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1 Introduction.

The main problem that initiated the development of dynamical systems theory from its origins is the

problem of turbulence: how a deterministic nature of a dynamical system can be compatible with its

apparently chaotic behavior. This problem was studied by the precursors and founding fathers of the

dynamical systems theory: A. Poincare, H. Hopf, A. Kolmogorov, V. Arnold, S. Smale... Currently

this is one of the principal challenges on the cross-road between mathematics, physics and computer

science. Dynamical systems theory heavily uses methods and tools from topology, differential geometry,

probability, functional analysis and other branches of mathematics.

Сomplex dynamics, which was initiated by Fatou and Julia in the late 1910s but which did not draw

substantial attention until 1980s, focuses mainly on the iteration of rational functions. In the end of

1990s, number theorists began to study such iterations as well, noting parallels to certain aspects of the

theory of elliptic curves. There exists a dictionnary connecting two areas, namely, rational and integral

points of varieties are correspondig to the rational and integral points in orbits, and torsion points on

abelian varieties is corresponding to periodic and preperiodic points of rational maps. Number-theoretics

dynamics has began to emerge as field in its own right, especially concerning the rationality properties

of periodic points. This new branch which amalgamates two areas of mathematics, dynamical systems

and number theory is calling arithmetic dynamics. Classically, discrete dynamics refers to the study

of the iteration of self-maps of the complex plane or real line. Arithmetic dynamics [14] is the study

of the number-theoretic properties of integer, rational, p-adic, and/or algebraic points under repeated

application of a polynomial or rational function. A fundamental goal is to describe arithmetic properties

in terms of underlying geometric structures.

Global arithmetic dynamics refers to the study of analogues of classical Diophantine geometry in the

setting of discrete dynamical systems, while local arithmetic dynamics, also called p-adic or non-archi-

medean dynamics, is an analogue of classical dynamics in which one replaces the complex numbers C by

a p-adic field such as Qp or Cp and studies chaotic behavior and the Fatou and Julia sets.

The first part of this work, dynamics on nonarchimedean spaces, is devoted to dynamics of quadratic

maps and contains the results belonging to the classic area. It is shown that under some conditions

dynamics over Julia set is conjugated with Bernulli’s shift and it’s topological entropy is calculated.

In the second part a general concept of dynamical system with non-archimedean time is suggested. It

is illustrated by a certain limit on the dynamics on the sets of 2n-periodic points of real quadratic maps.

This part is devoted to the nonarchimedean time. We’ll show that at least in one typical example the

same dynamical system admits two compatible descriptions: a classical one with discrete time and the

one with 2-adic time. Remarkably, the 2-adic version turns out to be considerably simpler.

I thank my scientific advisors, Yulij Ilyashenko and George Shabat for their attention to my research,
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Also I would like to thank Michael Yampolsky for a crash-course on complex dynamics at Independent

Universitty that provided the initial spark to my research. I am also very grateful to Konstantin Khanin
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2 Dynamics on nonarchimedean spaces

2.1 Introduction

Consider a general discrete dynamical system on a countable set (=phase space ). Formally it is a

deterministic model of motion (we know everything about the orbit of any point) and there seems to

be no context for the chaotic considerations.

However, if we are going to study and describe the orbits, we need some additional structures on the

phase space.

First of all, we need some language to specify the points of the phase space. It can be formalized as a

recursive structure, i.e. the distinguished class of numbering (= bijections with natural numbers) up to

recursive renumberings.

For the most dynamical systems the amount of information needed to specify a point (it can be

formalized in terms of Kolmogorov complexity) generically grows along the orbit. In most cases not all

this information is valuable for describing the system qualitatively; e.g., if an orbit “goes to infinity” (in

some sense) we might be not interested in the details of the positions of the points that are terribly far

away.

Thus we impose some topologies on the phase space in order to be able to describe the orbits

approximately. We emphasize the specific feature of the nonclassical discrete dynamics: it is not assumed

that the phase space carries some distinguished topology; we rather consider the set of natural topologies.

The product of the completions of the phase space with respect to all these topologies is provided by a

suitable product topology; the diagonal embedding of the phase space into this product should induce its

true discrete topology.

The adelic dynamics provides a perfect framework for this approach, the phase space being global

number fields; the topologies are defined by their non-archimedean valuations.

In this part we consider the simplest non-linear model of this kind — the iterations of quadratic maps.

Conceptually our main result is the theorem 5, according to which the system demonstrates the chaotic

behavior only over the finite number of valuations — precisely over those ones over which the quadratic

map is in some sense averagely expanding in the fixed points.

The results of the work generalize the earlier results of two of the authors [8] and [3]. The similar
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results over p-adic fields with p 6= 2 were obtained considerably earlier in [10].

This part is organized as follows. Sections 1 and 2 are devoted to certain elementary properties of

the quadratic maps over non-archimedean fields. Sections 3 and 4 are technical: under some assumptions

the preimages of 0 and of a “large disc” around it are described. In the section 5 the filled Julia sets for

all the quadratic maps over all the non-archimedean local fields are described. In the section 6 under

the assumptions of the section 3 the isomorphism between the quadratic dynamics on the filled Julia set

and some sequence dynamics (Bernoulli shift on the left-infinite sequences) is established. In the section

7 the main results are formulated; the 2-adic case is considered separately. In the section 8 some adelic

interpretation of our results is suggested.

2.1.1 Notations

Some of the notations we use are not quite standard.

For a map T : X 7→ X and for n ∈ N we denote by T n◦ its nth iterate and by T−n◦ its n inverse

iterate (possibly multivalued). By TN◦(x) we denote the T - orbit of x ∈ X ; finally, for Y ⊆ X denote by

T−N◦Y : =
⋃

n∈N
T−n◦Y and T−∞Y : =

⋂

n∈N
T−n◦Y .

When X is a metric space denote by FJ (T ) the filled Julia set, i.e. the set of elements of X with

bounded T - orbits.

For an alphabet (=finite set of characters) A denote by A−N = {. . . a2a1a0} (where a0, a1, a2 · · · ∈ A)

the set of sequences of elements of A, infinite to the left. For a finite sequence ε we denote its length by

|ε|.
For a field k denote its set of squares by k2· := {x2 | x ∈ k}.
For a field k with the norm ‖ · ‖ for a ∈ k and r ∈ R>0 denote the open and closed discs by

D(a, r) : = {x ∈ k | ‖x− a‖ < r}

D[a, r] : = {x ∈ k | ‖x− a‖ ≤ r}

2.2 Canonical forms of quadratic maps

We fix a field k with chark 6= 2 and consider the general quadratic map

q : A(k) 7→ A(k)

defined by

q(x) = Ax2 +Bx+ C

with A,B,C ∈ k and A 6= 0.
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The dynamical properties of the above q depend only on the similarity class of q; it means that we

consider the action of the group of affine transformation of argument

x 7→ L(x) : = mx+ n with m ∈ k•, n ∈ k

on the set of quadratic transformations. This action is defined by

L • q = L ◦ q ◦ L−1◦;

q and thus defined L • q are called similar. The problem is to find the simplest (and traditional)

representatives of similarity classes of the quadratic map.

It’s easy to see that any qudaratic map is linear conjugated to

x 7→ x2 + c

This form is universal, and we are going to stick to it in this part. One checks that

c : = AC − B2

4
+

B

2
=

1

4

∏

x∈Fix(q)
q′(x)

is always in k. We’ll see that in the case when k is equipped with a (usually non-archimedean) metric

the dynamical properties of q depend drastically on the norm of c; in particular, q generates the chaotic

behavior iff ‖c‖ > 1, i.e., when q is averagely expanding in the fixed points. We are not aware of any

reasonable generalization of this observation.

2.3 Behavior of norms along the orbits

Every x ∈ k defines a sequence ‖T n◦
c (x)‖ . In most cases the behavior of the norm is quite simple.

Theorem 1. According to the values of ‖c‖ and ‖x‖ the following statements hold:

‖c‖ < 1 ‖c‖ = 1 ‖c‖ > 1

‖x‖ < 1 lim
n→∞

‖T n◦
c (x)‖ = ‖c‖, No general statement lim

n→∞
‖T n◦

c (x)‖ = ∞

‖x‖ = 1 ‖T n◦
c (x)‖ ≡ 1 No general statement lim

n→∞
‖T n◦

c (x)‖ = ∞

‖x‖ > 1 lim
n→∞

‖T n◦
c (x)‖ = ∞ lim

n→∞
‖T n◦

c (x)‖ = ∞ ‖T n◦
c ‖ is either

constant or → ∞

Proof. All the statements about existing limits and about the norms ‖T n◦
c ‖ being constant are obvious.

In the case ‖c‖ = ‖x‖ = 1 the lim
n→∞

‖T n◦
c (x)‖ can exist. E.g., in any field where ‖2‖ = 1, x = −1 is a fixed

point of x 7→ x2 − 2. But it is possible as well that ‖c‖ = ‖x‖ = 1, but lim
n→∞

‖T n◦
c (x)‖ does not exist.

Over any field the map

x 7→ x2 − 1

5



provides a cycle that gives a sequence of norms 0, 1, 0, 1, . . .

In the case ‖c‖ > 1, ‖x‖ > 1 the trajectories generally tend to ∞. E.g., for k = Q3 and x = c = 1
3

we have the orbit
1

3
→ 4

9
→ 43

81
→ . . .

with the sequence of norms 3, 9, 81, . . . But in some special cases (which are the most interesting from

the viewpoint of the present work) the norms along the orbits are constant. E.g., over k = Q5 the map

x → x2 − 1

25

has two fixed points 1
2 ±

√
21
16 ∈ Q5 of the norm 5. �

2.4 The preorbit of 0.

We fix the triple k ⊃ O ⊃ M consisting of a local field, its valuation ring and its maximal ideal; let

p = char(O/M). We fix the non-archimedean norm ‖ · ‖ on k, normalized by the condition ‖p‖ = 1
p and

the element c ∈ k \ O (i.e. ‖c‖ > 1; this is the only case we’ll need). Our goal is to describe the set

T−N◦c (0).

Informally,

T−1◦c (0) = {x | x2 + c = 0} = ±
√
−c,

T−2◦c (0) = {x | x2 + c ∈ T−1◦c (0)} = {x | x2 = −c±
√
−c} = ±

√

−c±
√
−c

and so on. We should is to give the precise sense to the expressions with nested roots

±

√

. . .±
√

−c±
√

−c±
√
−c

(continued recursively to the left).

Note that if the roots do not belong to the corresponding fields our notations would be just the

convenient names of the elements of their quadratic extensions; however, we are most interested in the

case where these roots belong to k and we are going rather to provide for our nested roots certain analytic

sense.

Proposition. The following statements are equivalent:

(i) −c ∈ k2·;

(ii) T−1◦c (0) is non-empty

(iii) For any positive natural n the set T−n◦c (0) is non-empty and, moreover,

#{T−n◦c (0)} = 2n.
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Proof. Implications (i) ⇐⇒ (ii) ⇐= (iii) are trivial; concentrate on (i) =⇒ (iii). The assumption (i)

implies c = −a2 for some a ∈ k with ‖a‖ > 1. In fact, we have arbitrarily attributed the signs to ±√−c.

Further,

±
√

−c±
√
−c = ±

√

a2 ± a = ±a(1± 1

a
)

1
2 : =

= ±a

[

1 +
1
2

1!

(

±1

a

)

+
1
2

(

1
2 − 1

)

2!

(

±1

a

)2

+
1
2

(

1
2 − 1

)(

1
2 − 2

)

3!

(

±1

a

)3

+ . . .

]

,

and this series converges p-adically (we use p 6= 2); see lemma 1 below.

The longer expressions with nested roots are also defined by the convergent series; see the next

subsection. A similar description in terms of dichotomic variables can be found in [10]. �

Notations of the elements of T−N◦c (0). We assume c = −a2 for all a ∈ k and introduce recursively

the numbers bǫ ∈ k labeled by the strings ǫ of +’s and -’s

b : = 0,

b± : = ±a,

. . . . . . . . .

b±ε : = { solution of x2 − a2 = bε}.

In order to choose the signs for b±ε we introduce recursively the following Laurent series Bε ∈ Q
((

1
A

))

:

B± : = ±A,

B±ε : = ±
√

A2 +Bε : = ±A

(

1 +
Bε

A2

)
1
2

= ±A

[

1 +
1
2

1!

Bε

A2
+

1
2

(

1
2 − 1

)

2!

(

Bε

A2

)2

+ . . .

]

,

and it makes sense since one proves inductively that

Bε ∈ ±A+ Z

[1

2

][[ 1

A

]]

We check that after substituting the free variable A by a ∈ k all the Bε’ s converge in ‖ · ‖-norm and

hence define bε ∈ k.

2.5 Large disc and the inverse dynamics on it

We keep the same notations, including c = −a2. Besides, for any S ⊂ k we denote by
√
S the set

{x ∈ k | x2 ∈ S}.

Lemma 1 (Effective openness of the set of squares.). Let x0 ∈ k2·. Then B(x0, ‖x0‖) ⊂ k2·.

Proof. Let y ∈ k be such that y2 = x0. By Taylor formula for any x with ‖x‖ < ‖x0‖

(y2 + x)1/2 = y
(

1 +
x

y2

)1/2

= y

∞
∑

n=0

1(−1)(−3) . . . (3− 2n)

2nn!
·
(

x

y2

)n
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In order to prove the convergence of this series estimate the norm of its general term. Using

− logp ‖n!‖p =

[

n

p

]

+

[

n

p2

]

+ . . . ∼ n

p
· 1

1− 1/p
=

n

p− 1

We see that n
√

‖n!‖p ∼ p−
1

(p−1) , n
√

‖(2n− 1)!!‖p = n

√

∥

∥

∥

(2n)!
2nn!

∥

∥

∥

p
∼ p−

1
(p−1) . Then nth root of general term

satisfies

n

√

∥

∥

∥

∥

y
(−1)(−3) . . . (3− 2n)

2nn!
·
(

x

y2

)n∥
∥

∥

∥

= n

√

∥

∥

∥

∥

y
(2n− 3)!!

2nn!

∥

∥

∥

∥

·
∥

∥

∥

∥

x

y2

∥

∥

∥

∥

∼ n

√

∥

∥

∥

∥

(2n− 1)!!

n!

∥

∥

∥

∥

p

∥

∥

∥

∥

x

x0

∥

∥

∥

∥

< 1

�

By definition, for all ε ∈ ⊔∞
n=0{±}{−n...0}

Dε : = D
[

bε;
1

‖a‖|ε|−1
]

.

In particular, the one marked by the empty word is

D = D[0, ‖a‖].

Theorem 2. For any n ∈ N

T−n◦−a2 (D) =
⊔

|ε|=n

Dε.

Lemma 2. Let a ∈ k and r ∈ R>0 satisfy ‖a‖ > 1 and D[a2, r2] ⊂ k2·. Then

√

D[a2, r2] = D

[

a,
r2

‖a‖

]

⊔D

[

−a,
r2

‖a‖

]

Proof. First of all note that ‖a‖ > r, since D[a2, r2] ⊂ k2·.

We are going to show that
√

D(a2, r2) ⊇ D
[

a, r2

‖a‖
]

⊔ D
[

−a, r2

‖a‖
]

. Let x ∈ D
[

a, r2

‖a‖
]

⊔ D
[

−a, r2

‖a‖
]

,

then ‖x‖ = ‖a‖, as ‖x − a‖ < ‖a‖ or ‖x + a‖ < ‖a‖; since for at least one of the choices of the sign

‖x∓ a‖ = max(‖x‖, ‖a‖) = ‖a‖. Then ‖x± a‖ < ‖a‖, and

‖x2 − a2‖ = ‖x∓ a‖ · ‖x± a‖ ≤ r2

‖a‖ · ‖a‖ ≤ r2.

Hence x2 ∈ D[a2, r2].

Now show that
√

D[a2, r2] ⊆ D
[

a, r2

‖a‖
]

⊔ D
[

−a, r2

‖a‖
]

. Let x ∈
√

D[a2, r2], then (as in the previous

case), ‖x‖ = ‖a‖. Therefore ‖x∓ a‖ = ‖a‖. Hence ‖a2‖
‖a2−x2‖ =

‖a‖
‖x±a‖ . Therefore ‖a± x‖ = ‖a2−x2‖

‖a‖ ≤ r2

‖a‖ .

So x ∈ D[a, r2

‖a‖ ] ⊔D
[

−a, r2

‖a‖
]

. �

Now we prove the theorem 2 by the induction in n. It follows from the effective openness of k2· that

the disc D[a2, ‖a‖] belongs to k2·. Therefore by lemma 2

T−1◦−a2 D[ 0, ‖a‖ ] =
√

D[a2, ‖a‖ ] = D[a, 1] ⊔D[−a, 1] =
⊔

|ε|=1

Dε.
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Since ±a ∈ D[ 0, ‖a‖ ], we have

T−1◦−a2 D[ 0, ‖a‖ ] ⊂ D[ 0, ‖a‖ ].

So for any n

T−n◦−a2 D[ 0, ‖a‖ ] =
⊔

|ε|=n

Dε ⊂ D[ 0, ‖a‖ ],

and the lemma 2 is applicable to every disk it is used for. The theorem 2 is proved.

Corollary 1.

T−∞−a2 (D) =
∞
⋂

n=0

⊔

|ε|=n

Dε

2.6 The filled Julia sets

Keep the notations of the previous section (with the exception of c that now is arbitrary).

Theorem 3. If ‖c‖ ≤ 1, then FJ (Tc) = O = D[0, 1]. If ‖c‖ > 1, then

(a) if −c /∈ k2·, then FJ (Tc) = ∅;

(b) if −c ∈ k2·, i.e. c = −a2 for some a ∈ k, then

FJ (T−a2) = T−∞D[0, ‖a‖].

Proof. The statement in the case ‖c‖ ≤ 1 follows from the properties of the norm sequence for T n◦(x),

see section 2.

In the case ‖c‖ > 1 we see that if ‖x‖ >
√

‖c‖, then ‖T n◦(x)‖ = ‖x‖2n → ∞ and if ‖x‖ <
√

‖c‖,
then ‖T n◦(x)‖ = ‖c‖2n−1 → ∞. Hence the FJ lies on the circle defined by ‖x‖ =

√

‖c‖.
Consider the case (a). The assumption −c /∈ k2· for any x satisfying ‖x‖ =

√

‖c‖ implies ‖x2+c‖ ≥ ‖c‖.
Indeed, if ‖x2 + c‖ < ‖c‖, then −c ∈ D(x2, ‖x2‖) ⊂ k2· by the effective openness of squares. Hence

‖T n◦(x)‖ ≥ ‖c‖2n−1 → ∞.

In the case (b) we just use our construction of indexed discs:

FJ ⊂ D = D[0, ‖a‖ ].

Then FJ ⊆ T−n◦(D) =
⊔

|ε|=n

Dε, so FJ ⊆
∞
⋂

n=0
T−n◦(D) = T−∞D[0, ‖a‖ ]

The opposite inclusion FJ ⊇ T−∞D[0, ‖a‖ ] is obvious. �

2.7 Isomorphism with the sequence dynamics

Keep the notations of the section 4. Consider the space {±}−N : = {. . . ε2, ε1, ε0 | εn ∈ {+,−}} of

sequences of pluses and minuses infinite to the left endowed with Tikhonov topology. Denote by

σ : {±}−N 7→ {±}−N : . . . ε2ε1ε0 7→ . . . ε3ε2ε1
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the Bernoulli shift.

Theorem 4. For any a satisfying ‖a‖ > 1 there is an isomorphism of dynamical systems (i.e. compacts

with continuous endomorphisms)

(FJ (T−a2), T−a2) ≃ ({±}−N, σ).

Proof. For any x ∈ FJ (T−a2) there exists a unique sequence of embedded discs.

Dε0ε1ε2 ⊂ Dε0ε1 ⊂ Dε0 ⊂ D

such that {x} = . . . ∩Dε0ε1 ∩Dε0 ∩D and {T (x)} = . . . ∩Dε1 ∩D ∩ T (D). This construction defines

I : FJ (T−a2) 7→ {±}N : x 7→ . . . ε2ε1ε0,

and it is easy to check that I is a homeomorphism satisfying I ◦ T−a2 = σ ◦ I. �

2.8 Chaotic properties of quadratic maps

Restore the notations k ⊃ O ⊃ M (a local field, its valuation ring and its maximal ideal); p := char(O/

M). Extend the polynomial maps we consider from A(k) to the projective line P
1(k), sending infinity to

infinity.

Here are the main results of the part.

Theorem 5. If p 6= 2, then the map

Tc : P
1(k) → P

1(k) : x 7→ x2 + c

has positive topological entropy iff ‖c‖ > 1 and −c ∈ k2·.

Proof. Follows from the theorem 4 and the results of [12] and [13]. See details in [8]. �

Theorem 6. If p = 2, then the map

P
1(k) → P

1(k) : x 7→ x2 + c

has positive topological entropy iff ‖4c‖ > 1 and (1− 4c) ∈ k2·.

Proof. We formulate and outline the proofs of the analogues of our main statements for p = 2.

Consider the case ‖c‖ ≤ ‖1/4‖. Denote the roots of Tc(x)−x by x1 and x2. We have K := k[x1] = k[x2],

with (K : k) ∈ {1, 2}. Our norm can be extended to the field K. Then ‖2x1‖ ≤ 1, ‖2x2‖ ≤ 1 and moreover

‖x1 − x2‖ = ‖
√
1− 4c‖ ≤ 1. So D[x1, 1] = D[x2, 1].
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Now prove the formula FJ (Tc) = k ∩ DK[x1, 1]. For t : = x − x1 we obtain ‖T (x) − x1‖ =

= ‖(x1 + t)2 + c− x1‖ = ‖t(2x1 + t)‖. Hence for ‖t‖ ≤ 1 we have ‖T n◦
c (x)− x1‖ ≤ 1 and for ‖t‖ > 1 we

have ‖T n◦
c (x) − x1‖ = ‖t‖2n.

For any two points x, y ∈ FJ (Tc) we have

‖Tc(x)− Tc(y)‖ = ‖(x− y)(x+ y)‖ ≤ ‖x− y‖‖2x1 + (x− x1) + (y − x1)‖ ≤ ‖x− y‖.

Hence if ‖c‖ ≤ 1/4, then the topological entropy of Tc equals zero.

Consider the case ‖c‖ > 1/4. Now we have two distinct disks D[x1, 1] and D[x2, 1], with the centres

at ‖x1‖ = ‖x2‖ =
√

‖c‖ and ‖x1 − x2‖ =
√

‖4c‖. We introduce b± : = x1,2, and construct the bε’s and

Dε as in the subsections 2.4, 2.5 (excluding the empty word). We argue similarly to the case p 6= 2, but

have to introduce some modifications.

As in the case p 6= 2, ‖Tc(x) − x1‖ = ‖(x1 + t)2 + c− x1‖ = ‖t(2x1 + t)‖.
For x1 /∈ k we have ‖T n◦

c (x) − x1‖ = ‖t‖2n for ‖t‖ > ‖2x1‖ and ‖Tc(x) − x1‖ = ‖2x1‖ · ‖x − x1‖ >

> ‖x− x1‖ for 0 < ‖t‖ ≤ ‖2x1‖. Hence the filled Julia set is empty and the entropy is equals zero.

But for x1 ∈ k we have x2 = 1 − x1 ∈ k and moreover all the discs Dε lie within k since lemma 1

holds for the disks D(x0, ‖4x0‖).
Lemma 2 is replaced by the statement

√

D[a2, r2] = D[a, r2

‖2a‖ ]⊔D[−a, r2

‖2a‖ ] for all the discs D[a2, r2]

with r2 < ‖4a2‖ (in particular, for all the shifted disks in the proof of the theorem 2). Hence for Dε we

obtain the formula Dε = D[bε, ‖2a‖1−|ε|].
So we prove that on FJ (Tc) our dynamical system is equivalent to the Bernoulli shift as in the

theorem 4. Its topological entropy is positive. �

3 Dynamics with nonarchimedean time

3.1 Introduction and main result

3.1.1 General setting.

We treat as the “time” an arbitrary semigroup or group acting on the phase space T : X. Classically T = R

or T = N for the continuous and the discrete dynamics respectively. In the case of periodic processes the

groups T = R/Z and T = Z/NZ are more suitable. The product of the latter groups over all N ∈ N acts

in the obvious way on all the sets of periodic orbits, but the spirit of non-archimedean dynamics rather

suggests considering the group of “universal periodic time”

Ẑ := lim
←

Z/NZ ∼=
∏

prime p′s

Zp,

acting on the periodic points by means of its finite cyclic factors. However, in the present work we consider

only Z2 acting on the 2n−periodic points.

11



3.1.2 The main example.

Consider the family of quadratic maps

fc : x 7→ x2 + c

The bifurcation values of c, where the 2n-periodic orbits loose their stability and the 2n+1-stable orbits

appear, are well-known. They are 1
4 = c0 > c1 > · · · > c∞ = −1.416 . . . and can be defined by the

following property: for any c ∈ (cn+1, cn) there is exactly one stable 2n-cycle of fc.

The stable periodic points constitute the set StabPern(c), on which the generator of the group Z/2nZ

acts by x 7→ x2 + c. For every c there exists a distinguished element

x0(c) := lim
N→∞

f2N◦
c (0) ∈ StabPern(c).

The orbits of x0(c)’s are pasted together to define the function of a real and 2-adic variable

X : (c∞, c0]× Z2 −→ R,

where for c ∈ (cn+1, cn] we set X(c, t) := f
[t]n◦
c (x0(c)), denoting by [t]n the image of the moment under

the projection Z2 −→ Z

2nZ . This function satisfies

X(c, t+ 1) = X(c, t)2 + c.

3.1.3 Statement of the main result.

The 2n-element sets of connected components

Xn := π0({c,X(Z2, c)|c ∈ (cn+1, cn)})

are related by adjacency maps

Xn+1 → Xn,

that map every element ξ of Xn+1 to the only element of Xn representing a component whose closure has

a non-empty intersection with the closure of ξ.

The sets Xn are acted upon by Z2 in a compatible manner, so that the projective limit

X := lim
←

Xn

is also acted upon by Z2.

Denote by X∞ the closure of the orbit fN◦
c∞(0). It is well known [11] that X∞ is the attractor of fc∞ .

It is also true that the map fc∞ is invertible on X∞ – it follows easily from the theorem 1 below.

Thus X∞ is a Z-set. The goal of this part is to prove the following result.

12



3.1.4 Main theorem.

There exists a Z → Z2-equivariant homeomorphism X∞ → X sending 0 to the “distinguished element".

Under this homeomorphism the action of Z2 is a continuous extension of the Z-action.

Though the statement seems quite natural, the analysis of the limiting behavior of the 2n periodic

orbits of fc is rather hard – and the difficulties are purely archimedean. We were unable to find easy

proofs of our statements and had to use the deep results from the very well-developed one-dimensional

dynamics, the survey of which we present below.

3.2 Preliminaries.

3.2.1 Unimodal maps.

Let I = [−α;α] ⊂ R be a segment and f : I → I a smooth even map.

Definition 1. A map f is called unimodal, if it is monotone on each of the parts of I \ {0}, if it has the

unique nondegenerate extremum in 0 and if it has no other critical points.

Definition 2. The Schwartzian of f is defined as

Sf : =
f ′′′

f ′
− 3

2

(f ′′

f ′

)2

Theorem (Collet, Eckmann). [2] Let fc be a family of unimodal maps of the segment I to itself with

negative schwartzians, where c belongs to some segment, such that c 7→ fc is a smooth non-trivial map.

Then there exists the strictly monotone sequence of values {cn}∞n=1, providing the bifurcation of period-

doubling.

Definition 3. We call a family of unimodal maps of the segment I into itself with negative schwartzian

a Collet-Eckmann family.

Every function of the classical family fc(x) = x2 + c, c ∈ [−3/2; 1/4] is obviously unimodal on the

segment Ic = [−β;β], where β is a positive root of the equation fc(x) = x. The properties of the existence

of periodic orbits, as well as the type of their stability are invariant under conjugation by diffeomorphisms.

Instead of classical family we consider the truncated family fc(x) = x2+c; c ∈ [−3/2;−3/4]. This family is

conjugated to the family ϕγ(x) = 3/2x2+γ, γ ∈ [−1;−1/2 by the map S(x) = 3/2x, i. e. ϕγ = S◦fc◦S−1.
Hence the segment Since the segment [−1; 1] is invariant under the map ϕγ for γ ∈ [1/2; 1] then ϕγ is

Collet-Eckmann family as well as fc for c ∈ [−3/2;−3/4]. Thus families fc and ϕγ provide the bifurcation

sequence of period-doubling values {cn}∞n=1 and {γn}∞n=1 respectively. These sequences converge with a

universal rate (see, e.g., [2]): if c∞ and γ∞ are their limits, then

cn − c∞ ∼ δ−n, γn − γ∞ ∼ δ−n

13



where δ = 4.669... is the famous Feigenbaum constant [5].

Our main functional space is the space U of the smooth unimodal maps of the segment [−1; 1] into

itself. Supply it by the topology of uniform convergence.

3.2.2 Doubling transformation.

Define the doubling transformation T : U0 → U0, where

U0 : = {f ∈ U | f2◦(0) 6= 0 and x = 0 is the point of maximum}

Denote

α = α(f) = − f(0)

f(f(0))

Suppose that α > 0, f(f(α−1)) < α−1 < f(α−1), f(0) > 0, then

h(x) = −αf(f(α−1x))

is also the unimodal map of the segment [−1; 1] into itself, and h(0) = f(0). Define the doubling map

T : U0 → U0 by:

(Tf)(x) = −αf(f(α−1x)), α = α(f) = − f(0)

f(f(0))

Consider the functional equation

−αg◦2
(x

α

)

≡ g(x), α = α(g) = − g(0)

g(g(0))
(1)

in the space of functions R → R. This equation is called the doubling equation. According to the general

theory (see the survey [11]) it has the unique solution, satisfying the following conditions:

1. g(x) = −αg(g(α−1x)), α = 2.503...

2. g(0) = 1, and 0 is the point of the maximum.

3. g(x) = g(−x).

This function was thoroughly studied in the papers of Campino-Epstein [1] and Lanford [6]. It was shown

that all the coefficients of the Taylor expansion of g, except the first one, are irrational. The several first

terms are

g(x) = 1− 1.527 . . . x2 + 0.104 . . . x4 + . . .

Futher in this part we suppose that α = α(g) = 2, 503...

Consider the sequence of maps {gk}∞k=1

gk(x) : = lim
n→∞

(−α)nf◦2
n

cn+k

(

x

(−α)n

)

.

In the papers of Collet-Eckmann [2] and Lanford [6] one can find the following results. The sequence {gk}
is well-defined (all the limits exist). The functions gk are unimodal and related by the doubling map:

gk−1 = Tgk (2)

14



2n−3
∆2n−1

k

∆2n

k

2n 2n−1

∆2n

k+2n−1

2n 2n−2

Рис. 1: Segments and periodic points of the period 2n, 2n−1, 2n−2 and 2n−3.

The sequence converges, and because of (2) its limit is the fixed point of the doubling operator:

lim
k→∞

gk = g

3.2.3 The partition tower of the segment.

For the proof of the theorem 7 we use the construction, suggested by Misiurewicz [7]. He considers the

class Φ of maps ϕ of the segment [−1; 1] into itself with the properties:

1. ϕ ∈ C1([−1; 1]), ϕ ∈ C2([−1; 1] \ {0}),
2. ϕ(−1) = −1 and ϕ′(−1) > −1,

3. ϕ′(x) 6= 0 if x 6= 0 and Sϕ(x) < 0 if x 6= 0.

4. For every n > 0 the map ϕ has exactly one periodic orbit of order 2n and has no other periodic orbits.

For the maps of the class Φ one can construct the system of segments {∆(n)
i }, n ≥ 1, 0 ≤ i < 2n with

the following properties:

1⋆. ∆
(n)
i ∩∆

(n)
j = ∅ for i 6= j;

2⋆. f(∆
(n)
i ) = ∆

(n)
i+1 for 0 ≤ i < 2n − 1; f(∆

(n)
2i−1) ⊂ ∆

(n)
0 and the endpoints of the segments f(∆

(n)
2i−1)

and ∆
(n)
0 are different;

3⋆. For every n the inclusion ∆
(n)
i ⊃ ∆

(n+1)
i ∪∆

(n+1)
i+2n holds and ∆

(n)
i contains no other segments of the

level n+ 1.

Convention. We say that the segment ∆
(N)
k has the number k and the level N . We say that segment

∆
(N)
k is less then ∆

(L)
m if for any points x ∈ ∆

(N)
k and y ∈ ∆

(L)
m x < y. (See Fig. 1).

3.3 Reformulation of the main theorem

Definition 4. The bifurcational diagram (see Fig. 2) is the set of points of the (c, x)-plane defined as

follows:

BD : =

∞
⊔

n=0

{(c, x) | c ∈ [cn+1; cn] | f◦2
n

c (x) = x,

∣

∣

∣

∣

(

f◦2
n

c

)′
(x)

∣

∣

∣

∣

≤ 1}

for each c ∈ R and n ∈ N the equation f◦2
n

c (x) = x defines an algebraic curve αn. The bifurcation

diagram consists of pieces of the curves αn (with various n), defined by the conditions |(f◦2nc (x))| < 1 as

well as of the points of neutral cycles where the stability is lost: {x : f◦2ncn (x) = x | (f2n◦)′(x) = 1}.
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c0

c1/2c1
c3/2c2c5/2

c3c7/2

Рис. 2: Bifurcation diagram for the family fc

Now we define some special numeration of the

components of BD over each interval (cn+1, cn). As in

the introduction, we denote these components by Xn

with #Xn = 2n. We number the elements of Xn by

the elements of the group Z/(2nZ), thus defining the

bijection num : Xn → Z/(2nZ). The only component

that intersects line x = 0 acquires number 0; the other

components are numbered uniquely by the condition

num(fc(ξ)) = num(ξ) + 1.

Considering the groups Z/(2nZ) as factors of the additive group Z2 of 2-adic numbers, we paste these

numerations to the global map

X(c, t) : (c∞; c1]× Z2 → R,

it is a real-valued function of a real and 2-adic argument. By definition, it satisfies the equation

X(c, t+ 1) = X(c, t)2 + c.

The main technical result of this part can be formulated as follows:

Theorem 7. For any “2-adic moment” t ∈ Z2 there exists lim
c→c∞

X(c, t) =: X(c∞, t)

3.4 Important particular case

First we prove the theorem that is a particular case of the theorem 7 (the case of zero moment).

Theorem 8.

lim
c→c∞

X(c, 0) = 0 (3)

Proof. The product of the derivatives of fc, taken over the stable 2n-periodic orbit, varies from 1 to −1

while c decreases from cn+1 to cn denote by cn+1/2 the value when this product vanishes. The number

0 ∈ Z2 corresponds to the part of the bifurcation diagram, intersecting the line x = 0 on each segment

[cn+1, cn], n ∈ N. Indeed, for any n there exists such a value cn+1/2 ∈ [cn+1, cn], that 0 is a 2n-periodic

point of fcn+1/2
. Such cycle of the map fcn+1/2

is superattractive.

Lemma 3. Let dn be the distances on the (c, x)-plane between the line x = 0 and the nonzero point of

the superattractive cycle of the period 2n that is closest to it. Then

lim
n→∞

∣

∣

∣

∣

dn
dn+1

∣

∣

∣

∣

= α = 2, 503 . . . (4)
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and hence lim
n→∞

dn = 0

Proof. We calculate:

g1(0) = lim
n→∞

(−α)nf◦2
n

cn+1+1/2
(0) = lim

n→∞
(−α)n|dn+1|.

The claim (4) follows from the last relation, because

∣

∣

∣

∣

dn
dn+1

∣

∣

∣

∣

= α
|(−α)n−1dn|
|(−α)ndn+1|

→ α while n → ∞.

Hence dn ∼ α−n → 0. �

Lemma 4.

lim
n→∞

cn+3/2 − cn+1/2

cn+1/2 − cn−1/2
= lim

n→∞
cn+1 − cn
cn − cn−1

=
1

δ
.

Proof. It is obvious that

ϕγ = ϕγ∞
+ (γ − γ∞);

Tϕγ = T (ϕγ∞
+ (γ − γ∞)). (5)

Consider the linearization of T in the neighborhood of a function f ∈ U0:

(DTf [h])(x) : = lim
λ→0

T (f + λh)− Tf

λ
(x)=−α

[

h

(

f

(

x

−α

))

+ f ′
(

f

(

x

−α

))

h

(

x

−α

)]

where α = α(f).

Then the equation (5) takes the form

(Tϕγ)(x) = T (ϕγ∞
) + (γ − γ∞)DTϕγ∞

(1) + ō(γ − γ∞) =

= T (ϕγ∞
)(x)− α(γ − γ∞)

(

1 + 2

(

x2

α2
+ γ∞

))

+ ō(γ − γ∞).

where ō(γ − γ∞) denotes the infinitesimals of higher order. Iterating this relation, we obtain:

T ◦n(ϕγ) = T ◦n(ϕγ∞
) + (γ − γ∞)DTT◦n−1ϕγ∞

◦ . . . ◦DTϕγ∞
(1) + ō(γ − γ∞). (6)

Let γ = γn+1/2, x = 0. Then

T ◦n(ϕγn+1/2
)(0) = T ◦n(ϕγ∞

)(0)+

+ (γn+1/2 − γ∞)DTT◦n−1ϕγ∞
◦ . . . ◦DTϕγ∞

(1)(0) + ō(γn+1/2 − γ∞)(0) (7)

and take the limit as n → ∞.

lim
n→∞

T ◦n(ϕγ∞
)(0)= lim

n→∞
lim
j→∞

T ◦nϕγn+j(0)= lim
j→∞

lim
n→∞

(−α)nϕ2n

γn+j
(0)= lim

j→∞
gj(0)= g(0) = 1;
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since the function, continuous on the segment, is uniformly continuous, therefore changing the order of

limits is legal. Moreover,

lim
n→∞

DTT◦(n−1)fγ∞
= DTg (8)

Fix N ≫ 1. From the equation (8) it follows that whenever n > N

T ◦nϕγn+1/2
= T ◦nϕγ∞

+ (cn+1/2 − γ∞)(DTg)
n−NDTT◦Nϕγ∞

◦ . . . ◦DTϕγ∞
(1) + ō(γ − γ∞).

Consider the function h : = DTT◦Nfγ∞
◦ . . . ◦DTϕγ∞

(1). It is known, [9] that the operator DTg is not

self-conjugate and that it has the only eigenvector h0, corresponding to the eigenvalue δ > 1 and the

invariant subspace H̃ , on which the norm ‖DTg‖ = ν < 1. Then the function h can be represented in the

form h = h0ϕ0 + h̃, where h̃ ∈ H̃ and ϕ0 is a number.

So

(DTg)
n−Nh = (DTg)

n−N (h0ϕ0 + h̃) = δn−Nh0ϕ0 + (DTg)
n−N (h̃)

Since the space H̃ is invariant and ‖DTg‖ = ν < 1, we have (DTg)
n−N (h̃) → 0 when n → ∞. Finally,

lim
n→∞

T ◦nϕγn+1/2
(0) = lim

n→∞
(−α)nϕ2n

γn+1/2
(0) = 0. Hence, taking the limit with n → ∞ in (7), we obtain:

0 = g(0) + lim
n→∞

(γn+1/2 − γ∞)δn−Nϕ0h0(0).

Consequently, lim
n→∞

(γn+1/2 − γ∞)δn = const, from which the lemma 4 follows. �

The theorem 8 follows from the lemma 4 and the relation (4). �

3.5 Proof of the main theorem

Proposition. There exists a diffeomorphism conjugating the map fc∞ with a map of the class Φ. (See

subsection 2.3).

Proof. Indeed, fc∞ has the unique unstable periodic orbit of the order 2n. Applying function S(x) from

the subsection (2.1) and using renormalization we get the desired result.

�

For fc∞ one can also construct the system of segments {∆(n)
i (c∞)}, n ≥ 1, 0 ≤ i < 2n, satisfying the

properties 1⋆−3⋆ of the subsection 2.3. The left and the right endpoints of these segments will be denoted

βn
k and γn

k respectively. Due to the properties 2⋆, 3⋆ each segment ∆
(n)
i contains 2k−n points of the period

2k for k > n, and by the property 1⋆ it contains no periodic points of other orders. Each segment of the

level ∆
(n+1)
i is separated from other segments by two repelling points, one of which has the period 2n,

and the other one has the smaller period. The numeration of the segments can be chosen in such a way

that ∆
(n)
0 (c∞) ∋ 0. On the bifurcational diagram the segment ∆

(n)
0 (c∞) is contained between the points

of the repelling cycle of the period 2n that are the closest to the line x = 0.
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It follows from the lemmas 3 and 4 that

|∆(n)
0 (c∞)|

|∆(n+1)
0 (c∞)|

→ α with n → ∞, (9)

where |∆| is the length of the segment ∆.

In order to prove the existence of the limit lim
c→c∞

X(c, t) it suffices to show that the following lemma 5

holds.

Lemma 5. For any natural k

lim
n→∞

|∆(n)
k | = 0. (10)

Proof. It follows from the lemma 3 that |∆(n)
0 | ≡ const

αn . By the construction of the segment system

f2n−k
c∞ (∆(k)

n ) ⊂ ∆
(n)
0 ,

so for the proof of the convergence of the lengths of segments it suffices to show that

∀k ∃Dk < α α2|f2n−k
c∞ (∆

(n)
k )|Dn

k ≥ |∆(n)
k | (12)n

For k = 0 the lemma 5 is proved.

Now we induct in n. For n = 0 there is only one segment. In the case n = k = 1 on the segment ∆
(1)
1

the map fc∞ is expanding, and one can take D1 = min(f ′c∞(γ1
1), f

′
c∞(β1

1))
−1. Then

|fc∞(∆
(1)
1 )|D1 ≥ |∆(1)

1 |.

Let’s prove that (12)n implies (12)n+1.

|f2n+1−k
c∞ (∆

(n+1)
k )| = |f2n

c∞f2n−k
c∞ (∆n+1

k )|

Since f2n−k
c∞ is a diffeomorphism on the segment ∆

(n+1)
k and has the negative schwartzian, according to

the choice of D1 we have

|f2n−k
c∞ (∆

(n+1)
k )|Dn

1 > |∆(n+1)
k | (11)

Furthermore, f2n−k
c∞ (∆n+1

k ) = ∆
(n+1)
2n . So now it’s time to prove that for any n ∈ N

|f2n(∆2n+1

2n )| α2

α− 1
> |∆2n+1

2n |

Consider the map f2n on the segment ∆2n+1

2n . It is a diffeomorphism with negative schwartzian. Without

loss of generality we may suppose that it is increasing. By definition of partition tower f2n(∆2n+1

2n ) ⊂ ∆2n+1

0

and ∆2n+1

2n ⊃ ∆2n+2

2n ∪∆2n+2

3·2n and f2n(∆2n+2

2n ) = ∆2n+2

2n+1 ⊂ ∆2n+1

0 . Moreover ∆2n+2

3·2n ⊃ ∆2n+3

3·2n ∪∆2n+3

7·2n and

f2n(∆2n+3

3·2n ) = ∆2n+3

2n+2 , f2n(∆2n+3

7·2n ) ⊂ ∆2n+3

0 . But ∆2n+2

2n+1 < ∆2n+3

0 < ∆2n+3

2n+2 , so f2n(∆2n+1

2n ) ⊃ ∆2n+3

0 using

relation (9) we get |∆2n+1

2n | < |∆2n

0 |(α−1)
α and |∆2n

0 | > |∆2n−3

0 |
α3 . Hence

|f2n(∆2n+1

2n )| α2

α− 1
> |∆2n+1

2n | (12)
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Now (12)n follows from (12) and (11).

Lemma 3 is proved. �

The segment number k 6= 0 appears for the first time on the level number s := [log2 k + 1]. We have

to find such a number Dk, that f2s−k
c∞ (∆s

k)D
s > |∆s

k|. Take

Dk = max(min((f2s−k
c∞ )′(βs

k), (f
2s−k
c∞ )′(γs

k), )Dk−2s−1)

�

The theorem 7 is proved.

The map fc acts on the bifurcation diagram:

fc : BD 7→ BD : (x, c) → (fc(x), c),

inducing the map F : Z2 → Z2: t 7→ t+ 1.

Conclusion. The following diagram is commutative:

Z2
t7→t+1−−−−→ Z2





y

κ(t)





y

κ(t)

R
fc∞−−−−→ R

This is an equivalent form of our main theorem.
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