
Universiteit Utrecht

MRI Master Class ”Numerical bifurcation analysis of dynamical systems”

Numerical analysis of the accumulation of 1 :2 resonances
in Generalized Hénon Map.
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1 Introduction

In the mid seventies of the last century a truly remarkable discovery was made independently

by M. Feigenbaum [14] and by P. Coullet and C. Tresser [39]. They found that infinite sequences

of period-doubling (flip) bifurcations in one-parameter families of unimodal maps demonstrate

universal properties. Namely, it was found that a sequence of bifurcation parameter values

converges exponentially and the rate of convergence is universal, i. e. independent of a particular

family under consideration.

The first computer-assisted proof of the Feigenbaum universality conjecture has been given

by O. Lanford [27]. Much later a ”conceptual” proof has been found, with major contributions

by D. Sullivan [38], M. Lyubich [28, 29], and C. McMullen [30].

The proof lead to huge development of the renormalization theory and holomorphic dynam-

ics tools (although the problem considers real numbers).

Maps corresponding to period-doubling parameter value form a codimension 1 submanifold

in the space of smooth maps. The aim of this research is to extend the Feigenbaum universality
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theory to bifurcations of codimension 2 known as strong resonances [7]. These bifurcations

appear in general two-parameter families.

1.1 Representative planar family

A natural extension of the one-dimensional quadratic family to planar maps is a two-parameter

family of maps introduced by M. Hénon [18] as an example of a planar map with a strange

attractor1. However, this family is not suitable for our goals, since all strong resonances belong

to a straight line and bifurcation structure is degenerate.

In generic dissipative maps, accumulating flip curves can be connected via curves of bifur-

cations with two eigenvalues on the unit circle2. If eigenvalues are not roots of unity of a small

degree (< 5) and an extra nondegeneracy conditions holds, a closed invariant curve appears

around the fixed point.

For every parameter values on period-doubling curve, Jacobian evaluated at the correspond-

ing fixed point has eigenvalue equals to −1. Sometimes each period doubling curve intersects

a Neimark-Sacker bifurcations curve at a 1:2 resonance point, which means the appearance of

double eigenvalue −1 of the corresponding fixed point.

This is a bifurcation of codimension two and it is possible to have a cascade of bifurcations

of codimension two (an infinite convergent sequence of such bifurcation points).

The first question that naturally arises is “How often does this phenomenon occur?” This

structure has been first discovered numerically in a seasonally forced predator-prey model [23],

and then observed many times, for instance in stock market dynamics [15], laser dynamics

[41], meteorology [40], a driven Van der Pol-Duffing oscillator [26], and Chua’s circuit [2].

All these observations strongly indicated a certain universality (already briefly mentioned in

[8]). However, this phenomenon didn’t receive much attention from mathematical community

although it was studied by physicists. In [41] a treatment of the dynamics has been attempted,

but the global picture is far from being understood. For instance, each 1:2 resonance point is

the origin of two curves of homoclinic tangencies whose behaviour remained a mystery.

A similar bifurcation diagram has been obtained in the dissipative family

G :

(

x

y

)

7→
(

α− βy − x2 + rxy

x

)

(1)

called the generalized Hénon map (GHM). This family has been studied in great detail in

the recent paper [16] and demonstrates the above described 1:2 resonance accumulation for

1The historical situation was converse, a quadratic family appeared as reduction of Hénon map
2Sometimes this bifurcation is called a Neimark-Sacker bifurcation, due to Ju. Neimark [33] and R. Sacker [36].
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|R| < 0.5 and 0 < α < 4; 0.3 < β < 1.1. Hence, we have a representative family of maps we

are looking for.

1.2 The core research questions and answers

The aim of the current research project is to build a solid background for performing analysis of

renormalization operator for strong resonances bifurcations in generic two-parameter families

of planar maps.

We want to describe normal forms near resonance points of high-order iterations and to

prove existence and convergence of an infinite sequence of 1:2 resonances.

Understanding of the behaviour of curves corresponding to global bifurcations, e.g. tangen-

cies of invariant manifolds of saddle cycles, will be helpful for explanation of properties of the

limit flip curve.

It is also interesting to find out dynamical properties of the limit map (e.g. entropy, attrac-

tor, and corresponding p-adic dynamics on the invariant set). The study of the two-dimensional

renormalization is a part of M. Lyubich’s program of proving the Palis conjecture [34, 9].

Here we perform numerical analysis and suggest unfolding for strong 1:2 resonances. The

main results are computed phase portraits and invariant manifolds. It becomes clear, that

invariant manifolds for different iterations looks very similar and they are responsible for dy-

namical picture. This suggest to guess how renormalization operator should be constructed.

Checking different constructions of renormalization operator is the next step in our research

program.

2 Differences with one-dimensional case and difficulties

The main idea of renormalization theory suggests that after a proper scaling second iteration

of the map looks quite similar to the first iteration. That allows to conjecture that doubling map

has similar properties as the map itself. In two-dimensional case it’s nontrivial to understand

how does the graph of the map looks like. Moreover, it’s known that unlike the one-dimensional

case, where there exists a global attractor for a limit map, called Feigenbaum attractor, two-

dimensional map has no invariant domain, and almost all points go to infinity very fast. Thus

direct generalization of the one-dimensional operator is impossible.

Note that for resonant parameter values the map is area-preserving, and since the deter-

minant of Jacobian is a smooth function of the parameters, we should consider maps that are

small perturbation of area-preserving. For area-preserving maps all strong resonances are de-
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generate (actually, all Neimark-Sacker bifurcations are degenerate). However, renormalization

theory has been developed for area-preserving maps and existence and convergence of an in-

finite sequence of curves of period doubling bifurcations is proved with a help of a computer.

The same fact is also proved for maps with a constant Jacobian that are small perturbations of

area-preserving maps. However, in both cases the map could be reduced to one-dimensional,

while bifurcations of codimension two are two-dimensional phenomenon.

From the very beginning we have some computation difficulties. Despite of existence of

attracting periodic cycles, the attraction basins are very thin, almost all points of the smallest

square containing all periodic points go to infinity very fast.

3 Analysis of the first iteration

Here we give som details on computations that has been done in [16]. We start with analysis

of the first iteration. The Jacobian of the generalized Hénon map Fr(x; y) = (y; a−bx−y2+rxy)

is

Jr =

(

0 1

ry − b rx− 2y

)

(2)

Out of the line y = b/r the map is invertible. The inverse map is

F−1
r (x; y) =

(x2 + y − a

ry − b
; x
)

(3)

Generalized Hénon map has two fixed points, when (b+1)2 + 4a(1− r) ≥ 0. Given fixed r,

(b+ 1)2 + 4a(1− r) = 0 is a limit point curve.

The coordinates of two fixed points are

xF
1,2 = yF1,2 =

−(b+ 1)±
√

(b+ 1)2 + 4a(1− r)

2(1− r)
(4)

3.1 Classical Hénon map

Here we analyze bifurcations of the Hénon map. Later we will show that strong resonances and

Neimark-Sacker bifurcations are degenerate.

F0(x; y) = (y; a− bx− y2), Jacobian: J0 =

(

0 1

−b −2y

)

. (5)
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Limit point bifurcation. Limit point bifurcation condition is det(J0−E) |x1,2,y1,2= 0. Given

r = 0 coordinates of the fixed points that undergoes limit point bifurcation are

x1,2 = y1,2 =
−(b+ 1)±

√

(b+ 1)2 + 4a

2
.

After substitution, fixed point bifurcation condition implies

det(J0 − E) |(x1,2,y1,2)= 0 ⇐⇒ 2y1,2 + b+ 1 = 0 ⇐⇒ (b+ 1)2 + 4a = 0

Thus, the limit point bifurcation curve for Hénon map is

a =
−(b+ 1)2

4
(6)

The corresponding fixed points are xLP
1,2 = yLP1,2 = (−(b + 1)/2;−(b + 1)/2). To check that

bifurcation is nondegenerate, we compute restriction to a central manifold.

First, note that for b = det(J0) = 1 another eigenvalue is equal to 1, so strong 1:1 resonance

bifurcation takes place; for b = det(J0) = −1 the second eigenvalue is −1, so limit point – period

doubling bifurcation takes place. Thus we’ll consider cases b = ±1 separately. Let’s begin with

computations of eigenvector and adjoint eigenvector. The eigenvector corresponding to critical

eigenvalue λ = 1 is v = (1; 1)t. The adjoint eigenvector is w = 1
b−1

(b; 1)t. (Recall that b 6= 1.)

The vector w is a projection to a 〈v〉. By the Fredholm alternative theorem, ∀x ∈ R2 we have

decomposition

(x1; x2)
t = 〈(x1; x2)

t, w〉v +
(

(x1; x2)
t − 〈(x1; x2)

t, w〉v
)

=
x1b− x2

b− 1
(1; 1)t +

x1 − x2

b− 1
(1; b)t

We introduce new coordinate vectors (1; 1)t; (1; b)t and coordinate transformation is

G2 : (x1; x2)
t 7→

(

x1b− x2

b− 1
;
x2 − x1

b− 1

)t

and apply a coordinate shift, moving (−(b+ 1)/2;−(b+ 1)/2) to the origin. Let G1 be a shift

map. Then in new coordinates Hénon map (5) takes form

G2G1HG−1
1 G−1

2 :

(x; y)t 7→
(

x+
(x+ by)2

b− 1
− 1

b− 1

(

a+
(b+ 1)2

4

)

; by − (x+ by)2

b− 1
+

1

b− 1

(

a+
(b+ 1)2

4

))t

and restriction to a central manifold is

HLP : x 7→ x+
1

b− 1

(

x2 + 2bxy + (by)2 − a− (b+ 1)2

4

)
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Limit point bifurcation takes place at the origin and is nondegenerate since HLP
xx = 2

b−1
6= 0,

HLP
a = −1

(b−1)
6= 0, and HLP

b = b+1
2(1−b)

6= 0, if b 6= −1.

One can check that limit point bifurcation curve is also nondegenerate. Namely, consider

the system






F0(x; y)− (x; y) = 0

det(F0x(x; y)− E) = 0

Its Jacobian matrix is








−1 1 0 0

−b −2y − 1 1 −x

0 −2 0 1









The rank of the Jacobian matrix is 3, i. e. maximal, thus the curve is non-degenerate.

Period-doubling bifurcation. Period-doubling bifurcation condition is det(J0 |x1,2,y1,2 +E) = 0

which implies

det

(

1 1

−b (b+ 2)±
√

(b+ 1)2 + 4a

)

= 0

The period-doubling bifurcation curve is

a =
3(b+ 1)2

4

As in the limit point bifurcation case, we find that for b = det(J0) = 1 the fixed point has two

multipliers equal to −1, it is a strong 1:2 resonance bifurcation, and for b = −1 period-doubling

and limit point bifurcation curves intersect at fold-flip bifurcation point (a; b) = (0;−1).

Now let’s compute restriction onto a central manifold. The critical eigenvector, correspond-

ing to −1 is v = (−1; 1)t, the adjoint eigenvector is w = 1
1−b

(b; 1)t. The Fredholm alternative

theorem implies the following decomposition ∀x ∈ R2:

(x1; x2)
t =

x1b+ x2

1− b
(−1; 1)t +

x1 + x2

1− b
(1;−b)t

we introduce new coordinate vectors (−1; 1)t and (1;−b)t. The coordinate transformation is

G2 : (x1; x2)
t 7→

(x1b+ x2

1− b
;
x1 + x2

1− b

)

We apply a coordinate shift, moving ((b+1)/2; (b+1)/2) to the origin. Let G1 be a shift map.

Rewritten in new coordinates, the Hénon map(5) reads

G2G1F0G
−1
1 G−1

2 : (x1; x2)
t 7→

(

−x1 +
1

1− b

(

a− 3(b+ 1)2

4
− (x1 − bx2)

2
)

;−bx2 +
1

1− b

(

a− 3(b+ 1)2

4
− (x1 − bx2)

2
)

)
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The restriction to a central manifold is

HPD : (x1; x2) 7→ −x1 +
1

1− b

(

a− 3(b+ 1)2

4
− (x1 − bx2)

2
)

The period-doubling bifurcation is non-degenerate, since HPD
x1x1

= 2
b−1

6= 0, HPD
a = 1

1−b
6= 0,

HPD
b = 3(b+1)

2(b−1)
6= 0, if b 6= ±1. We can check that period-doubling bifurcation curve is nonde-

generate. As for the limit point bifurcation, we have the system






F0(x; y)− (x; y) = 0

det(F0x(x; y) + E) = 0

The Jacobian matrix is








−1 1 0 0

−b −2y − 1 −1 −x

0 −2 0 1









The rank of the Jacobian matrix is maximal, hence the period-doubling bifurcation curve is

nondegenerate.

Neimark-Sacker bifurcation Neimark-Sacker bifurcation condition J0 = 1 implies b = 1.

The fixed points are x = y = −1 ±
√
1 + a, and for eigenvalue of the Jacobian matrix we have

λ = cosφ + i sin φ with cosφ = 1 ±
√
1 + a, so a ∈ [−1; 3]. We skip computations here and

provide normal form coefficient:

d =
1

1− λ̄2

(

2 +
1 + 2λ2

λ4 + 1

)

Thus ℜ(λ̄d) = 0 and the bifurcation is degenerate, the bifurcation curve is a straight line.

3.2 Bifurcations of generalized Hénon map

Recall that generalized Hénon map is

Fr : (x; y) = (y; a− bx− y2 + rxy); (1)

and its Jacobian is

Jr =

(

0 1

ry − b rx− 2y

)

. (2)

To analyze bifurcations structure we use the same way as for Hénon map. The following

formulas will be used. Let

B(x, y) =
2
∑

j,k=1

∂2Fr

∂xj∂yk
xjyk =

(

0

r(x1y2 + y1x2)− 2x2y2

)
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be the bilinear form corresponding to Fr. Let v be an eigenvector corresponding to the critical

eigenvalue and w be an adjoint eigenvector.

In the case of the limit point bifurcation, topological normal form of the restriction to a

central manifold is defined by

HLP : x 7→ γ + x+ ax2 +O(x3); a =
〈w,B(v, v)〉

2
. (7)

Here a is a normal form coefficient responsible for a type of bifurcation.

For period-doubling bifurcation, the restriction to the central manifold is defined by

HPD : x 7→ −(1 + γ)x+ bx3 +O(x4); b =
〈B(v, (E − JPD

r )−1B(v, v)), w〉
2

(8)

Here b is a normal form coefficient responsible for bifurcation type.

In the case of Neimark-Sacker bifurcation, a central manifold is two-dimensional and re-

striction to the central manifold could be written in complex coordinate z = x+ iy:

HNS : z 7→ eiθ(γ)(1 + γ)z + dz|z|2 +O(|z|4)

here d is a normal form coefficient given by

d =
〈w, 2B(v, (E − J0)

−1B(v, v̄)) +B(v̄, (e2iθ0E −A)−1B(v, v))〉
2

(9)

where v is a (complex) eigenvector corresponding to critica eigenvalue λ = eiθ0 and J t
rw = e−iθ0w.

To prove that bifurcations of this three types are non-degenerate, it’s enough to show that

normal form coefficients are nonzero and to check that ℜ(e−iθ0d) 6= 0 in the Neimark-Sacker

case.

Now we are proceed to computations.

Limit point bifurcation. As before, we compute bifurcation point from the bifurcation

condition det(Jr − E) |x1,2,y1,2= 0. Given the Jacobian (2) it follows that xLP = yLP = b+1
2(r−1)

and together with expression for the fixed point (4) we have a period-doubling curve

a =
(b+ 1)2

4(r − 1)
.

The Jacobian matrix evaluated at the fixed point has the critical eigenvector v = (1; 1)t and

the adjoint eigenvector is w =
(

r(1−b)+2b
2(r−1)

; 1
)

. Using formula (7) for the normal form coefficient,

we get

a =
2(r − 1)2

3r − 2 + b(2− r)
;

the normal form coefficient for the fold bifurcation. Since a 6= 0 for |r| < 1, the limit point

bifurcation is nondegenerate.
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Period-doubling bifurcation. Period doubling bifurcation condition is det(Jr + E) = 0.

This implies xPD = yPD = b+1
2
. Together with expression for the fixed point (4) it gives us

period-doubling bifurcation curve

a =
3(b+ 1)2

4(1− r)

The Jacobian matrix evaluated at a period – doubling point given above has critical eigenvector

v = (−1; 1)t and adjoint eigenvector w = 2
(r−b(2−r))+2

((b(2−r)−r)/2; 1)t. The formula (8) gives

us normal form coefficient

b =
8(r + 1)

(b+ 1)(4− r)(2 + r − b(2 − r))
.

We see that for b 6= 1 period-doubling bifurcation is nondegenerate and b = −1 gives us a

fold-flip bifurcation point of codimension two.

Neimark-Sacker bifurcations. Neimark-Sacker condition implies that two eigenvalues are

complex conjugated pair and belong to the unit circle, thus their product is equal to 1. Hence

det(Jr) = b − ry = 1 and xNS = yNS = (b − 1)/r. Using general expression for the fixed

points (4), we get neutral saddle curve:

a =
(b− 1)(b− 1 + 2r)

r2
(10)

We have to exclude values corresponding to λ1 > 1, λ2 = 1/λ1 < 1 and vice versa. We

rewrite |λ| = 1 in trigonometric form λ = cosφ+ i sin φ and substitute it to the characteristic

polynomial det(Jr |xNS ,yNS
−λE) = 0.

cos φ =
(1− b)(2− r)

2r
.

This gives us the condition
∣

∣

∣

(1−b)(2−r)
2r

∣

∣

∣
< 1. So the neutral saddle curve (10) is a Neimark-Sacker

curve onto the intervals

2− 3r

2− r
< b <

r + 2

2− r
, if r > 0

r + 2

2− r
< b <

2− 3r

2− r
, if r < 0

To compute normal form coefficient, one needs critical eigenvector and an adjoint eigenvector.

Let’s compute eigenvalue and then compute coefficient in terms of eigenvalue.

λ =
1

2r

(

(1− b)(2 − r) + i
√

4r2 − (1− b)2(2− r)2
)

(11)
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The Jacobian matrix evaluated at a Neimark-Sacker point has critical eigenvector v = (λ; 1)t

and an adjoint eigenvector is 1
1−λ2 (−λ; 1)t. The normal form coefficient is (9)

d =
1

1− λ̄2

(

2(b(r − 2)− r)

b(2− r) + r + 2
(r(λ− 1)− 2) +

(rλ− 1)(r(λ− 1)− 2λ2)

λ4 − (b− 1)(r − 2)λ
2

2
+ 1

)

This formula looks dangerous, but we have to deal with ℜ(e−iθd). Now we are lucky:

cNS =
(1− r)r2

2(b(2− r)− (2− 3r))
6= 0

We see that cNS 6= 0 for r 6= 1 and r 6= 0 Neimark-Sacker bifurcation is nondegenerate.

Strong resonances. Recall the expression for eigenvalues (11) in the Neimark-Sacker case:

λ =
1

2r

(

(1− b)(2 − r) + i
√

4r2 − (1− b)2(2− r)2
)

Strong resonance 1 : 1: λ1 = λ2 = 1

a =
4(r − 1)

(r − 2)2
; b =

2− 3r

2− r
; x = y =

2

r − 2

Strong resonance 1 : 2: λ1 = λ2 = −1

a =
4(3− r)

(r − 2)2
; b =

r + 2

2− r
; x = y =

b− 1

r

Note that b-values corresponding to 1 : 1 and 1 : 2 resonances is boundary points of the interval

corresponding to Neimark-Sacker curve.

Strong resonance 1 : 3: λ1,2 = (1± i
√
3)/2

a =
5− 2r

(r − 2)2
; b =

2

2− r
; x = y =

b− 1

r

Strong resonance 1 : 4: λ1,3 = ±1; λ2,4 = ±i.

a = 0; b = 1; x = y = 0.

4 Numerical analysis

Now we fix r = −0.1 to get a family of slightly dissipative, that are better for numerical

experiments. Extensive numerical analysis of the Generalized Hénon map (1) has been done

in [16], but accumulation of 1 :2 has not been considered.
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4.1 Phase portraits

We start numerical analysis of the map (1) with computations of bifurcation curves and phase

portraits. Then we proceed to computation of global bifurcation curves.

Since for almost all parameter values close to the strong 1 : 2 resonances almost all points

turn to infinity quadratically, to plot phase portraits near periodic points we perform as follows.

We consider a thin grid on the square ∆ = {(x, y) | ‖x‖ ≤ 3, ‖y‖ ≤ 3} and apply N > 1000

iterations. Then we choose points that don’t go to infinity too fast:

Λ = {(x, y) ∈ ∆ | f ◦N(x, y) < 1016}.

The choice of the constant 1016 is given by the default double float precision. Then we plot first

100 or 50 iterations of representative points of Λ with qualitatively different behaviour. We

also plot first 100 iteration of all points of Λ. This gives us a domain of attraction in the case

of an attracting forward invariant set (a fixed point, a periodic point, or an invariant curve).

Besides local bifurcations, a lot of global bifurcations, such as homoclinic tangencies. The

mechanism is the following. When a point lost stability via a period-doubling bifurcation, it

becomes a saddle, since one of multipliers cross the unit circle. This saddle point has two

invariant manifolds, stable and unstable one. For parameter values close to period-doubling

curve, two manifolds are smooth curves and unstable manifold turns to the stable period two

point in the backward time, and stable manifold “goes around” period two cycle. When the

parameter a grows up while parameter b remains fixed, two manifolds become tangent to each

other, and then a transversal intersections occur. (See figures in the part 4.2 below).

The are also many periodic points born via Arnold tongues mechanism. They also lost

stability via limit point bifurcations and become saddles, giving a lot of homoclinic tangencies

bifurcations. We compute invariant manifolds for several cycles, although we don’t study the

global bifurcations of high iterations that are not a degree of 2.

Here and below we keep the following notations: limit point curves are red, period-doubling

curves are green, Neimark-Sacker curves are blue, homoclinic tangencies are orange. We abuse

notations by put only numbers on bifurcation diagrams, but Dk refers to the region number

k in the text. Note that since the GHM map is orientation reversing, each point is connected

with its second iteration. Otherwise, the picture would be unreadable.
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Partial bifurcation diagram for the GHM (1) on the (b, a)-plane.

type curves coordinates coefficients

First Iteration

Limit point curve (LP)

LPPD PD ∩ LP 0; -1 0.55 0.225 -0.06566

R1 LP ∩ NS -0.9977; 1.095 -1

Period Doubling (PD)

R2 PD ∩ NS 2.812; 0.9048 -0.9 -0.0275

LPPD PD ∩ LP 0; -1 0.55 0.225 -0.06566

Neimark Sacker (NS)

R3 NS 1.179; 0.9524 -0.02015

R2 PD ∩ NS 2.812; 0.9048 -0.9 -0.0275

R4 NS -1.434e-09; 1 -0.05753 -1.198

R1 LP ∩ NS -0.9977; 1.095 -1

Second Iteration

Period Doubling (PD2)

R2 PD2 ∩ NS2 3.827; 0.91 -31.44 0.1158

R2 PD2 1; -1.005 -8.067 5.774e-03

Neimark Sacker (NS2)

R4 NS2 3.320 ; 0.9074 5.986e-03 -0.5873
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R3 NS2 3.573 ; 0.9087e-01 2.182e-03

R2 NS2 ∩ PD2 3.827; 0.91 -31.43 0.1158

Forth Iteration

Period doubling (PD4)

R2 NS4 ∩ PD4 3.943; 0.909 -459.8 -0.2282

Neimark Sacker (NS4)

R4 NS4 3.886; 0.9095 -7.774e-04 -0.6239

R3 NS4 3.915; 0.9092 -2.883e-04

R2 NS4 ∩ PD4 3.943; 0.909 -459.8 -0.2282

Eigth Iteration

Period Doubling (PD8)

R2 PD8 ∩ NS8 3.957; 0.909 -8.746e+04 5.626

Neimark Sacker (NS8)

R4 NS8 3.95; 0.909 1.029e-04 -0.6204

R3 NS8 3.954 ; 0.909 3.816e-05

R2 NS8 ∩ PD8 3.957; 0.909 -8.746e+04 5.626

Sixteength Iteration

Period Doubling (PD16)

R2 PD16 ∩NS16 3.958 ; 0.909 -3.419e+07 -294.1

Neimark Sacker (NS16)

R4 NS16 3.958 ; 0.909 -1.365e-05 -0.6209

R3 NS16 3.958 ; 0.909 -5.062e-06

R2 NS16 ∩ PD16 3.958 ; 0.909 -3.419e+07 -294.1

32th Iteration

Period Doubling (PD32)

R2 PD32 3.959 ; 0.909 -1.893e+08 -1.162e+03

Table. 1. Codimension two bifurcations and normal form coefficients
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(b, a) ∈ D1. Stable 7-cycle, stable 9-cycle, both of the focus-type, and stable invariant curve.

For a slightly bigger b 9-cycle will approach invariant curve and destroy it. Fixed point is

unstable and not shown. On the right figure we see a ”hole” in the center, that means that

fixed point is repelling, bottom subfigure show a domain of attraction of the 7-cycle, and

upper subfigure show a small part of the invariant curve — a boundary of the ”hole”.
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(b, a) ∈ D2. Attracting fixed point (focus) and domain of attraction (right).
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tangency. On the left figure an orbit around 2-cycle belongs to the stable invariant manifold

of unstable fixed point.
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(b, a) ∈ D7. Unstable 2-cycle, unstable fixed point. An orbit around 2-cycle belong to the

stable manifold of the fixed point.
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Stable 7-cycle, stable invariant curve and unstable 2-cycle. Fixed point is unstable and not

shown. On the right figure we see a ”hole” around a point of 2-cycle, indicating that it’s

unstable. Stable 9-cycle (see next figure) exists very close to invariant curve and not shown.
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Stable 7-cycle doesn’t belong to invariant curve. Stable 9-cycle belong to invariant curve,

unstable 9-cycle (not-shown) also belong to invariant curve, and lives in holes. 2-cycle is

unstable, unstable fixed point not shown.
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Zoomed partial bifurcation diagram, a part corresponding to the forth iteration.
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One half of the stable 4-cycle. A stable invariant curve around (left (b, a) ∈ D9). Invariant

curve destroyed via a homoclinic tangency (right (b, a) ∈ D10).
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Unstable 20-cycle (red) reached unstable invarinat curve, that is the boundary of attraction

domain of 4-cycle. Stable 5-cycle (green) is a focus. (b, a) ∈ D11.
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One quater of the unstable 4-cycle (not shown, lives in the center ”hole”). Unstable 5-cycle

(red) is a saddle and stable 5-cycle (green) is a focus. (b, a) ∈ D12.
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shown. (b, a) ∈ D14.
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4.2 Evolution of invariant manifolds

We want to show that “geometry” of stable and unstable manifolds of the saddle fixed points for

first, second, 4th, 8th, etc. iterations are very similar. To do that we plot stable and unstable

manifolds for maps with b = 0.93 ± ε, 0 < ε < 0.03 and varying a: 3.1 < a < 4.0. Actually,

if our conjecture on convergence of the sequence of strong 1:2 resonances is correct, then the

limit map g has an unstable periodic point of period 2n for any n ∈ N. Since we claim that the

limit map g is a fixed point of the doubling operator of the form

f 7→ A−1 ◦ f ◦ f ◦ A, A is a linear map R
2 → R

2

then the linear operator A should map the stable and unstable manifolds of the unstable fixed

point of the map g onto stable and unstable manifolds of the unstable fixed point the map g◦2.

The later two manifolds should be mapped by A onto stable and unstable manifolds of a saddle

fixed point of the map g◦4, etc. (At least in some neighborhood of the fixed points). Thus pairs

of stable and unstable manifolds should be related by a linear transformation.
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Left: Stable and unstable manifolds for GHM map with (b; a) = (0.9; 2.9) ∈ D3. Right: Stable

and unstable manifolds for GHM map with (b; a) = (0.9; 3.1) ∈ D4. Period two cycle is stable.
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Left: Stable and unstable manifolds for GHM map with (b; a) = (0.9; 3.6) ∈ D5. Period two

cycle is stable. Right: Stable and unstable manifolds for GHM map with

(b; a) = (0.915; 3.6) ∈ D6. Period two cycle is unstable.
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Stable and unstable manifolds for GHM map with (b; a) = (0.91; 2.9) ∈ D8.

Stable and unstable manifolds for unstable 2-cycle. (b; a) = (0.9; 3.82) ∈ D9.
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Stable and unstable manifolds for unstable 2-cycle. (b; a) = (0.9; 3.87) ∈ D11.
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Stable and unstable manifolds for unstable 4-cycle. (b; a) = (0.9; 3.91) .

Without unfolding, we provide parts of bifurcations diagrams for the 8th and 16th interate

near Neimar-Sacker curve. We see that they support the convergence conjecture.
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Neimark-Sacker and period-doubling curve for F ◦8 (left) and F ◦16 (right).
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4.3 Periodic points of high iterations

There are a lot of resonances on Neimark-Sacker curves. It’s well known that Arnold tongue

grows up from each resonance. This tongue is formed by two curves of limit point of a periodic

point of the corresponding period.

To check that our numerical algorithms are correct, we compute several Arnold tongues and

stable and unstable manifolds of unstable cycles. Our goal is to get classical phase portraits

with invariant curve formed by unstable manifolds of periodic points and understand destroying

scenario of the invariant curve.
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0.47

0.475
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0.49 It is known that unstable manifolds of the saddle cy-

cle form an invariant curve only on for parameter

values closer to the Neimark-Sacker curve than any

codimension two bifurcation of the periodic point. So

we don’t consider cycles of period 5, since it happens

that F ◦5
r has a strong 1:1 resonance very close to the

Neimark-Sacker curve of Fr. Thus we proceed to a

cycle of period 7.

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
1.6886

−0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
1

Left: Stable and unstable manifolds of 7-cycle of GHM map with

(b; a) = (0.97945; 0.48) ∈ D1. Right: Stable and unstable manifolds of 7-cycle of GHM map

with (b; a) = (0.97845; 0.49) ∈ D1.
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Left: Arnold tongue at 11-resonance. Right: Stable and unstable manifolds of 11-cycle of

GHM map with (b; a) = (0.9325; 1.85) ∈ D1.

5 Conjecture on renormalization operator

A doubling operator T has been introduced above. Our goal is to find an appropriate linear

operator A.

Since the linear operator should map invariant manifolds of the fixed point of the first

iteration onto the invariant manifolds of the fixed point of the second iteration, I suggest to

construct it as following. First of all, the operator A should map eigenvectors of the fixed

point in to eigenvectors. Since we require only preserving of directions, this choice fixes two

coefficients of the matrix of A. To choose another two coefficients, we should fix image of some

point. It seems to be reasonable to fix the image of a point on a primary intersection of two

manifolds. Intersection of stable and unstable manifolds is a two-sides infinite sequence:

(Ms ∩Mu)p = {. . . x−n, x−n+1, . . . , x−1, x0, x1, . . . xn−1, xn, . . .}.

Two subsequences of negative and positives indices converge to a fixed point: x−n → x∗,

xn → x∗ as n → ∞. Adding a point x∗ to the intersection, we get a closed set: (Ms∩Mu)∪{x∗}
is closed. Thus a maximum of the distance between fixed point and this set is well-defined. Let

fix image of the point that serve this maximum for kth iteration:

x(k)
max = max

x∈(Ms∩Mu)p∪{x∗}
‖x− x∗‖

Ax(1)
max = x(2)

max

I guess that this point plays some role in dynamics. However, I don’t know now how to

formulate it properly.
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For numerical goals this point could be found as following. Pick up a point in the unstable

direction. Consider, say, N > 200 iterations. If the point belong to the stable manifold as well,

then ‖f ◦N − x∗‖ → 0 as N → ∞. Thus in this way we can find points at the intersection

effectively. From the first 100 points one could pick up the point at the maximum distance and

find operator A solving linear equation.

Of course, this operator is well-defined only for maps with unstable fixed point and 2-cycle.

In the article [26] it is suggested to construct renormalization operator based on the eigen-

values. It is claimed that eigenvalues of all periodic points of period 2◦n for the limit map is

the same. Our computations show that for a map with parameter values close to 1 :2 of the 32

iteration the eigenvalues are almost the same for all periodic points of periods 1, 2, 4, and 8.

However, for a 16th and 32th periods they are different. We conjecture that the reason is that

behaviour near periodic points up to 8th order have stabilized and doesn’t change anymore.

per x0 λ1 λ2 λ1 · λ2

1 (1.21834 ; 1.21834) -0.50099 -2.05751 1.0308

2 (-0.16817; 2.07714) -0.48441 -2.05662 0.99625

4 (-0.36499; 2.04977) -0.49024 -2.04078 1.00046

8 ( -0.35767; 2.03547) -0.48001 -2.08303 0.99989

16 ( -0.35428; 2.03501) -0.58875 -1.69832 0.99989

32 (-0.35463; 2.03486) -0.51867 -1.92757 0.99976

6 Conclusion

Although our studies are far from eing complete, we summarize our results.

First of all, from the normal coeeficients we see that types of strong 1:2 alternate, since the

second normal form coefficient changes sign, when we procced from F ◦2n to F ◦2n+1

.

Next, a thin tongue of homoclinic tangencies emerges from each strong 1:2 resonance. The

branches of the tongue intersect next period doubling curve far from the Neimark-Sacker curve.

On the bifurcations diagrams we see that the angle between primary and secondary Neimak-

Sacker curve turns to zero with respect to number of iterations. This also indicates convergence

of 1 :2 resonances.

Analysis of invariant manifolds shows that there exists a homoclinic structure in the neigh-

borhood of every point of period 2n. Altogether this structures gives us an idea of construction

of renormalization operator. If our conjecture is correct, the next step is to proof numerically

the existence of the fixed point of renormalization operator and to compute its eigenvalues. An-
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other works in this direction gives us a hope, that fixed point a saddle, with two-dimensional

unstable manifold and stable manifold of codimension two.
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41 (1962), 339–351.

[33] Neimark, Yu. I. (1959) On some cases of periodic motions depending on parameters. Dokl.

Akad. Nauk SSSR 129, 736-739 [in Russian].

[34] Palis, J. A global view of dynamics and a conjecture of the denseness of finitude of attrac-
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in honor of Adrien Douady’s 60th birthday

[35] Petrovich, V.Yu. Numerical spectral analysis of the differential of the doubling operator

by K.I. Babenko’s method, // Preprint 90-81, Institute of Applied Mathematics, USSR

Academy of Sciences, Moscow, 1990. In Russian.

[36] R.J. Sacker, On invariant surfaces and bifurcation of periodic solutions of ordinary differ-

ential equations. IMM-NYU 333, Courant Institute–New York University

— 30 —



[37] Shilnikov, L. P.; Shilnikov, A. L. at al. Methods of qualitative theory in nonlinear dynamics.

Part II. World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises,

5. World Scientific Publishing Co., Inc., River Edge, NJ, 2001.

[38] Sullivan, D. Bounds, quadratic differentials, and renormalization conjectures. // American

Mathematical Society centennial publications, Vol. II (Providence, RI, 1988), 417–466,

Amer. Math. Soc., Providence, RI, 1992.

[39] Tresser, C., Coullet P. Itérations d’endomorphismes et groupe de renormalisation. //

C. R. Acad. Sci. Paris Sér. A-B 287 (1978), no. 7, A577–A580.

[40] van Veen, L. Baroclinic flow and the Lorenz-84 model. // Internat. J. Bifur. Chaos

Appl. Sci. Engrg. 13 (2003), no. 8, 2117–2139.

[41] Wieczorek S., Krauskopf B. and Lenstra D. Unnested islands of period-doublings in an

injected semiconductor laser, // Phys. Rev. E (3) 64 (2001), no. 5, 056204, 9.

— 31 —


