. (256× 256 grid, contrast ratio= 8886,
discrepancy=7.78× 10−5, 70 s. of a 2.4 GHz Intel Xeon processor.)
• J.M. Finn, G.L. Delzanno, L. Chacon. Grid generation and adaptation by Monge–Kantoro-
vich optimization in two and three dimensions. Proceedings of the 17th International Meshing
Roundtable (2008) 551–568.



The “2nd order divergence” form

A Fourier integral solution in RN : u =
∫
RN ũ(ω)eiω·x dω.

det ‖aij‖ ≡
1

N !

∑

i1,...,iN ,
j1,...,jN

εi1...iNεj1...jN
N∏

n=1
ainjn (εp1...pN is the unit antisymmetric tensor of rank N)

⇒ det ‖uxixj‖ =
(−1)N

N !

∑

i1,...,iN ,
j1,...,jN

εi1...iNεj1...jN
N∏

n=1

∫

RN
ũ(ω)ωinωjne

iω·x dω

=
(−1)N

N !

∫

RN
...

∫

RN




∑

i1,...,iN

εi1...iN
N∏

n=1
ωn
in








∑

j1,...,jN

εj1...jN
N∏

n=1
ωn
jn





×



N∏

n=1
ũ(ωn)



 exp



i
N∑

n=1
ωn · x



 dω1... dωN

=
(−1)N

N !

∫

RN
...

∫

RN
det2

∥∥∥∥∥∥
ω1, ...,ωN−1,ω −

N−1∑

n=1
ωn

∥∥∥∥∥∥

×



N−1∏

n=1
ũ(ωn)



 ũ



ω −
N−1∑

n=1
ωn



 eiω·x dω1... dωN−1dω

(
∥∥∥ω1, ...,ωN

∥∥∥ is the N ×N matrix comprised of columnar vectors ω1, ...,ωN)



=
(−1)N

N !

∫

RN
...

∫

RN
det2

∥∥∥ω1, ...,ωN−1,ω
∥∥∥




N−1∏

n=1
ũ(ωn)



 ũ



ω −
N−1∑

n=1
ωn



eiω·xdω1... dωN−1dω.

“Reverse engineering” yields the “second-order divergence” form of the MAE in RN :

1

N !

∑

i1,...,iN ,j1,...,jN
εi1... iNεj1... jN

(

uxi1xj1 ... uxiN−1xjN−1u
)

xiN xjN

= f.

If u is space-periodic, and φ is a smooth function with a finite support,

1

N !

∑

i1,...,iN ,
j1,...,jN

εi1... iNεj1... jN
∫

RN uxi1xj1 ... uxiN−1xjN−1uφxiN xjN
dx =

∫

R3 fφ dx.

∀u ∈ W 2
N−1(T

N) the integrals
!!!!
are

!!!!!!!!!!!!!!!!!
well-defined

(by the Sobolev embedding theorem, ∇u ∈ L2(N−1)(T
N) ⇒ u ∈ L∞(TN) ).

By contrast, integrals in the similar identity obtained by one integration by parts

!!!!
are

!!!!!
not

!!!!!!!!!!!!!!!!!
well-defined for u ∈ W 2

N−1(T
N).



The Fourier integral form of the MAE

For a space-periodic solution, 0 =
∫

T 3 f dx.

To accommodate f > 0 (of interest in cosmology), let

u =
c

2
|x|2 + u′, 〈u′〉 = 0.

〈·〉 denotes the average: 〈f〉 = lim
L→∞

1

(2L)3

∫

[−L,L]3
f(x) dx.

cN = 〈f〉; f/cN =
∫

RN
˜f (ω)eiω·x dω.

∇2u′ =
∫

RN ϕ̃(ω)eiω·x dω, u′ =
∫

RN ũ′(ω)eiω·x dω

⇒ ũ′(ω) = −ϕ̃(ω)/|ω|2.



det ‖u′xixj
‖ = 1

N !

∫

RN
...

∫

RN
det2

∥∥∥∥iω1, ..., iωN−1, iω−∑N−1
n=1 ωn

∥∥∥∥

×



N−1∏

n=1
ϕ̃(ωn)



 ϕ̃



ω −
N−1∑

n=1
ωn



 eiω·x dω1... dωN−1dω

(ia is a unit vector in the direction of a). Consider the term of order m < N in u′:

(−1)m

N !

∑

i1,...,iN ,j1,...,jN

εi1...iNεj1...jN
∑

|σ|=m




∏

n: in,jn∈σ

∫

RN
ũ′(ω)ωinωjne

iω·x dω




∏

n: in or jn∈/σ
δinjn

(the sum
∑

|σ|=m is over all subsets σ ⊂ {1, ..., N} of cardinality m; δinjn is the Kronecker
symbol)

=
(−1)m

m!

∑

1≤p1<...<pN−m≤N

∫

RN
...

∫

RN




∑

j1,...,jm

εj1...jmp1...pN−m

m∏

n=1
ωn

jn




2

×



m∏

n=1
ũ′(ωn)



 exp



i
m∑

n=1
ωn · x



 dω1... dωm

=
∫

RN
...

∫

RN
Am

(
iω1, ..., iωm−1, iω−∑m−1

n=1 ωn

)

×



m−1∏

n=1
ϕ̃(ωn)



 ϕ̃



ω −
m−1∑

n=1
ωn



 eiω·x dω1... dωm−1dω,



where Am(i
1, ..., im) ≡ 1

m!

∑

1≤p1<...<pN−m≤N
M 2

p1...pN−m
(i1, ..., im)

is the sum of squares of all minors of rank m,

Mp1...pN−m(i
1, ..., im) ≡

∑

j1,...,jm

εj1...jmp1...pN−m(i
1)j1... (i

m)jm,

obtained by crossing out rows of numbers p1 < ... < pN−m from the N ×m matrix

Mm ≡
∥∥∥i1, ..., im

∥∥∥ ,

comprised of m columnar vectors i1, ..., im.

The Fourier integral form of the MAE:

ϕ̃(ω) +
N∑

m=2

∫

RN
...

∫

RN
Am

(
iω1, ..., iωm−1, iω−∑m−1

n=1 ωn

)

×



m−1∏

n=1
ϕ̃(ωn)



 ϕ̃



ω −
m−1∑

n=1
ωn



 dω1... dωm−1 = f̃(ω), ∀ω 0= 0.



Sharp bounds for the kernels Am in the Fourier integral form:

0 ≤ Am(i
1, ..., im) ≤ 1

m!

By the Gram–Schmidt orthogonalisation process, change is → js such that
(i) j1 = i1,
(ii) ∀s, js differs from is by a linear combination of is

′
for s′ < s (⇒ Am is unaltered),

(iii) ∀s, js is orthogonal to all js
′
for s′ < s

⇒ |js| = sin θs, where θs is the angle between is and the subspace spanned by {is′| s′ < s}.
Denote vs = ijs.

⇒ Am(i
1, ..., im) = Am(v

1, ...,vm)
m∏

s=2
sin2 θs

Denote M′
m ≡

∥∥∥v1, ...,vm
∥∥∥ and tM′

m the transpose of M′
m.

det ‖aij‖ =
∑

j1,...,jm

εj1...jm
m∏

i=1
aiji ⇒

∑

1≤p1<...<pN−m≤N
M 2

p1...pN−m
(v1, ...,vm) = det(tM′

mM′
m)

(the orthogonality of {v1, ...,vm} is not required).



Enlarge the set {v1, ...,vm} by vectors vs for s > m to a complete orthonormal basis in RN

⇒ V = ‖v1, ...,vN‖ is an orthogonal matrix.

Let E be an N ×m matrix, such that Eps = 0 except for Ess = 1 ∀s, 1 ≤ s ≤ m.

⇒ M′
m = VE ,

⇒ det(tM′
mM′

m) = det(tE tVVE) = det(tEE) = det Im = 1

(Im is the identity matrix of size m).

⇒ Am(i
1, ..., im) =

1

m!

m∏

s=2
sin2 θs.

QED.



Solution of the MAE for a weakly fluctuating r.h.s.

If f − 〈f〉 is small (relative the mean 〈f〉), then ϕ̃(ω) ≈ ˜f (ω).

ϕ̃K+1(ω) = ˜f (ω)−
N∑

m=2

∫

RN ...
∫

RN Am

(

iω1, ..., iωm−1, iω−∑m−1
n=1 ωn

)

×



m−1∏

n=1
ϕ̃K(ω

n)


 ϕ̃K



ω −
m−1∑

n=1
ωn



 dω1... dωm−1.

Theorem
1◦. Suppose

C0 > 0, C1 > 0,
N∑

m=2

(C0 + C1)m

m!
≤ C1,

∫

RN |˜f (ω)| dω ≤ C0,

and for K = 0 ∫

RN |ϕ̃K(ω)− ˜f (ω)| dω ≤ C1. (∗)
Then (∗) holds true ∀K > 0.



2◦. Under the same conditions,
∫

RN |ϕ̃K+1(ω)− ϕ̃K(ω)| dω ≤ C2

∫

RN |ϕ̃K(ω)− ϕ̃K−1(ω)| dω,

max
ω∈RN

|ϕ̃K+1(ω)− ϕ̃K(ω)| ≤ C2 max
ω∈RN

|ϕ̃K(ω)− ϕ̃K−1(ω)|,

hold true ∀K > 0, where

C2 ≡
N−1∑

m=1

(C0 + C1)m

m!
.

If C2 < 1, the iterations converge to a solution, unique in the ball
∫

RN |ϕ̃(ω)− ˜f (ω)| dω ≤ C1.

For N = 3, C0 =
√
3− 4/3, C1 = 1/3.

Note that C0 < 1 and hence
∫

RN |˜f (ω)| dω ≤ C0 implies f > 0 everywhere.
Note that the domain of the solution is non-compact (the entire RN).



The “convolution” form of the MAE
Set

ξ̃(ω) ≡
√
ũ(ω)/(2π)N (ξ̃(0) = 0),

arg(ξ̃(ω)) = arg(ũ′(ω))/2, if | arg(ũ′(ω))| < π;
arg(ξ̃(ω)) = − arg(ξ̃(−ω)), if arg(ũ′(ω)) = π.

⇒ ξ(x) ≡
∫

RN
ξ̃(ω)eiω·x dω is a real-valued function (not uniquely defined).

Consider the term of order m in u′ (note
∫

RN
eiω·x dω = (2π)Nδ(x)):

(−1)m
∫

RN
...

∫

RN
Am

(
ω1, ...,ωm

)



m∏

n=1
ũ′(ωn)



 exp



i
m∑

n=1
ωn · x



 dω1... dωm

=
(
−(2π)N

)m ∫

RN
...

∫

RN
Am

(
ξ̃(ω1)ω1, ..., ξ̃(ωm)ωm

)
exp



i
m∑

n=1
ωn · x



 dω1... dωm

= (2π)−Nm
∫

RN
...

∫

RN
Am

(∫

RN
∇ξ(x)e−iω1·x1

dx1, ...,
∫

RN
∇ξ(x)e−iωm·xm

dxm
)

× exp



i
m∑

n=1
ωn · x



 dω1... dωm

=
1

m!

∫

RN
...

∫

RN
det

(
t‖∇ξ(x1), ...,∇ξ(xm)‖‖∇ξ(x− x1), ...,∇ξ(x− xm)‖

)
dx1... dxm.



The “convolution” form of the MAE:

1 +
N∑

m=1

1

m!

∫

RN ...
∫

RN det
(
t‖∇ξ(x1), ...,∇ξ(xm)‖

×‖∇ξ(x− x1), ...,∇ξ(x− xm)‖
)
dx1... dxm = f/cN.

A test problem with a cosmological flavour
The reconstruction of the dynamical history of the Universe from present observations of the
spatial distribution of masses:
• The distribution of masses at the epoch of matter-radiation decoupling (∼380 000 years
after the Big Bang) is uniform.
• For the dynamics of matter on sufficiently large scales (of the order of a few million light
years) the Lagrangian map from initial to current mass locations is approximately the gra-
dient of a convex potential. This holds exactly for the Zel’dovich approximation and for its
refinement, the first-order Lagrangian perturbation approximation.
• The potential of the map satisfies the MAE, whose r.h.s. is the (known) ratio of densities
at the present and initial positions.
• The r.h.s. being positive, the solution is a convex function.



+We solve the MAE for N = 3 and a mass distribution for G “localised objects” (δ is small):

f = δ−3
G∑

g=1
f (g)



r− r(g)

δ



 .

+ The g-th “object” of massm(g) > 0 is located at r(g) and has a Gaussian density distribution:

f (g)(r) =
m(g)

(σ(g)
√
π)3

exp(−|r/σ(g)|2).

+ We seek a solution u = c
2 |x|

2 + u′ with a space-periodic zero-mean u′, assuming that
the space-periodic r.h.s. f̂ of the MAE is the sum of “clones” of f (g) over all periodicity cells.

+ The total mass is normalised:

∫
f(r) dr =

G∑

g=1
m(g) = 1 ⇒ c = 1.



An exact solution to the MAE
for a spherically symmetric mass distribution

In spherical coordinates centred at r(g), for spherically symmetric u and f , the MAE is

ρ−2
∂2u

∂ρ2

(
∂u

∂ρ

)2

= δ−3f,

where ρ = |r− r(g)|. A solution,

u(ρ, δ) =
∫ ρ

0

(

3
∫ r′/δ

0
r2f(r) dr

)1/3

dr′,

has uniformly bounded first derivatives:

∂u

∂xi
=

xi
ρ

(

3
∫ ρ/δ

0
r2f(r)dr

)1/3

= O(δ0)

and O(δ−1) second derivatives:

∂2u

∂xi∂xm
= δ−1

xixm
ρ2

(
ρ

δ

)2

f
(
ρ

δ

)(

3
∫ ρ/δ

0
r2f(r)dr

)−2/3
+

(

δim −
xixm
ρ2

)
1

ρ

(

3
∫ ρ/δ

0
r2f(r)dr

)1/3

,



since
• |xixm/ρ2| ≤ 1;
• for ρ < δ, f(ρ/δ) is uniformly bounded and

c(ρ/δ)3 ≤
∫ ρ/δ

0
r2f(r)dr ≤ c(ρ/δ)3

for some positive constant c and c;
• for ρ ≥ δ, (ρ/δ)2f(ρ/δ) is uniformly bounded and

0 < c′ ≤
∫ ρ/δ

0
r2f(r)dr ≤ c′

for some constant c′ and c′.

Moreover, if ρ is larger than a positive constant, f(ρ/δ) = o(δ3),
⇒ all second derivatives of u are uniformly bounded outside any sphere of a fixed radius.



A one-cell solution to the MAE
for G > 1 spherically symmetric localised objects

A solution for G > 1 objects can be expected to admit a power series expansion

u(r) =
∑

n=0
un(r, δ)δ

n, (∗)

where ∀n (by analogy with the one-object solution) un(r, δ) = O(δ0) and |∇un(r, δ)| = O(δ0).
We can expect interaction of one-object solutions u(g)(|r− r(g)|, δ) to be asymptotically unim-
portant:

u0(r) =
∑

g=0
u(g)(|r− r(g)|, δ).

Consider a neighbourhood of an object γ. In the leading order, the l.h.s. of the MAE is
det ‖u0 xixj

‖. For g 0= γ, |u(g)xixj
| = O(δ0) ⇒ only triple products of u(γ)xixj

contribute in the
leading order, O(δ−3); they do match the l.h.s. (Nonlinear interaction of pairs of one-object
solutions is O(δ−2), and that of triplets O(δ−1).)
Nevertheless, (∗) is NOT the leading order term: it is O(|r|) for |r|→∞, and not O(|r|2).
Furthermore, we cannot construct a global periodic solution summing up the periodically dis-
tributed “clones” of one-cell solutions (∗) – the sum is infinite; there would be infinitely many
pairwise interactions between objects yielding products of the order O(δ−2), and the pairwise
interaction does not become weaker when the distance between the interacting objects grows.



Numerical solution of the odd-dimensional MAE

A basic solver, FPAR

An observation: If the kernels Am in the Fourier integral form

ϕ̃(ω) +
N∑

m=2

∫

RN
...

∫

RN
Am

(
iω1, ..., iωm−1, iω−∑m−1

n=1 ωn

)

×



m−1∏

n=1
ϕ̃(ωn)



 ϕ̃



ω −
m−1∑

n=1
ωn



 dω1... dωm−1 = f̃(ω), ∀ω 0= 0

are frozen: Am = am, the new system of equations is just the Fourier form of the equation

N∑

m=1
amη

m = f/〈f〉

in the physical space.



The Fixed Point Algorithm for the Regular part of the MAE:

For η = ∇2u′, transform the MAE:
N∑

m=1
amη

m = f/〈f〉+ F (η),

where F (η) ≡
N∑

m=1
amη

m − det ‖∇−2(ηxixj) + δij‖.

Iterate in the physical space:
N∑

m=1
amη

m
K = f/〈f〉+ F (ηK−1).

0 ≤ Am ≤ 1/m! for m > 0 ⇒ it is practical to set a1 = 1; am = 1/(2m!) for m > 1.
For a1 = 1, the linear in u′ term is treated exactly,

F (η) =
N∑

m=2

∫

RN
...

∫

RN
(Am(iω1, ..., iωm)− am)




m∏

n=1
ϕ̃(ωn)



 exp



i
m∑

n=1
ωn · x



 dω1... dωm − 1,

and for m ≥ 2, for our am, |Am(iω1, ..., iωm)− am| ≤ am.
The l.h.s. “captures” the nonlinear behaviour of the l.h.s. of the MAE, and the algorithm has
chances to converge. Since |Am − am| = am for the extreme values of Am, convergence is not
guaranteed.



Lemma. ∀ odd N and the chosen am,

PN(η) ≡
N∑

m=1
amη

m = /

has a unique root for any r.h.s.
Proof .

P ′N(η)− P ′′N(η) =
1

2



1 +
ηN−1

(N − 1)!



 .

At a minimum of P ′N(η), P
′′
N(η) = 0 ⇒ P ′N > 0 identically. QED.

(Similarly, ∀ even N the number of roots of PN is 0 or 2.)
In an application to a test problem inspired by cosmology produces a sequence of iterations,
initially converging, but subsequently blowing up.



A more advanced solver, ACPDM
(Algorithm with Continuation in a Parameter and Discrepancy Minimisation)

I. Continuation in the parameter p ∈ [0, 1]:
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

A generalisation of the MAE: Q(η; p) ≡
N∑

m=1
amη

m − f/〈f〉 − pF (η) = 0, (∗)
For p = 0, this is a set of polynomial equations of degree N ; for p = 1 this is the MAE.
Solve (∗) for some pj increasing from 0 to 1, with application of the FPAR iterations

N∑

m=1
amη

m
K = f/〈f〉+ pF (ηK−1).

Obtain an initial approximation of the solution for p = pj by polynomial extrapolation over
all nodes pj′ < pj (use quadruple precision).

We monitor the r.m.s. discrepancy d(η, p) ≡
√〈(

Q(η; p)− 〈Q(η; p)〉
)
2
〉
.

(Note 〈Q(η; 1)〉 = 0 ⇒ d(η, 1) ≡
√〈(

det ‖∇−2ηxixj + δij‖ − f/〈f〉
)
2
〉
.)



II. Minimisation of the residual in Krylov spaces:
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

(The idea is borrowed from, e.g., GMRES; actually we employ a pJFNK without N.)
If η′ and η′′ are approximate solutions to the gMAE, Q(η; p) = 0, then

Q(η′; p)−Q(η′′; p) = J(η′ − η′′) +O(‖η′ − η′′‖2),

where J is the operator of linearisation of the gMAE around the solution.

Let (·, ·) denote a scalar product, e.g., of the Lebesgue space L2(T 3): (u,v) =
∫

T 3
u(x)v(x)dx

and ‖ · ‖ the induced norm of a scalar field: ‖v‖ ≡
√
(v,v).

ACPDM proceeds by sequences of stabilised iterations. (f > 0 is not required.)

To make an iteration, an approximate solution ηK , and two sets of S scalar fields, vs(x) and
ws(x), 0 ≤ s ≤ S, where 0 ≤ S ≤ Smax (in our runs, Smax = 5), are required.
All vs are mutually (·, ·)-orthogonal, and vs = Jws +O(‖ws‖2) for small ws.

A sequence of stabilised iterations of ACPDM is initialised using the current approximation
η0 for computation of an FPAR iteration η1 = η′1, and setting S = 0.



For K > 1, a
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
stabilised iteration of ACPDM consists of 6 steps:

i. Make an FPAR iteration, i.e., at each grid point in the physical space solve

N∑

m=1
am(η

′
K)

m = f/〈f〉+ pF (ηK).

ii. Compute the discrepancy field Q(η′K).
iii. Orthogonalise v′ ≡ Q(η′K)−Q(η′K−1) to all vs, 1 ≤ s ≤ S, and set

vS+1 = v′ −
S∑

s=1

(v′, vs)

(vs, vs)
vs, wS+1 = η

′
K − η′K−1 −

S∑

s=1

(v′, vs)

(vs, vs)
ws.

iv. Minimise the discrepancy ‖Q(η′K −
∑S

s=1 qsws)‖, setting

ηK+1 = η
′
K −

S+1∑

s=1

(Q(η′K), vs)

(vs, vs)
ws.

v. If S < Smax, increase S by 1; otherwise (i.e., if S = Smax), discard v1 and w1, and decrease
by 1 the indices s of the remaining Smax fields vs and ws.
vi. Compute the r.h.s. of the equation defining the iterations for η′K+1, Q(ηK+1), and d(ηK+1).
If d(ηK+1) < ε, then ηK+1 is the approximate solution for the present p.
If ‖Q(ηK+1)‖ > ‖Q(ηK)‖, the current sequence is terminated
(the effect of the nonlinearity is significant; need small Smax).



Summary.

• ACPDM performs continuation in the parameter p.

• For a given p, start by carrying out the FPAR iterations.

• When the convergence slows down (in our runs d2(ηK) > d2(ηK−1)/2),
start a sequence of stabilised iterations.

• If the sequence terminates in step vi, make the FPAR iterations
while d2(ηK) > αd2(ηK−1); upon termination, start a new sequence.
(α can slightly exceed 1 in order to allow the transients to die off and the dominant instability

modes to set in; we employed α = 1.05).



Application to a test problem inspired by cosmology

A poor man’s Universe: G = 3 galaxies in the periodicity cell T 3, −1/2 ≤ xi ≤ 1/2:

m(1) : m(2) : m(3) =
1
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:
1

32
,

δ = 1, σ(1) = σ(2) =
1
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, σ(3) =

1

8
,
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1

4
(−1, 1,−1), r(2) =

1

4
(1,−1,−1), r(3) =

1

4
(−1,−1, 1).

• The r.h.s. achieves its maximum at r(3) and the minimum at
1

4
(1, 1, 1);

• The contrast number is ≈ 1.313× 107.
• A uniform grid is comprised of 643 points in the periodicity cell T 3.
• det ‖u′xixj

+ δij‖ is computed by the pseudospectral method with dealiasing
(for N = 3 this requires to compute u′xixj

in the physical space on the grid of 1283 points).
• The fall off of the energy spectrum of η = ∇2u′ is fast (11 orders of magnitude).



+ When applied for J = 20 nodes pj = j/J , j = 0, ..., J − 1, convergence of ACPDM is fast.
+ A polynomial 20-node extrapolation yields an approximate solution with the accuracy
d(η, 1) = 0.47× 10−2 and d∞(η, 1) = 0.02, where

d∞(η, 1) ≡ max
T 3

∣∣∣∣det ‖u′xixj
+ δij‖ − f̂/〈f̂〉

∣∣∣∣.

+ When it is used as an initial approximation for a run for p = 1, the pattern of convergence
is erratic; after 38 685 evaluations of the determinant of the Hessian, d(η, 1) = 0.99 × 10−9

and d∞(η, 1) = 0.39× 10−7, and convergence stalls.
+ ACPDM ceases to stall, after J ′ = 13 nodes are added to the mesh:

pj = j/J, j = 0, ..., J − 1; pJ+j−1 = 1− (2jJ)−1, j = 1, ..., J ′.

+ A polynomial extrapolation over the 33 nodes yields an approximate solution u′ for p = 1
to the accuracy d(η) = 0.78× 10−7 and d∞(η) = 0.20× 10−5. After further 1 885 evaluations
of the determinant (9 814 in total) ACPDM yields a solution with the accuracies 10−10 and
0.26 × 10−8, respectively. The duration of the run of a sequential code on a 3.16 GHz Intel
Core Duo processor is 1 hr. 46 min. 24 sec. (wallclock time).



Number of evaluations of the determinant of the Hessian (vertical axis, logarithmic scale)
performed by ACPDM in successive computations of solutions η(pj) to the gMAE to the
accuracy d(η, pj) < 10−10. Horizontal axis: the index j numbering consecutive nodes pj.



(-0.5,-0.5,-0.5)

Isosurfaces of the solution to the test MAE at the levels of a half and 1/8 of the maximum.
The periodicity cell T 3 of u′ is shown.



(-0.5,-0.5,-0.5)

Isosurfaces of ∇2u′ for the solution to the test MAE at the level of 1/3 of the maximum.



x3 x3 x2

x1 x2 x1

∇u′ for the solution to the test MAE on cross sections of the periodicity cell, parallel to
coordinate planes and containing pairs of objects (left to right): x2 = −1/4, x1 = −1/4,
x3 = −1/4. (Due to the hidden symmetry of u′ about each of the three planes, components
of gradients normal to the planes are zero.) The labels xi refer to the Cartesian coordinate
axes, parallel to sides of the cross sections. Stars show locations of the three localised objects
on the cross sections. Gray-scaling codes the masses of the objects (black, gray and white
stars: the objects at r(g), g = 1, 2, 3, respectively).



x3 x3 x2

x1 x2 x1

Isolines step 0.02 of normal components of ∇u′ for the solution to the test MAE (dashed
lines: negative values, solid lines: zero and positive values) on Cartesian coordinate planes
(left to right) x2 = 0, x1 = 0, x3 = 0. The labels xi refer to the Cartesian coordinate axes,
parallel to sides of the shown cross sections of T 3.



A solver for the MAE with an everywhere positive r.h.s., AICDM
The maximum discrepancy between the 20-mode solution and the accurate one, is located at
the minimum of the r.h.s., (1/4, 1/4, 1/4). det ‖uxi,xj‖ < 0 at this point.

The (Algorithm with Improvement of Convexity and Discrepancy Minimisation):
a single node (p = 1) extension of the ACPDM, incorporating

!!!!!!!!!!!!!!!!!
improvement

!!!!
of

!!!!!!!!!!!!!!
convexity of

an approximate solution, which is performed whenever d2(ηK) < βd2(ηK ′). K and K ′ are
the numbers of the current iteration and of the iteration of the previous improvement of
convexity, respectively; β 7 1, we employed β = 0.01.

+ At each grid point in the physical space, compute the eigenvalues λ of ‖∇−2(ηK)xixj
‖

(all real, since the Hessian is a symmetric matrix).

+ If all λ > −1, the approximate solution 1
2|x|

2 + u′ is locally convex ⇒ no action taken.

+ Suppose λmin < −1. The minimum eigenvalue would become −1, if u′xixi
is increased ∀i by

−1− λmin, and hence the Laplacian ηK = ∇2u′ is increased by 3(−1− λmin).
⇒ At a point, where λmin < −1 increase ηK by 6(−1− λmin)
(using the factor 6 instead of 3, we “overimprove” ηK).

+ Repeat the procedure till all λ > −1−d(ηK)/2. (The discrepancy d(η′K) for the “improved”
approximation η′K is allowed to exceed the initial discrepancy d(ηK).)



We have inspected convergence of AICDM employing scalar products with weights:

(u,v) =
∫

T 3
u(x)v(x)w(x)dx, where w(x; q) = max

(
1, (f̂/〈f̂〉)q

)
.

Duration of the shortest run, for q = −1/2, with a sequential code on the 3.16 GHz Intel
Core Duo processor is 25 min. 19 sec. (a gain 4 times compared to the ACPDM).

Number of evaluations (NE) of the determinant of the Hessian performed by AICDM with
the use of various weights. All runs are terminated as soon as d(η, 1) < 10−10.
d(η, 1) = 0.66×10−10 for q = −1, d(η, 1) = 0.95×10−10 for q = −3/4 and d(η, 1) = 1.0×10−10

in all remaining cases.

q −1 −3/4 −1/2 −1/4 0 1/4
NE 3 169 2 619 2 465 3 743 2 653 2 571

d∞(η) 0.09× 10−8 0.14× 10−8 0.21× 10−8 0.62× 10−8 0.41× 10−8 0.39× 10−8

q 1/2 3/4 1 5/4 3/2 7/4 2
NE 2 568 2 643 2 523 2 489 2 481 2 505 2 526

d∞(η) 0.37× 10−8 0.39× 10−8 0.36× 10−8 0.38× 10−8 0.39× 10−8 0.41× 10−8 0.37× 10−8



An enhanced version of AICDM, EAICDM

!!!!!!!!!!!
Gradual

!!!!!!!!!!!!!!!
refinement of solutions with the resolution of (16M)3 Fourier harmonics (1 ≤M ≤ 4

is integer). When seeking a 643−harmonics solution of the accuracy d(η, 1) < 10−κ, the
(16M)3 computations are terminated when d(η, 1) < 10−min(κ, 2.5M).
A further acceleration is likely to be achieved by avoiding dealiasing.

Number of evaluations (NE) of the determinant of the Hessian performed by AICDM in
the course of computation of solutions of varying accuracy to the test MAE, and wallclock
duration of runs (DR, seconds) by EAICDM.

d(η) 10−3 10−4 10−5 10−6

d∞(η) 0.64×10−2 0.86×10−3 1.02×10−3 0.23×10−4
NE 64 126 251 439
DR 3.38 4.69 11.17 42.7

d(η) 10−7 10−8 10−9 10−10

d∞(η) 0.28×10−5 0.39×10−6 0.36×10−7 0.41×10−8
NE 1 018 1 515 2 030 2 653
DR 81 203 435 774



Conclusion

• Three novel forms of the Monge–Ampère equation in RN : the second-order divergence,
Fourier integral and convolution forms.
• Three novel algorithms for numerical solution of the MAE with the positive r.h.s. for an
odd N (the positiveness not required for ACPDM).

!!!!!!!!!!!!!!!!!!!!!
Open questions:
+ Does the gMAE always have a solution, as long as the MAE does? Does the solution of
the gMAE depend analytically on the parameter p, and hence polynomial extrapolation for
p = 1 is mathematically sensible?
+ Apparently the algorithms are still applicable for other regions (although the inversion of
the Laplacian becomes more difficult). Do we still need the same am’s?
+ What scalar product is optimal for acceleration of convergence of ACPDM?
+What is the asymptotics of solutions in the small parameter δ determining the width of the
localised objects?
+ How does the contrast number measure numerical complexity of the MAE and, in particular,
the condition number of the linearisation near the solution (for a given spatial discretisation)?
+ Interesting applications for our algorithms.


