Introduction	Approach	Realisation

Kinematic Fast Dynamo Problem

Polina Vytnova

Warwick University

July 2014

Approach

The kinematic fast dynamo problem

Under certain simplifying assumptions, the system of magnetohydrodynamics may be reduced to a Navier-Stokes type equation.

The kinematic dynamo equations

$$\frac{\partial B}{\partial t} = (B \cdot \nabla)v - (v \cdot \nabla)B + \varepsilon \Delta B;$$

$$\nabla \cdot v = \nabla \cdot B = 0.$$

- v is the (known) velocity field of a fluid filling a certain compact domain M;
- B is the (unknown) magnetic field;
- ε is a dimensionless parameter reflecting the magnetic diffusion through the boundary of *M*.

Problem (Main fast dynamo problem)

Does there exist a divergence-free velocity field v in a compact domain M tangent to the boundary, such that the energy of the magnetic field B(t) grows exponentially in time for some initial field B_0 in the presence of small diffusion ($\varepsilon > 0$)?

This is a Cauchy problem. A case of special interest are stationary velocity fields in three-dimensional domains.

The provisional flow

Figure: Dynamo manifold with the fluid flow (blue) and magnetic induction field (red). The labels S_1 and S_2 mark periodic saddle points. $\tau_{1,2,3,4}$ stand for manifolds equivalent to cylinders.

Approach

The Poincaré map

The map between the sections σ_1 , σ_2 , σ_3 , σ_4 and π realised by the provisional flow. The points S_1 and S_2 are periodic saddles.

The first return map to the section π is an unfolded Baker's map.

The unfolded Baker's map plays the leading role.

From flows to diffeomorphisms

Lemma

The exponent of the Laplacian is the Weierstrass transform.

$$(\exp(\varepsilon\Delta)B)(z) = (W_{\varepsilon}B)(z) \stackrel{\mathrm{def}}{=} \int_{\mathbb{R}^d} \frac{1}{(\sqrt{2\pi}\varepsilon)^d} \exp\left(-\frac{|z-t|^2}{2\varepsilon^2}\right) B(t) \mathrm{d}t$$

The Lemma gives a natural discretization of the dynamo equation, where the action of piecewise diffeomorphisms is used instead of the transport by a flow

 $B \mapsto (W_{\varepsilon}g_*)B, \qquad g \text{ is a piecewise diffeomorphism.}$

Theorem (Main)

There exists a piecewise diffeomorphism $F : \mathbb{R}^2 \to \mathbb{R}^2$ such that for some vector field B_0 in \mathbb{R}^2

$$\lim_{\varepsilon \to 0} \lim_{n \to \infty} \frac{1}{n} \log \| (W_{\varepsilon}F_*)^n B_0 \|_{\mathcal{L}_1} > 0.$$

The map F may be realised as the first return map of the provisional flow to the section π .

Noise instead of diffusion

Definition (Small random perturbations)

Given a map $F : \mathbb{R}^n \to \mathbb{R}^n$ we define a natural extension $\widehat{F} : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ by $\widehat{F}(x, y) = F(x) + y$. To any sequence $\xi \in \ell_{\infty}(\mathbb{R}^n)$ we can associate a small perturbation F_{ε}^m of the map F by

$$F_{\xi}^{m} \stackrel{\mathrm{def}}{=} \widehat{F}_{\xi(m)} \circ \widehat{F}_{\xi(m-1)} \circ \ldots \circ \widehat{F}_{\xi(1)}.$$

(Also known as a skew product representation of a random dynamical system).

Lemma (Noise Lemma)

Let w_{ε} be the Gaussian kernel in \mathbb{R}^k with isotropic variance ε . In the notations introduced above, for any vector field B in \mathbb{R}^k and for any m > 0

$$(W_{\varepsilon}F_{*})^{m}B(z)=\int_{\mathbb{R}^{k(m-1)}}w_{\varepsilon}(t_{1})w_{\varepsilon}(t_{2})\ldots w_{\varepsilon}(t_{m-1})(W_{\varepsilon}F_{t_{*}}^{m}B)(z)\mathrm{d}\overline{t},$$

where $\bar{t} = (0, t_1, t_2, ..., t_{m-1}) \in \mathbb{R}^{km}$.

- The operator $(W_{\varepsilon}F_{*})^{n}$ was hard to study.
- The operator $W_{\frac{\varepsilon}{2}}F_{\xi*}^mW_{\frac{\varepsilon}{2}}$, where $\xi \in \ell_{\infty}(\mathbb{R}^2)$, is easier and sufficient.

The operator to study

Main goal

To construct an invariant cone C for the operator $W_{\frac{\varepsilon}{2}}F_{\xi_*}^mW_{\frac{\varepsilon}{2}}$ for arbitrary sufficiently large $m \gg 1$, for all $\|\xi\|_{\infty} \leq m2^{-\alpha m}$ and $\varepsilon \leq 2^{-\alpha m}$ for some $\alpha < 1$, in the space of essentially bounded vector fields with absolutely integrable components. The cone should satisfy

$$\left| W_{\frac{\varepsilon}{2}} F_{\xi*}^m W_{\frac{\varepsilon}{2}} \right|_C \right\| \ge 2^m \cdot \text{const.}$$

The bound is justified: $\left\|W_{\frac{\varepsilon}{2}}F^m_*W_{\frac{\varepsilon}{2}}\left(\begin{smallmatrix}0\\1\end{smallmatrix}\right)\chi_{\Box}\right\| \ge 2^{m-1} \ (\xi=0,\ \Box:=[-1;1]^2).$

If the diffeomorphism action causes the field to change direction rapidly; its energy cannot grow exponentially fast in the presence of diffusion.

Figure: Evolution of the magnetic field (red) under iterations of the folded Baker's map. (a) initial vector field, (d) vector field after 3 iterations. Blue dashed lines mark discontinuities.

- Fix a large number $m \gg 1$ and a sequence $\|\xi\|_{\infty} \leq 2^{-m\alpha}$.
- **2** Choose a norm: maximum of the weighted \mathcal{L}_1 -norm and weighted supremum norm; the "weights" depend on *m* and ξ .
- **()** Introduce a sequence of *canonical partitions*, associated to a sequence of small perturbations ξ , a substitute for a Markov partition for *m* iterations.
- Introduce a subspace of piecewise-constant vector fields \mathfrak{X}_{Ω} , associated to a canonical partition $\Omega(m, \xi)$; and choose a *basis*.
- Approximate the linear operator $F_{\xi_*}^{2m} |_{\mathfrak{X}_{\Omega^1}}$, by a linear operator $\mathcal{A}(m,\xi) \colon \mathfrak{X}_{\Omega^1} \to \mathfrak{X}_{\Omega^2}$ (partitions Ω^1 and Ω^2 depend on ξ and m).
- Construct a pair cones $C_1 \subset \mathfrak{X}_{\Omega^1}$ and $C_2 \subset \mathfrak{X}_{\Omega^2}$ such that $\mathcal{A} \colon C_1 \to C_2 \ll C_1$. (Both cones depend on ξ and m).
- Get rid of the dependence on ξ : show that an image of the Weierstrass transform $W_{\frac{\varepsilon}{2}}v$ may be very well approximated by a piecewise-constant vector field, associated to a canonical partition Ω . This is due to $\varepsilon \gg \sup \operatorname{diam}(\Omega_i)$.
- Onstruct an invariant cone for the operator W^c/₂ F^{2m}_{ξ*} W^c/₂ in the space of piecewise-constant vector fields X.

Approach

A sketch of the matrix

Figure: Baker's map and its action on a constant vector field, which is parallel to the expanding direction.

- Fix a large number $m \gg 1$ and a sequence $\|\xi\|_{\infty} \leq 2^{-m\alpha}$.
- **(a)** In the case $\xi = 0$: the Baker's map itself; take a Markov partition Ω for *m* iterations;
- **()** In general take a pair of canonical partitions $\Omega^1(\xi)$, $\Omega^2(\xi)$;
- ${\small {\small @ Define a linear operator $\mathcal{A}_{\xi}: $\mathfrak{X}_{\Omega^1} \to \mathfrak{X}_{\Omega^2}$ by }$

$$orall
u \in \mathfrak{X}_{\Omega^1}: \quad \int_{\Omega^2_{ij}} extsf{ extsf{F}}_{\xi*}^{2m}
u = \int_{\Omega^2_{ij}} \mathcal{A}_{\xi}
u$$

Figure: A sketch of the central part of the matrix of \mathcal{A}_{ξ} restricted to the subspace of vectors, parallel to the expanding direction of the Baker's map. (a) $\xi = 0$ and (b) $\xi \equiv \delta \neq 0$. Green: $a_{ij} = 1$; white: $a_{ij} = 0$.

Introduction

Approach

Sample matrix properties

$$\begin{aligned} X &= \langle e_i \rangle; \ m \gg 1; \ A(\alpha): X \to X \ \text{linear:} \\ \bullet \ \sup |a_{ij}| &\leq 2^{\gamma m} \ \text{for some} \ 0 < \gamma \leq 0.01; \\ \bullet \ \# \left\{ -2^m < i, j < 2^m \mid a_{ij} \neq 1 \right\} \leq 2^{\frac{7}{4}m}; \\ \bullet \ a_{ij} &= 0 \ \text{whenever} \ |i - j| \geq m2^{(1-\alpha)m} \ \text{and} \\ \max(|i|, |j|) > 2^m (m2^{-\alpha m} + 1). \end{aligned}$$

Norm on X:

$$\left\|\sum x_i e_i\right\| \stackrel{\text{def}}{=} \max\left(2^{-m} \sum |c_i|, 2^{-\frac{m}{4}} \sup |c_i|\right)$$

Cone in X:

Figure: A central block of the matrix of operator $A(\alpha)$. The size of the internal square is $2^{m+1} \times 2^{m+1}$.

$$C(r,X) \stackrel{\text{def}}{=} \left\{ \sum_{i=-2^m}^{2^m} de_i + x \mid \sum_{i=-2^m}^{2^m} x_i = 0, \ \|x\| \le rd \right\}$$

Theorem (A prelude to fast dynamo)

 $\text{Let } \tfrac{3}{4} < \alpha < 1. \text{ Then } A(\alpha) \colon C(1,X) \to C\left(2^{-\frac{m}{8}},X\right), \text{ and } \|A(\alpha)|_{C(1,X)} \| \geq 2^{m-1}.$

Introduction

Fix a large number $m \gg 1$ and a sequence $\|\xi\|_{\infty} \leq 2^{-m\alpha}$.

Definition (Canonical partition)

To a small perturbation F_{ξ}^{2m} of the map F we associate a partition $\Omega(m,\xi)$ of \mathbb{R}^2 that satisfies the following conditions

- The unit square □ contains at most 2^{2m} and at least 2^{2(m-1)} elements of the partition. Interiors of the elements do not intersect the boundary of the square.
- **②** For any element Ω_{ij} of the partition Ω there exist two rectangles $Rec(\frac{1}{m}2^{-m}, \frac{1}{m}2^{-m}) \subseteq \Omega_{ij} \subseteq Rec(2^{1-m}, 2^{1-m}).$
- Any rectangle R ⊂ □ such that $F_{\xi}^k(R) ⊂ □$ for all $0 \le k \le 2m$ is contained in a single element of the partition.

Theorem

Canonical partition does exist for any sequence $\xi \in \ell_{\infty}(\mathbb{R}^2)$ with $\|\xi\|_{\infty} \leq m2^{-\alpha m}$.

Introduction 0000	Approach 00000	Realisation
Mixed norm		

- Keep a large number $m\gg 1$ and a sequence $\|\xi\|_\infty \leq 2^{-m\alpha}$ fixed.
- Given a canonical partition $\Omega(m,\xi)$ of \mathbb{R}^2 , we define an associated weighted (Ω, \mathcal{L}_1) -norm of a vector field v in \mathbb{R}^2 by

$$\|v\|_{\Omega,\mathcal{L}_1} \stackrel{\text{def}}{=} \sum_{ij} \frac{2^{-m}}{|\pi_y(\Omega_{ij})|} \int_{\Omega_{ij}} |v|;$$

where $\pi_{\mathcal{Y}}$ is an orthogonal projection on the expanding direction of the Baker's map.

Definition (Mixed Norm)

We introduce a new norm, associated to the partition $\Omega,$ combining weighted (Ω,\mathcal{L}_1) and supremum norms:

$$\|v\|_{\Omega} \stackrel{\text{def}}{=} \max\Big(\|v\|_{\Omega,\mathcal{L}_1}, 2^{-m/4} \sup |v|\Big).$$

Main "feature"

We estimate the growth of the (Ω, \mathcal{L}_1) -norm via the supremum norm and vice versa.

Introduction

Approach 00000

Approximating the operator $F_{\mathcal{E}*}^{2m}$

Keep a large number $m \gg 1$ and a sequence $\|\xi\|_{\infty} \leq 2^{-m\alpha}$ fixed. We may split $X_{\Omega} = V_{\Omega}^{s} \oplus V_{\Omega}^{u}$; where V_{Ω}^{s} is a span of vectors, parallel to the contracting direction of $F_{\mathcal{E}*}^{2m}$ and V_{Ω}^{u} is a span of vectors parallel to the expanding direction of $F_{\mathcal{E}*}^{2m}$.

- $\textbf{0} \ \ \text{Canonical partitions } \Omega^1 \ \text{and} \ \ \Omega^2 \ \text{for} \ \xi \ \text{and} \ \sigma^{2m}\xi, \ \text{respectively}.$
- $\textbf{@ Linear operator } \mathcal{A}(m,\xi) \colon \mathfrak{X}_{\Omega^1} \to \mathfrak{X}_{\Omega^2}$

$$orall
u \in \mathfrak{X}_{\Omega^1} \qquad \int_{\Omega^2_{kl}} F^{2m}_{\xi*}
u = \int_{\Omega^2_{kl}} \mathcal{A}
u.$$

O The operators W_δA and W_δF^{2m}_{ξ∗} are close on \mathfrak{X}_{Ω^1} . Namely, for 2^{-m} ≪ δ ≪ 1 and $\|\xi\| \le \delta$:

$$\|W_{\delta}(\mathsf{F}^{2m}_{\xi_*}-\mathcal{A})\nu\|_{\Omega^2}\leq \frac{8}{2^m\delta}\left(\|\mathcal{A}\nu\|_{\Omega^2}+\|\mathsf{F}^{2m}_{\xi_*}\nu\|_{\Omega^2}\right).$$

4 Decomposition $\mathcal{A} = SS \oplus US \oplus SU \oplus UU$,

- The operators $SS: V^s_{\Omega^1} \to V^s_{\Omega^2}$, $US: V^u_{\Omega^1} \to V^s_{\Omega^2}$, and $SU: V^s_{\Omega^1} \to V^u_{\Omega^2}$ are small;
- The operator $UU: V_{\Omega^1}^u \to V_{\Omega^2}^u$ is the most important and is responsible for *the exponential growth* of a suitably chosen vector field ν under iterations of A.

Matrix of the operator $UU(\xi, m)$

Definition

We define a basis of the subspace of piecewise constant vector fields \mathfrak{X}_Ω by

$$\chi^{\mathfrak{s}}_{\Omega_{ij}} \stackrel{\mathrm{def}}{=} \frac{1}{|\pi_{\mathsf{x}}(\Omega_{ij})|} (\begin{smallmatrix} 1 \\ 0 \end{smallmatrix}) \chi_{\Omega_{ij}}; \qquad \chi^{\mathsf{u}}_{\Omega_{ij}} \stackrel{\mathrm{def}}{=} \frac{1}{|\pi_{\mathsf{x}}(\Omega_{ij})|} (\begin{smallmatrix} 0 \\ 1 \end{smallmatrix}) \chi_{\Omega_{ij}}.$$

Then the condition

$$orall
u \in V^u_{\Omega^1}$$
: $\int_{\Omega^2_{kl}} F^{2m}_{\xi*}
u = \int_{\Omega^2_{kl}} U U
u$

allows us to prove the following estimates.

Theorem (Properties of the matrix $UU(\xi, m)$)

Let $\delta = 2^{-m\alpha}$, $\frac{15}{16} \le \alpha \le 1$. Consider a sequence $\xi \in \ell_{\infty}(\mathbb{R}^2)$ with $\|\xi\|_{\infty} \le \delta$. Then • there exists $0 < \gamma_1 < 0.01$ such that $\sup |UU_{ij}^{kl}| \le 2^{\gamma_1 m}$. • $UU = UU^B + UU^G$, where • UU^G satisfies: $\#\left\{(ij, kl) \in \Box \times \Box \mid (UU^G)_{ii}^{kl} \ne 1\right\} \le 2^{\frac{9}{2}}\delta;$

•
$$UU^B$$
 is small: $\sum_{\Box \times \Box} (UU^B)_{ij}^{kl} \le 2^m \cdot 8m\delta.$

A cone in the space \mathfrak{X}_{Ω^1} .

Corolla<u>ry</u>

The matrix of the operator $UU(\xi, m)$ has a pattern of the "sample matrix" for any m sufficiently large and for any $\|\xi\|_{\infty} \leq 2^{-m\alpha}$ with $\frac{15}{16} < \alpha < 1$.

Definition (Cone in vector fields)

We define a cone in the space of piecewise-constant vector fields in \mathbb{R}^2 centered at the eigenfunction $v_0 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \chi_{\Box}$ of the operator F_* :

$$\mathcal{C}(r,\Omega) \stackrel{\mathrm{def}}{=} \left\{
u = d(\begin{smallmatrix} 0 \\ 1 \end{smallmatrix}) \chi_{\Box} + \psi, \ \|\psi\|_{\Omega} \leq rd, \ \sum_{\Box} \psi_y^{ij} = 0
ight\}$$

Corolla<u>ry</u>

Let $m \gg 1$ and a sequence $\|\xi\|_{\infty} \leq 2^{-m\alpha}$ be fixed. Let Ω^1 and Ω^2 be a pair of canonical partitions associated to the sequence ξ , as above. Define a number $\beta = -\frac{3}{16} + \gamma_1$. Then $\mathcal{A}(\xi, m) \colon C(1, \Omega^1) \to C(2^{-\beta m}, \Omega^2)$ and $\|\mathcal{A}\|_{C(1, \Omega^1)} \| \geq 2^{2m-1}$.

Introduction	Approach	Realisati
0000	00000	00000

Discretization operator

We define the discretization operator $D_\Omega \colon \mathfrak{X} \to \mathfrak{X}_\Omega$ by taking averages by

$$(D_{\Omega}v)(z) \stackrel{\mathrm{def}}{=} \sum_{ij} \frac{1}{|\Omega_{ij}|} \Big(\int_{\Omega_{ij}} v \Big) \chi_{\Omega_{ij}}(z)$$

Now we can get rid of the dependence of partitions and norm on ξ .

Lemma

There exists $1-\alpha<\gamma_3<1-\alpha+\gamma_1$ such that for any $\nu\in\mathfrak{X}$ and for any two canonical partitions Ω^1 and Ω^2

$$\|W_{\delta}\nu - D_{\Omega}W_{\delta}\nu\|_{2} \leq 2^{-\gamma_{3}m}\|\nu\|_{1};$$
$$\|W_{\delta}\chi_{\Box} - D_{\Omega}W_{\delta}\chi_{\Box}\|_{2} \leq 2^{-\frac{m}{4}}.$$

Using this two inequalities, the approximation

$$\|W_{\delta}(F^{2m}_{\xi*}-\mathcal{A})
u\|_{2}\leq rac{8}{2^{m}\delta}\left(\|\mathcal{A}
u\|_{2}+\|F^{2m}_{\xi*}
u\|_{2}
ight).$$

and Prelude Theorem, we construct an invariant cone C for the operator $W_{\delta}F_{\xi^*}^{2m}W_{\delta}$, with $\xi \leq -2\delta \log \delta$; such that $\|W_{\delta}F_{\xi^*}^{2m}W_{\delta}|_C\| \geq 2^{2m-2}$. We combine this result with Noise Lemma and get Main Theorem.