# Kinematic Fast Dynamo Problem 

Polina Vytnova

Warwick University

July 2014

## The kinematic fast dynamo problem

Under certain simplifying assumptions, the system of magnetohydrodynamics may be reduced to a Navier-Stokes type equation.

The kinematic dynamo equations

$$
\left\{\begin{aligned}
\frac{\partial B}{\partial t} & =(B \cdot \nabla) v-(v \cdot \nabla) B+\varepsilon \Delta B ; \\
\nabla \cdot v & =\nabla \cdot B=0 .
\end{aligned}\right.
$$

- $v$ is the (known) velocity field of a fluid filling a certain compact domain $M$;
- $B$ is the (unknown) magnetic field;
- $\varepsilon$ is a dimensionless parameter reflecting the magnetic diffusion through the boundary of $M$.


## Problem (Main fast dynamo problem)

Does there exist a divergence-free velocity field $v$ in a compact domain $M$ tangent to the boundary, such that the energy of the magnetic field $B(t)$ grows exponentially in time for some initial field $B_{0}$ in the presence of small diffusion $(\varepsilon>0)$ ?

This is a Cauchy problem. A case of special interest are stationary velocity fields in three-dimensional domains.

## The provisional flow



Figure: Dynamo manifold with the fluid flow (blue) and magnetic induction field (red). The labels $S_{1}$ and $S_{2}$ mark periodic saddle points. $\tau_{1,2,3,4}$ stand for manifolds equivalent to cylinders.

## The Poincaré map



The map between the sections $\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}$ and $\pi$ realised by the provisional flow. The points $S_{1}$ and $S_{2}$ are periodic saddles.

The first return map to the section $\pi$ is an unfolded Baker's map.

The unfolded Baker's map plays the leading role.

## From flows to diffeomorphisms

## Lemma

The exponent of the Laplacian is the Weierstrass transform.

$$
(\exp (\varepsilon \Delta) B)(z)=\left(W_{\varepsilon} B\right)(z) \stackrel{\text { def }}{=} \int_{\mathbb{R}^{d}} \frac{1}{(\sqrt{2 \pi} \varepsilon)^{d}} \exp \left(-\frac{|z-t|^{2}}{2 \varepsilon^{2}}\right) B(t) \mathrm{d} t
$$

The Lemma gives a natural discretization of the dynamo equation, where the action of piecewise diffeomorphisms is used instead of the transport by a flow

$$
B \mapsto\left(W_{\varepsilon} g_{*}\right) B, \quad g \text { is a piecewise diffeomorphism. }
$$

## Theorem (Main)

There exists a piecewise diffeomorphism $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that for some vector field $B_{0}$ in $\mathbb{R}^{2}$

$$
\lim _{\varepsilon \rightarrow 0} \lim _{n \rightarrow \infty} \frac{1}{n} \log \left\|\left(W_{\varepsilon} F_{*}\right)^{n} B_{0}\right\|_{\mathcal{L}_{1}}>0
$$

The map F may be realised as the first return map of the provisional flow to the section $\pi$.

## Noise instead of diffusion

## Definition (Small random perturbations)

Given a map $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ we define a natural extension $\widehat{F}: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ by $\widehat{F}(x, y)=F(x)+y$. To any sequence $\xi \in \ell_{\infty}\left(\mathbb{R}^{n}\right)$ we can associate a small perturbation $F_{\xi}^{m}$ of the map $F$ by

$$
F_{\xi}^{m} \stackrel{\text { def }}{=} \widehat{F}_{\xi(m)} \circ \widehat{F}_{\xi(m-1)} \circ \ldots \circ \widehat{F}_{\xi(1)} .
$$

(Also known as a skew product representation of a random dynamical system).

## Lemma (Noise Lemma)

Let $w_{\varepsilon}$ be the Gaussian kernel in $\mathbb{R}^{k}$ with isotropic variance $\varepsilon$. In the notations introduced above, for any vector field $B$ in $\mathbb{R}^{k}$ and for any $m>0$

$$
\left(W_{\varepsilon} F_{*}\right)^{m} B(z)=\int_{\mathbb{R}^{k(m-1)}} w_{\varepsilon}\left(t_{1}\right) w_{\varepsilon}\left(t_{2}\right) \ldots w_{\varepsilon}\left(t_{m-1}\right)\left(W_{\varepsilon} F_{\bar{t} *}^{m} B\right)(z) \mathrm{d} \bar{t}
$$

where $\bar{t}=\left(0, t_{1}, t_{2}, \ldots, t_{m-1}\right) \in \mathbb{R}^{k m}$.

- The operator $\left(W_{\varepsilon} F_{*}\right)^{n}$ was hard to study.
- The operator $W_{\frac{\varepsilon}{2}} F_{\xi *}^{m} W_{\frac{\varepsilon}{2}}$, where $\xi \in \ell_{\infty}\left(\mathbb{R}^{2}\right)$, is easier and sufficient.


## The operator to study

## Main goal

To construct an invariant cone $C$ for the operator $W_{\frac{\varepsilon}{2}} F_{\xi *}^{m} W_{\frac{\varepsilon}{2}}$ for arbitrary sufficiently large $m \gg 1$, for all $\|\xi\|_{\infty} \leq m 2^{-\alpha m}$ and $\varepsilon \leq 2^{-\alpha m}$ for some $\alpha<1$, in the space of essentially bounded vector fields with absolutely integrable components. The cone should satisfy

$$
\left\|\left.W_{\frac{\varepsilon}{2}} F_{\xi *}^{m} W_{\frac{\varepsilon}{2}} \right\rvert\, c\right\| \geq 2^{m} \cdot \text { const. }
$$

The bound is justified: $\left\|W_{\frac{\varepsilon}{2}} F_{*}^{m} W_{\frac{\varepsilon}{2}}\binom{0}{1} \chi_{\square}\right\| \geq 2^{m-1}\left(\xi=0, \square:=[-1 ; 1]^{2}\right)$.
If the diffeomorphism action causes the field to change direction rapidly; its energy cannot grow exponentially fast in the presence of diffusion.

(a)

(b)

(c)

(d)

Figure: Evolution of the magnetic field (red) under iterations of the folded Baker's map. (a) initial vector field, (d) vector field after 3 iterations. Blue dashed lines mark discontinuities.

## Strategy: key steps

(1) Fix a large number $m \gg 1$ and a sequence $\|\xi\|_{\infty} \leq 2^{-m \alpha}$.
(2) Choose a norm: maximum of the weighted $\mathcal{L}_{1}$-norm and weighted supremum norm; the "weights" depend on $m$ and $\xi$.
(3) Introduce a sequence of canonical partitions, associated to a sequence of small perturbations $\xi$, a substitute for a Markov partition for $m$ iterations.
(9) Introduce a subspace of piecewise-constant vector fields $\mathfrak{X}_{\Omega}$, associated to a canonical partition $\Omega(m, \xi)$; and choose a basis.
(0) Approximate the linear operator $\left.F_{\xi *}^{2 m}\right|_{\mathfrak{X}_{\Omega^{1}}}$, by a linear operator $\mathcal{A}(m, \xi): \mathfrak{X}_{\Omega^{1}} \rightarrow \mathfrak{X}_{\Omega^{2}}$ (partitions $\Omega^{1}$ and $\Omega^{2}$ depend on $\xi$ and $m$ ).
(0) Construct a pair cones $C_{1} \subset \mathfrak{X}_{\Omega^{1}}$ and $C_{2} \subset \mathfrak{X}_{\Omega^{2}}$ such that $\mathcal{A}: C_{1} \rightarrow C_{2} \ll C_{1}$. (Both cones depend on $\xi$ and $m$ ).
(1) Get rid of the dependence on $\xi$ : show that an image of the Weierstrass transform $W_{\frac{\varepsilon}{2}} \vee$ may be very well approximated by a piecewise-constant vector field, associated to a canonical partition $\Omega$. This is due to $\varepsilon \gg \sup \operatorname{diam}\left(\Omega_{j}\right)$.
(8) Construct an invariant cone for the operator $W_{\frac{\varepsilon}{2}} F_{\xi *}^{2 m} W_{\frac{\varepsilon}{2}}$ in the space of piecewise-constant vector fields $\mathfrak{X}$.

## A sketch of the matrix



Figure: Baker's map and its action on a constant vector field, which is parallel to the expanding direction.
(1) Fix a large number $m \gg 1$ and a sequence $\|\xi\|_{\infty} \leq 2^{-m \alpha}$.
(2) In the case $\xi=0$ : the Baker's map itself; take a Markov partition $\Omega$ for $m$ iterations;
(3) In general take a pair of canonical partitions $\Omega^{1}(\xi), \Omega^{2}(\xi)$;
(1) Define a linear operator $\mathcal{A}_{\xi}: \mathfrak{X}_{\Omega^{1}} \rightarrow \mathfrak{X}_{\Omega^{2}}$ by

$$
\forall \nu \in \mathfrak{X}_{\Omega^{1}}: \quad \int_{\Omega_{i j}^{2}} F_{\xi *}^{2 m} \nu=\int_{\Omega_{i j}^{2}} \mathcal{A}_{\xi} \nu
$$


(a)

(b)

Figure: A sketch of the central part of the matrix of $\mathcal{A}_{\xi}$ restricted to the subspace of vectors, parallel to the expanding direction of the Baker's map. (a) $\xi=0$ and (b) $\xi \equiv \delta \neq 0$. Green: $a_{i j}=1$; white: $a_{i j}=0$.

## Sample matrix properties

$X=\left\langle e_{i}\right\rangle ; m \gg 1 ; A(\alpha): X \rightarrow X$ linear:


Figure: A central block of the matrix of operator $A(\alpha)$. The size of the internal square is $2^{m+1} \times 2^{m+1}$.
(1) sup $\left|a_{i j}\right| \leq 2^{\gamma m}$ for some $0<\gamma \leq 0.01$;
(2) $\#\left\{-2^{m}<i, j<2^{m} \mid a_{i j} \neq 1\right\} \leq 2^{\frac{7}{4} m}$;
(3) $a_{i j}=0$ whenever $|i-j| \geq m 2^{(1-\alpha) m}$ and $\max (|i|,|j|)>2^{m}\left(m 2^{-\alpha m}+1\right)$.
Norm on $X$ :

$$
\left\|\sum x_{i} e_{i}\right\| \stackrel{\text { def }}{=} \max \left(2^{-m} \sum\left|c_{i}\right|, 2^{-\frac{m}{4}} \sup \left|c_{i}\right|\right)
$$

Cone in $X$ :

$$
C(r, X) \stackrel{\text { def }}{=}\left\{\sum_{i=-2^{m}}^{2^{m}} d e_{i}+x \mid \sum_{i=-2^{m}}^{2^{m}} x_{i}=0,\|x\| \leq r d\right\}
$$

## Theorem (A prelude to fast dynamo)

Let $\frac{3}{4}<\alpha<1$. Then $A(\alpha): C(1, X) \rightarrow C\left(2^{-\frac{m}{8}}, X\right)$, and $\left\|\left.A(\alpha)\right|_{C(1, X)}\right\| \geq 2^{m-1}$.

## Canonical partitions

Fix a large number $m \gg 1$ and a sequence $\|\xi\|_{\infty} \leq 2^{-m \alpha}$.

## Definition (Canonical partition)

To a small perturbation $F_{\xi}^{2 m}$ of the map $F$ we associate a partition $\Omega(m, \xi)$ of $\mathbb{R}^{2}$ that satisfies the following conditions
(1) The unit square $\square$ contains at most $2^{2 m}$ and at least $2^{2(m-1)}$ elements of the partition. Interiors of the elements do not intersect the boundary of the square.
(2) For any element $\Omega_{i j}$ of the partition $\Omega$ there exist two rectangles $\operatorname{Rec}\left(\frac{1}{m} 2^{-m}, \frac{1}{m} 2^{-m}\right) \subseteq \Omega_{i j} \subseteq \operatorname{Rec}\left(2^{1-m}, 2^{1-m}\right)$.
(3) Any rectangle $R \subset \square$ such that $F_{\xi}^{k}(R) \subset \square$ for all $0 \leq k \leq 2 m$ is contained in a single element of the partition.

## Theorem

Canonical partition does exist for any sequence $\xi \in \ell_{\infty}\left(\mathbb{R}^{2}\right)$ with $\|\xi\|_{\infty} \leq m 2^{-\alpha m}$.

## Mixed norm

- Keep a large number $m \gg 1$ and a sequence $\|\xi\|_{\infty} \leq 2^{-m \alpha}$ fixed.
- Given a canonical partition $\Omega(m, \xi)$ of $\mathbb{R}^{2}$, we define an associated weighted $\left(\Omega, \mathcal{L}_{1}\right)$-norm of a vector field $v$ in $\mathbb{R}^{2}$ by

$$
\|v\|_{\Omega, \mathcal{L}_{1}} \stackrel{\text { def }}{=} \sum_{i j} \frac{2^{-m}}{\left|\pi_{y}\left(\Omega_{i j}\right)\right|} \int_{\Omega_{i j}}|v| ;
$$

where $\pi_{y}$ is an orthogonal projection on the expanding direction of the Baker's map.

## Definition (Mixed Norm)

We introduce a new norm, associated to the partition $\Omega$, combining weighted $\left(\Omega, \mathcal{L}_{1}\right)$ and supremum norms:

$$
\|v\|_{\Omega} \stackrel{\text { def }}{=} \max \left(\|v\|_{\Omega, \mathcal{L}_{1}}, 2^{-m / 4} \sup |v|\right) .
$$

## Main "feature"

We estimate the growth of the $\left(\Omega, \mathcal{L}_{1}\right)$-norm via the supremum norm and vice versa.

## Approximating the operator $F_{\xi *}^{2 m}$

Keep a large number $m \gg 1$ and a sequence $\|\xi\|_{\infty} \leq 2^{-m \alpha}$ fixed. We may split $X_{\Omega}=V_{\Omega}^{s} \oplus V_{\Omega}^{u}$; where $V_{\Omega}^{s}$ is a span of vectors, parallel to the contracting direction of $F_{\xi *}^{2 m}$ and $V_{\Omega}^{u}$ is a span of vectors parallel to the expanding direction of $F_{\xi *}^{2 m}$.
(1) Canonical partitions $\Omega^{1}$ and $\Omega^{2}$ for $\xi$ and $\sigma^{2 m} \xi$, respectively.
(2) Linear operator $\mathcal{A}(m, \xi): \mathfrak{X}_{\Omega^{1}} \rightarrow \mathfrak{X}_{\Omega^{2}}$

$$
\forall \nu \in \mathfrak{X}_{\Omega^{1}} \quad \int_{\Omega_{k l}^{2}} F_{\xi *}^{2 m} \nu=\int_{\Omega_{k l}^{2}} \mathcal{A} \nu
$$

(3) The operators $W_{\delta} \mathcal{A}$ and $W_{\delta} F_{\xi *}^{2 m}$ are close on $\mathfrak{X}_{\Omega^{1}}$. Namely, for $2^{-m} \ll \delta \ll 1$ and $\|\xi\| \leq \delta$ :

$$
\left\|W_{\delta}\left(F_{\xi *}^{2 m}-\mathcal{A}\right) \nu\right\|_{\Omega^{2}} \leq \frac{8}{2^{m} \delta}\left(\|\mathcal{A} \nu\|_{\Omega^{2}}+\left\|F_{\xi *}^{2 m} \nu\right\|_{\Omega^{2}}\right) .
$$

(1) Decomposition $\mathcal{A}=S S \oplus U S \oplus S U \oplus U U$,

- The operators SS: $V_{\Omega^{1}}^{s} \rightarrow V_{\Omega^{2}}^{s}, U S: V_{\Omega^{1}}^{u} \rightarrow V_{\Omega^{2}}^{s}$, and $S U: V_{\Omega^{1}}^{s} \rightarrow V_{\Omega^{2}}^{u}$ are small;
- The operator $U U: V_{\Omega^{1}}^{U} \rightarrow V_{\Omega^{2}}^{U}$ is the most important and is responsible for the exponential growth of a suitably chosen vector field $\nu$ under iterations of $\mathcal{A}$.


## Matrix of the operator $U U(\xi, m)$

## Definition

We define a basis of the subspace of piecewise constant vector fields $\mathfrak{X}_{\Omega}$ by

$$
\chi_{\Omega_{i j}}^{s} \stackrel{\text { def }}{=} \frac{1}{\left|\pi_{x}\left(\Omega_{i j}\right)\right|}\binom{1}{0} \chi_{\Omega_{i j}} ; \quad \chi_{\Omega_{i j}}^{u} \stackrel{\text { def }}{=} \frac{1}{\left|\pi_{x}\left(\Omega_{i j}\right)\right|}\binom{0}{1} \chi_{\Omega_{i j}} .
$$

Then the condition

$$
\forall \nu \in V_{\Omega^{1}}^{u}: \quad \int_{\Omega_{k l}^{2}} F_{\xi *}^{2 m} \nu=\int_{\Omega_{k l}^{2}} U U \nu
$$

allows us to prove the following estimates.

## Theorem (Properties of the matrix $U U(\xi, m)$ )

Let $\delta=2^{-m \alpha}, \frac{15}{16} \leq \alpha \leq 1$. Consider a sequence $\xi \in \ell_{\infty}\left(\mathbb{R}^{2}\right)$ with $\|\xi\|_{\infty} \leq \delta$. Then
(1) there exists $0<\gamma_{1}<0.01$ such that sup $\left|U U_{i j}^{k \prime}\right| \leq 2^{\gamma_{1} m}$.
(2) $U U=U U^{B}+U U^{G}$, where

- $U U^{G}$ satisfies: $\#\left\{(i j, k l) \in \square \times \square \mid\left(U U^{G}\right)_{i j}^{k l} \neq 1\right\} \leq 2^{\frac{9}{2}} \delta$;
- $U U^{B}$ is small: $\sum_{\square \times \square}\left(U U^{B}\right)_{i j}^{k l} \leq 2^{m} \cdot 8 m \delta$.


## A cone in the space $\mathfrak{X}_{\Omega^{1}}$.

## Corollary

The matrix of the operator $U U(\xi, m)$ has a pattern of the "sample matrix" for any $m$ sufficiently large and for any $\|\xi\|_{\infty} \leq 2^{-m \alpha}$ with $\frac{15}{16}<\alpha<1$.

## Definition (Cone in vector fields)

We define a cone in the space of piecewise-constant vector fields in $\mathbb{R}^{2}$ centered at the eigenfunction $v_{0}=\binom{0}{1} \chi_{\square}$ of the operator $F_{*}$ :

$$
C(r, \Omega) \stackrel{\text { def }}{=}\left\{\nu=d\binom{0}{1} \chi_{\square}+\psi,\|\psi\|_{\Omega} \leq r d, \sum_{\square} \psi_{y}^{i j}=0\right\}
$$

## Corollary

Let $m \gg 1$ and a sequence $\|\xi\|_{\infty} \leq 2^{-m \alpha}$ be fixed. Let $\Omega^{1}$ and $\Omega^{2}$ be a pair of canonical partitions associated to the sequence $\xi$, as above. Define a number $\beta=-\frac{3}{16}+\gamma_{1}$. Then $\mathcal{A}(\xi, m): C\left(1, \Omega^{1}\right) \rightarrow C\left(2^{-\beta m}, \Omega^{2}\right)$ and $\left\|\left.\mathcal{A}\right|_{C\left(1, \Omega^{1}\right)}\right\| \geq 2^{2 m-1}$.

## Discretization operator

We define the discretization operator $D_{\Omega}: \mathfrak{X} \rightarrow \mathfrak{X}_{\Omega}$ by taking averages by

$$
\left(D_{\Omega} v\right)(z) \stackrel{\text { def }}{=} \sum_{i j} \frac{1}{\left|\Omega_{i j}\right|}\left(\int_{\Omega_{i j}} v\right) \chi_{\Omega_{i j}}(z)
$$

Now we can get rid of the dependence of partitions and norm on $\xi$.

## Lemma

There exists $1-\alpha<\gamma_{3}<1-\alpha+\gamma_{1}$ such that for any $\nu \in \mathfrak{X}$ and for any two canonical partitions $\Omega^{1}$ and $\Omega^{2}$

$$
\begin{gathered}
\left\|W_{\delta} \nu-D_{\Omega} W_{\delta} \nu\right\|_{2} \leq 2^{-\gamma_{3} m}\|\nu\|_{1} ; \\
\left\|W_{\delta} \chi \square-D_{\Omega} W_{\delta} \chi \square\right\|_{2} \leq 2^{-\frac{m}{4}} .
\end{gathered}
$$

Using this two inequalities, the approximation

$$
\left\|W_{\delta}\left(F_{\xi *}^{2 m}-\mathcal{A}\right) \nu\right\|_{2} \leq \frac{8}{2^{m} \delta}\left(\|\mathcal{A} \nu\|_{2}+\left\|F_{\xi *}^{2 m} \nu\right\|_{2}\right) .
$$

and Prelude Theorem, we construct an invariant cone $C$ for the operator $W_{\delta} F_{\xi *}^{2 m} W_{\delta}$, with $\xi \leq-2 \delta \log \delta$; such that $\left\|W_{\delta} F_{\xi *}^{2 m} W_{\delta} \mid c\right\| \geq 2^{2 m-2}$. We combine this result with Noise Lemma and get Main Theorem.

