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Abstract. We give a new combinatorial description for Grassmannian Grothendieck polyno-
mials in terms of subdivisions of Gelfand–Zetlin polytopes. Moreover, these subdivisions also
provide a description of Lascoux polynomials. This generalizes a similar result on key polyno-
mials by Kiritchenko, Smirnov, and Timorin.

1. Introduction

In this paper, we provide a new combinatorial description of Lascoux polynomials in terms
of subdivisions of Gelfand–Zetlin polytopes and certain collections of their faces. Lascoux poly-
nomials, denoted by Lα, form a basis for Z[β][x1, x2, . . . ], where α runs over the set of weak
compositions (i.e., infinite sequences of nonnegative integers with finitely many positive entries).
They simultaneously generalize key polynomials, the characters of Demazure modules, and Grass-
mannian Grothendieck polynomials; the latter family represents classes of structure sheaves of
Schubert varieties in the connective K-theory of a Grassmannian, as shown by A.Buch [Buc02].
Both of these families are superfamilies of Schur polynomials.

Lascoux polynomials were defined by A. Lascoux [Las04] in terms of homogeneous divided
difference operators; just as other remarkable families of polynomials defined via these opera-
torsx, they have nonnegative coefficients. Originally, Lascoux defined these polynomials without
variable β. The introduction of the grading variable β is motivated by the connective K-theory
and goes back to works of S. Fomin and An.Kirillov [FK96], [FK94].

Although Lascoux polynomials do not have a description in geometric or representation-
theoretic terms, they admit several combinatorial descriptions. V.Buciumas, T. Scrimshaw, and
K.Weber [BSW20] establish their connection to the five-vertex model. T.Yu [Yu23] provides
a description in terms of set-valued tableaux, simultaneously generalizing Buch’s description of
Grassmannian Grothendieck polynomials in terms of set-valued Young tableaux and Lascoux–
Schützenberger’s tableau description of key polynomials.

Lascoux polynomials Lα specialized at β = 0 are equal to key polynomials. Suppose w ∈ Sn
is a permutation such that α = (α1, . . . , αn) = w(λ) for a suitable partition λ = (λ1, . . . , λn).
The key polynomials κα = κw,λ are defined as the characters of Demazure modules Dw,λ, i.e.
B-submodules in the irreducible GL(n)-representation Vλ with the highest weight λ. The mod-
ule Dw,λ is defined as the smallest B-submodule containing the extremal vector wvλ ∈ Vλ,
where B ⊂ GL(n) is a fixed Borel subgroup. Demazure modules were defined by M.Demazure
in [Dem74]; in the same paper the character formula for Dw,λ was stated. However, as it was
pointed out by V.Kac, its proof contained a gap; a correct proof appeared more than ten years
later, in H.H.Andersen’s work [And85]. The first combinatorial interpretation of coefficients
of key polynomials is due to A. Lascoux and M.-P. Schützenberger [LS90]. Other combinatorial
descriptions were obtained by S.Mason [Mas09]; they make use of the fact that key polynomials
can be obtained as specializations of non-symmetric Macdonald polynomials, see [HHL08].

These days, Lascoux polynomials are becoming a popular object of research in algebraic com-
binatorics. Among some recent works, let us mention the proof of V.Reiner and A.Yong’s
conjecture [RY21] on an expansion of Grothendieck polynomials into Lascoux polynomials given
by M. Shimozono and T.Yu in [SY23], and the work by J. Pan and T.Yu [PY24] on the top-degree
components of Lascoux polynomials.

This work was supported by the HSE University Basic Research Program and by Basis Foundation Fellowship
“Junior Leader”.
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The main goal of this paper is to relate Lascoux polynomials to Gelfand–Zetlin polytopes.
These polytopes play a remarkable role in representation theory. They were defined in 1950 in
a note [GC50] by I.M.Gelfand and M.L. Zetlin (also spelled Tsetlin or Cetlin), for constructing
certain “nice” bases in finite-dimensional representations of GL(n). Namely, vectors of such a
basis in a GL(n)-module Vλ with the highest weight λ are indexed by the integer points in a
certain integer convex polytope GZ(λ) ⊂ Rn(n−1)/2, called the Gelfand–Zetlin polytope.

Gelfand–Zetlin polytopes are also closely related to flag varieties (of type A). They are
the moment polytopes for the toric degenerations of flag varieties due to N.Gonciulea and
V. Lakshmibai, see [GL96]. These degenerations are singular, so the corresponding polytopes
are not integrally simple (in fact, even not simple). One can consider the degenerations of Schu-
bert varieties in a flag variety; this was studied by M.Kogan and E.Miller in [KM05b]. In this
paper the authors explicitly point out a set of faces of Gelfand–Zetlin polytope corresponding
to the degeneration of each Schubert variety Xw; this degenerated variety can be reducible, so
each face corresponds to an irreducible component. Each face corresponds to an rc-graph (pipe
dream) for permutation w ∈ Sn. This result is closely related to the monomial degeneration of
affine Schubert varieties by A.Knutson and E.Miller [KM05a].

In [KST12], V.Kiritchenko, E. Smirnov, and V.Timorin generalized this construction to com-
pute products in the cohomology ring of flag variety. They also provided a relation between Schu-
bert varieties, key polynomials and Gelfand–Zetlin polytopes. It is well-known that the Gelfand–
Zetlin polytope GZ(λ) for a dominant weight for GL(n) admits a projection π : GZ(λ)→ wt(λ)
to the weight polytope of the GL(n)-module Vλ with highest weight λ. It turns out that if we
take Kogan and Miller’s collection of faces Fw,λ of GZ(λ) corresponding to the degeneration of
Xw, then the key polynomial can be obtained as κw,λ =

∑
exp(π(z)), where z ranges over the

set of integer points in Fw,λ (see [KST12, Corollary 5.2]).
In this paper we generalize this result to the case of Grassmannian Grothendieck and Lascoux

polynomials, constructing their combinatorial description in terms of subdivisions of Gelfand–
Zetlin polytopes. For this we construct a cellular decomposition C of GZ(λ) whose 0-cells
coincide with integer points in GZ(λ). Now, to each i-dimensional cell Ci we assign a monomial
m(Ci) in x1, . . . , xn; for a 0-cell z ∈ GZ(λ) we have m(Ci) = exp(π(z)). Some cells correspond
to the zero monomial. Our main result is as follows:

Lw,λ =
∑

Ci∈C∩Fw,λ

βim(Ci),

where the sum is taken over all cells situated inside the collection of faces Fw,λ.
Informally, the Lascoux polynomial Lw,λ can be viewed as a “weighted Euler characteristic”

of the subdivision C ∩ Fw,λ for the collection of faces Fw,λ. Namely, i-dimensional cells of this
subdivision correspond to monomials of degree i+ `(w) with coefficient βi in front of them.

It would be very interesting to establish a bijection of our construction of cells indexing
monomials in Lascoux polynomials with T.Yu’s description in terms of set-valued tableaux. In
particular, we expect the crystal operations on set-valued tableaux (see [Yu23]) to have a nice
description in terms of Gelfand–Zetlin polynomials. However, we do not address these questions
in this paper, leaving them as a subject of subsequent work.

Structure of the paper. This paper is organized as follows. We recall the definitions of
Lascoux polynomials and Gelfand–Zetlin polytopes in Section 2. In Section 3 we consider the
first interesting example, describing the construction for n = 3. The main result is stated in
Section 4. Its proof is given in Section 5 for the case of the longest permutation w = w0 and in
Section 6 for an arbitrary permutation w, respectively.

Acknowledgements. We are grateful to Valentina Kiritchenko for useful discussions. We also
would like to thank the anonymous referee for numerous valuable comments and suggestions that
significantly improved the exposition.
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2. Preliminaries

In the first part of this section we begin with definitions of divided difference operators and
Demazure–Lascoux operators and their properties. Next, we define the Lascoux polynomials
and state how they are related to key polynomials, Grassmannian Grothendieck polynomials,
and Schur polynomials. In the second part of this section we will describe the Gelfand–Zetlin
polytopes and their faces.

2.1. Lascoux polynomials. To define Lascoux polynomials, we need two families of oper-
ators: divided difference operators ∂i, with 1 ≤ i ≤ n − 1, acting on the polynomial ring
Z[x1, . . . , xn], and Demazure–Lascoux operators π(β)i , again with 1 ≤ i ≤ n − 1, acting on the
ring Z[β, x1, . . . , xn] equipped with a formal parameter β.

The parameter β appears in the connective K-theory of a Grassmannian; taking β = −1 and
β = 0, we recover the usual K-theory and the cohomology ring of a Grassmannian respectively.

Definition 2.1.1. The ith divided difference operator ∂i acts on polynomial f = f(x1, x2, . . .)
in the following way:

∂i(f) =
f − sif
xi − xi+1

,

where sif is obtained from f by permuting variables xi and xi+1.

Definition 2.1.2. The ith Demazure–Lascoux operator π(β)i acts on polynomial f ∈ Z[β][x1, x2, . . .]
in the following way:

π
(β)
i (f) = ∂i(xif + βxixi+1f).

The following properties of Demazure–Lascoux operators are immediate.

Proposition 2.1.3. Demazure–Lascoux operators π(β)i are idempotent linear operators satisfying
the braid relations. Namely:

• If f = sif , then π
(β)
i (f) = f ;

• (π
(β)
i )2 = π

(β)
i ;

• π(β)i π
(β)
j = π

(β)
j π

(β)
i if |i− j| > 1;

• π(β)i π
(β)
i+1π

(β)
i = π

(β)
i+1π

(β)
i π

(β)
i+1.

Proof. Straightforward computation. �

Let α = (α1, α2, . . .) be an infinite sequence of nonnegative integers with finitely many positive
entries.

Definition 2.1.4. The Lascoux polynomial Lα ∈ Z[β][x1, x2, . . .] associated with α is defined
by:

Lα =

{
xα if α is a partition: α1 ≥ α2 ≥ . . .
π
(β)
i (Lsiα) otherwise, where αi < αi+1

Since the Demazure–Lascoux operators satisfy the braid relations, we can associate a Lascoux
polynomial to partition λ and permutation w ∈ Sn in the following way:

Lw,λ = π
(β)
ik

. . . π
(β)
i2
π
(β)
i1

(xλ),

where (sik , . . . , si1) is a reduced word for permutation w = si1 . . . sik .
It is well-known (cf., for instance, [Yu23]) that specializations of Lascoux polynomials provide

other nice families of polynomials.

Theorem 2.1.5. (1) Key polynomials are obtained by specializing the Lascoux polynomials
at β = 0:

κw,λ = Lw,λ |β=0;

(2) Grassmannian Grothendieck polynomials are equal to Lascoux polynomials with permuta-
tion w0:

G
(β)
λ = Lw0,λ = π(β)w0

(xλ);
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(3) Schur polynomials are equal to key polynomials for permutation w0, or, equivalently, to
Grassmannian Grothendieck polynomials for β = 0:

Sλ = κw0,λ = π(β)w0
(xλ)|β=0.

2.2. Gelfand–Zetlin polytopes and Gelfand–Zetlin patterns. Let λ be a partition, i.e. a
sequence of nonnegative integers λ1 ≥ λ2 ≥ . . . ≥ λn. Consider the space Rd, where d = n(n−1)

2 ,
with coordinates yij indexed by pairs (i, j) of positive integers satisfying i+ j ≤ n. Consider the
system of inequalities defined by the following tableau:

(1)

λn λn−1 λn−2 . . . λ1
y11 y12 . . . y1,n−1

y21 . . . y2,n−2
. . .

...
...

yn−1,1

,

where every triple of variables a, b, c in each small triangle a b
c

satisfies the inequalities

a ≤ c ≤ b.

Definition 2.2.1. A Gelfand–Zetlin polytope GZ(λ) is the set of points in Rn(n−1)/2 satisfying
the set of inequalities defined by (1). A Gelfand–Zetlin pattern is a tableau of integer coordinates
yij satisfying the same inequalities. In other words, a Gelfand–Zetlin pattern is the set of
coordinates of an integer point in GZ(λ).

Remark 2.2.2. Obviously, adding the same integer k to all λi (that is, replacing the first row
of the tableau by (λn + k, λn−1 + k, . . . , λ1 + k)) results in shifting every coordinate of GZ(λ)
by k. So, up to a parallel translation GZ(λ) is defined not by λi, but rather by their differences
λi − λi−1. Further in the examples we will sometimes assume λn = 0. Also note that if all
λi − λi−1 are nonzero, GZ(λ) is full-dimensional; moreover, all such polytopes have the same
normal fan.

The following theorem is classical.

Theorem 2.2.3 ([GC50]). The number of Gelfand–Zetlin patterns is equal to the dimension of
GL(n)-module Vλ with the highest weight λ. It can be computed using Weyl’s dimension formula:

#(GZ(λ) ∩ Zd) = dimVλ =
∏

1≤i<j≤n

λi − λj − i+ j

j − i
.

Gelfand–Zetlin patterns parametrize elements of a certain basis in Vλ, constructed as follows.
Consider the upper-left corner subgroup GL(n − 1) ⊂ GL(n) and restrict Vλ to this subgroup.
As a GL(n−1)-module, it will be reducible, but multiplicity free, meaning that every irreducible
component occurs at most once: Vλ =

⊕
µ Vµ. The weights µ = (µ1, . . . , µn−1) are highest

weights of GL(n − 1)-modules; they satisfy the intermittence condition: λ1 ≥ µ1 ≥ λ2 ≥ · · · ≥
µn−1 ≥ λn. Write the components µi from right to left as the second row of a Gelfand–Zetlin
patterns. Now restrict each of GL(n − 1)-modules Vµi to the subgroup GL(n − 2), etc.; at the
end we obtain a set of one-dimensional subspaces of Vλ (representations of GL(1)). Picking a
nonzero vector in each of these subspaces, we obtain a Gelfand–Zetlin basis of Vλ indexed by the
sets of intermitting highest weights, i.e., by Gelfand–Zetlin patterns.

2.3. Faces of Gelfand–Zetlin polytopes. Faces of a Gelfand–Zetlin polytope are obtained by
replacing some of the defining inequalities by equalities. Following [KST12], we will represent
them by face diagrams. An example of face diagram is given in Figure 2. Dots in this diagram
correspond to coordinates yij , while an edge between yij and yi−1j means that in the system of
inequalities, yi−1j ≤ yij is replaced by yi−1j = yij . The same happens with edges between yij
and yi−1j+1. Here we formally set y0i = λn+1−i, so some variables may be equal to entries λi
from the top row.
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λ1 − λ2

λ1 − λ2

λ2 − λ3

λ2 − λ3

Figure 1. Gelfand–
Zetlin polytope

Figure 2. Face diagram of the
shaded face

Example 2.3.1. Let λ = (λ1, λ2, 0). The polytope GZ(λ) is shown in Figure 1, the diagram
corresponding to the shaded face is shown in Figure 2.

Note that these equalities are in general not independent: for each four vertices forming a
“diamond” in three consecutive rows, the top two equalities imply the two bottom ones, and vice
versa. Indeed, for a “diamond”

yi−1,j
yi,j−1 yij

yi+1,j−1
, the equalities yi,j−1 = yi−1,j = yi,j imply that

yi+1,j−1 is also equal to these three values, since both yi+1,j−1 and yi−1,j are “squeezed” between
yi,j−1 and yij ; the same holds for equalities in the bottom row.

This means that Gelfand–Zetlin polytopes are not simple (in fact, they are “highly non-
simple”): the intersection of certain facets can have codimension strictly less than the number of
facets.

2.4. Dual Kogan faces. These are faces of Gelfand–Zetlin polytopes of some special form.

Definition 2.4.1. A face of Gelfand–Zetlin polytope is called a dual Kogan face if it is defined
only by equations of the form yij = yi+1,j−1 for i ≥ 0.

Equivalently, dual Kogan faces are exactly those containing the “maximal” vertex defined by
the equations λ1 = y1,n−1 = y2,n−2 = · · · = yn−1,1, λ2 = y1,n−2 = · · · = yn−2,1, and so on. Note
that the “maximal” dual Kogan vertex is simple. We also formally consider the whole polytope
GZ(λ) as a dual Kogan face, defined by the empty set of equations.

Now we will assign a permutation to each dual Kogan face. Consider the following reduced
word for the longest permutation w0 ∈ Sn:

w0 = (sn−1, . . . , s1, sn−2, . . . , s1, . . . , s1, s2, s1)

To each dual Kogan face F we assign a subword w−(F ) of w0 as follows. Consider the
face diagram and write simple transposition sn−j on all edges corresponding to the equalities
yi,j+1 = yi+1,j (see Figure 3).

s3 s2 s1

s3 s2

s3

Figure 3. Assigning word to a dual Kogan face

Now, for a face F , the corresponding word w−(F ) is obtained by reading the face diagram
from bottom to top, from right to left, and taking the simple transpositions corresponding to the
equations. Face F is said to be reduced, if the word w−(F ) is reduced, and non-reduced in the
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opposite case. For a reduced face, we denote w(F ) = w0w
−(F ), where w−(F ) is the permutation

obtained by taking the product of simple transpositions in w−(F ). Figure 4 below shows all the
face diagrams for reduced dual Kogan faces in a three-dimensional Gelfand–Zetlin polytope and
the corresponding permutations w(F ). Note that the dimension of F is equal to the length of
w(F ).

id s1 s2

s1s2 s2s1 s2s1 w0 = s1s2s1

Figure 4. Reduced dual Kogan faces and permutations for n = 3.

Remark 2.4.2. In [KM05a] and [KM04], A.Knutson and E.Miller define subword complexes and,
more specifically, pipe dream complexes. It readily follows from the definitions that as a CW-
complex the link of the “maximal” dual Kogan vertex is nothing but the subword complex cor-
responding to the word w0 of the longest permutation w0. Each dual Kogan face F of GZ(λ)
corresponds to a pipe dream with permutation w−(F ). To construct the pipe dream from a face
diagram, for each equality yij = yi+1,j−1, put a cross in the box (n− j + 1, i+ 1), and elbows in
all the remaining boxes.

2.5. Key polynomials. The following theorem is due to V.Kiritchenko, E. Smirnov, and V.Timorin [KST12].
It provides a description of key polynomials in terms of integer points in dual Kogan faces. Here
we state it in a different (but equivalent) way: the authors of the original paper used Kogan
faces, as opposed to dual Kogan faces that we are using, and lowest-weight modules instead of
highest-weight ones.

Before we proceed, define the following projection map π : R
n(n−1)

2 → Rn from GZ(λ) to the
weight polytope wt(λ) of the GL(n)-module Vλ:

π :


y11 y12 . . . y1,n−1

y21 . . . y2,n−2
. . .

...
...

yn−1,1

 7→


yn−1,1
(yn−2,1 + yn−2,2)− yn−1,1

...
(y11 + · · ·+ y1,n−1)− (y21 + · · ·+ y2,n−2)

 .

This map takes a Gelfand–Zetlin pattern into the vector with the i-th component equal to the
difference of sums of entries in i-th and (i+ 1)-th rows of the pattern, counted from below.

Definition 2.5.1. For an integer point z ∈ GZ(λ) ⊂ R
n(n−1)

2 , define its character ch z ∈
Z[x1, . . . , xn] as follows: ch z = xa11 . . . xann , where (a1, . . . , an) = π(z). More generally, for
an arbitrary subset S ⊂ R

n(n−1)
2 , define its character chS ∈ Z[x1, . . . , xn] as the sum of all

monomials ch z for all integer points z ∈ S ∩ Z
n(n−1)

2 .

Theorem 2.5.2 ([KST12, Theorem 5.1]). The key polynomial κw,λ is equal to the character of
the union of the dual Kogan faces in GZ(λ) corresponding to the permutation w ∈ Sn:

κw,λ = ch

 ⋃
w(F )=w

F

 .
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Example 2.5.3. Let S = GZ(λ) be the whole Gelfand–Zetlin polytope. Then, according to
Theorem 2.2.3, its character chS is nothing but the character of representation Vλ, i.e., the Schur
polynomial Sλ(x1, . . . , xn).

3. The three-dimensional case

In this section we study the three-dimensional case. We start with describing a cellular decom-
position for GZ(λ), where λ = (3, 2, 0), and show how monomials of Lascoux polynomials Lw,λ

correspond to cells of this decomposition. Next, we will describe the construction in general for
arbitrary GZ(λ1, λ2, λ3). The construction presented in this section is ad hoc; we provide the
cell decomposition in the general case in the subsequent section.

3.1. Example. Let λ = (3, 2, 0). The Gelfand–Zetlin polytope GZ(3, 2, 0) is given by the fol-
lowing tableau:

0 2 3
x y

z

Our goal is to construct a cellular decomposition of GZ(λ) and assign to each cell a monomial
in β, x1, . . . , xn with the following properties: first, each face of GZ(λ) should be the union of
some cells. Second, for the set of dual Kogan faces corresponding to a permutation w ∈ Sn, the
sum of monomials corresponding to the cells forming these faces should be equal to the Lascoux
polynomial Lw,λ.

We proceed by induction on the length of w. First put the monomial x31x22 into the vertex
corresponding to the identity permutation. Then take the integer points on one-dimensional dual
Kogan faces, thus getting their subdivision. Then we assign monomials occurring in π(β)1 (x31x

2
2)

and π(β)2 (x31x
2
2) to vertices and segments of corresponding one-dimensional faces; see Figure 5.

x31x
2
2

Lid,λ

x21x
3
2

x31x
2
2

βx31x
3
2

Ls1,λ

x31x
2
3

βx31x2x
2
3

x31x2x3

βx31x
2
2x3

x31x
2
2

Ls2,λ

Figure 5. Lascoux polynomials for id, s1, and s2

Acting again with π(β)1 and π(β)2 respectively, we obtain the subdivisions for two-dimensional
faces shown on Figure 6.

Finally, acting by π(β)1 on Ls2s1,λ, we get Ls1s2s1,λ, with monomials corresponding to the cells
in the cellular decomposition of the polytope shown on Figure 7. Moreover, only the colored one-
dimensional and two-dimensional faces correspond to zero, while exactly one nonzero monomial
corresponds to each of the remaining cells. The proof is by direct computation.

3.2. General case. Note that if a polynomial f is symmetric over xi and xi+1, then for every
polynomial g we have π(β)i (f · g) = f · π(β)i (g). This means that for every partition (a, b, c) we
have the following equality of Lascoux polynomials:

L(a,b,c)(x1, x2, x3) = (x1x2x3)
c ·L(a−c,b−c,0)(x1, x2, x3).

Moreover, Remark 2.2.2 states that GZ(a, b, c) is obtained from GZ(a− c, b− c, 0) by a parallel
translation by integer vector (c, c, c).

This means that it is enough to describe the Lascoux polynomials for permutation u ∈ S3 and
partition λ = (a, b, 0). As before, first put the monomial xa1xb2 in the vertex corresponding to the
identity permutation. Then put monomials of the polynomial π(β)1 (xa1x

b
2) along the corresponding
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β2x31x
2
2x

2
3 β2x31x

3
2x3

β2x21x
3
2x

2
3

x31x
2
3

βx31x2x
2
3

x21x2x
2
3

βx21x
2
2x

2
3

x1x22x
2
3

βx1x32x
2
3

x32x
2
3

x31x2x3

β
x
31
x
22
x
3

x21x
2
2x3

β
x
21
x
32
x
3

x 1
x
3
2
x 3

x31x
2
2

βx31x
3
2

x21x
3
2

βx
1
x
3
2
x
2
3

βx
2
1
x
3
2
x 3

βx21x
2
2x

2
3

βx31x
2
2x3βx31x2x

2
3

β2x31x
2
2x

2
3 β2x31x

3
2x3

β2x31x2x
3
3

x21x
3
2

βx21x
3
2x3

x21x
2
2x3

βx21x
2
2x

2
3

x21x2x
2
3

βx21x2x
3
3

x21x
3
3

x31x
2
2

βx31x
2
2x3

x31x2x3

βx31x2x
2
3

x31x
2
3

βx
3
1
x
2
2
x 3

βx
3
1
x 2
x
2
3

βx
3
1
x
3
3 βx31x

3
2

Ls2s1,λ = π
(β)
2 (Ls1)Ls1s2,λ = π

(β)
1 (Ls2)

Figure 6. Lascoux polynomials for s1s2 and s2s1

Figure 7. Cellular decomposition of GZ(3, 2, 0)

one-dimensional face. Under the action of π(β)2 , each monomial of Ls1,λ “expands” into a row in
a subdivision of a two-dimensional face. For instance, the highest row corresponds to Ls2,λ (see
Figure 8).

Next we split the monomials of Ls2,λ into several groups. The first one (colored blue in
Figure 8) can be represented as x3π

(β)
2 π

(β)
1 (xa−11 xb2). Since x3 is symmetric with respect to x1

and x2, it follows that π
(β)
1 (x3π

(β)
2 π

(β)
1 (xa−11 xb2)) = x3π

(β)
1 (π

(β)
2 π

(β)
1 (xa−11 xb2)), hence it is the case

for smaller a and b. The monomials in the second group (colored green) form a polynomial that
is symmetric over x1 and x2; denote it by f . It is easily shown that π(β)1 (f) = f . To complete
the construction in is enough to check that the remaining monomials expand into columns of
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xa1x
b
2

βxa1x
b+1
2

βxb+1
1 xa2

xb1x
a
2

π
(β)
1..

.

xa1x
b
2

xb1x
a
2

..
.

xb1x
b
2x
a−b
3xb1x

a
3

xa1x
b
3

π
(β)
2

Figure 8. Subdivision of faces for GZ(a, b, 0)

the “correct” size, consistent with the size of the polytope GZ(a, b, 0). The proof is by direct
computation.

Remark 3.2.1. Note that for general a and b, “most” cells look like (open) standard unit cubes; in
particular, this is true for the “interior” cells, i.e. those with the closure not meeting the boundary
of GZ(a, b, 0). Moreover, the cells corresponding to the zero monomial also lie in the boundary
of the polytope; these are two cells of dimension 1 or 2 adjacent to the nonsimple vertex, shown
in purple in Figure 7. This is the case in general: such cells always belong to the boundary of the
polytope and cannot have dimension 0 or n(n− 1)/2. However, for Gelfand–Zetlin polytopes of
nondominant weights dimGZ(λ) < n(n − 1)/2, and cells corresponding to zero monomials can
have maximal dimension, i.e. dimension equal to the dimension of the polytope itself.

4. Enhanced Gelfand–Zetlin patterns, cellular decomposition and formula for
Lascoux polynomials

In this section we give the main results of this paper. We start with constructing a cellular
decomposition for GZ(λ) and assigning a monomial to each cell. A cell is called efficient if this
monomial is nonzero and inefficient otherwise. Then we state the main theorem: a Lascoux
polynomial Lw,λ is equal to the sum of monomials for the cells located in the set of dual Kogan
faces corresponding to w. The proof of this result is given in the two subsequent sections.

4.1. Enhanced Gelfand–Zetlin patterns. Here we present a construction for cells that pro-
vide a cellular decomposition of GZ(λ). These cells are convex polytopes without boundary;
by construction, the set of zero-dimensional cells will coincide with the set of integer points of
GZ(λ). This decomposition is regular in the following sense: if the closure of a given cell does
not meet the boundary of GZ(λ), this cell is just a face of the standard unit cube.

The cells are indexed by the so-called enhanced Gelfand–Zetlin patterns, i.e. Gelfand–Zetlin
patterns with some additional data, which we call enhancement. These data are of two kinds:
first, some elements in a pattern may be encircled, and second, some pairs of neighbor elements
in consecutive rows can be joined by an edge.

Informally, a pattern without enhancement stands for the “maximal” point of the closure of
the corresponding cell, i.e. the point with the largest sum of coordinates.

Definition 4.1.1. A Gelfand–Zetlin pattern with the top row (λn, . . . , λ1) with some entries
encircled and with edges between certain neighboring entries is said to be an enhanced Gelfand–
Zetlin pattern, if these elements satisfy the following conditions:

(1) The numbers in the first row are encircled.
(2) The two entries joined by an edge must be equal, and the bottom entry should be

encircled. The converse does not have to be true: two equal neighboring entries are not
necessarily joined by an edge.
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(3) Two neighboring entries in a row are joined by edges with an entry above them if and
only if they are joined with an entry below them. Pictorially this can be presented as
follows:

a

a a

b

or b

a a

a

⇒ a

a a

a

.

(a dotted circle around an entry means that it may be either encircled or not).
(4) If two entries in the first row are equal, then the entry below them (which is equal to

both of them) is encircled and connected to both of them by edges.
(5) If a < b and the pattern contains the following triangle: a b

a , then the lowest entry in
the triangle is encircled. Pictorially:

a b

a

⇒ a b

a

(6) If a < b and the pattern contains the following triangle: a b
b with the bottom entry

encircled, then there is an edge between the two b’s:

a b

b

⇒ a b

b

(7) For a triangle a a
a : if the two top entries can be connected by a path of edges, the

bottom entry should be encircled and connected with them.
(8) If in a triangle a a

a the bottom entry is encircled, then it should be connected with at
least one of them by an edge.

We denote the set of all enhanced patterns with the first row λ by P(λ).

Example 4.1.2. The pattern 0 1 2
1 2
2

has eight enhancements.

0 1 2

1 2

2

0 1 2

1 2

2

0 1 2

1 2

2

0 1 2

1 2

2

0 1 2

1 2

2

0 1 2

1 2

2

0 1 2

1 2

2

0 1 2

1 2

2

Example 4.1.3. The pattern 0 1 2
1 1
1

has four enhancements.

0 1 2

1 1

1

0 1 2

1 1

1

0 1 2

1 1

1

0 1 2

1 1

1

Note that according to Definition 4.1.1 (5), the last entry in the second row must be encircled
and connected to the middle entry in the first row.

An enhanced pattern can be viewed as a graph (with marked vertices). Consider the connected
components of this graph.

Lemma 4.1.4. The connected components of an enhanced Gelfand–Zetlin pattern satisfy the
following:

(1) the entries in the first row belong to the same connected component if and only if they
have the same value;

(2) each connected component either has a unique highest vertex or contains at least one
entry from the first row;
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(3) all vertices in a connected component, possibly except the highest one, are encircled. In
particular, the number of connected components is not less than the number of distinct
λi’s plus the number of entries without circles.

Proof. This follows immediately from Definition 4.1.1. We only comment on (2), which may be
not completely obvious. Suppose there exists a connected component of an enhanced Gelfand–
Zetlin pattern having two distinct highest vertices aij and aik in the i-th row, for i ≥ 1 and j < k.
There is a path connecting these entries; applying Definition 4.1.1 (3) repeatedly, we see that
every two neighbor elements in the “interior” of this path are linked by an edge (in particular,
they are all equal). This means that, in particular, aij and ai,j+1 are connected by edges with
ai+1,j , which is encircled. So, condition (3) implies that ai−1,j+1 is connected with aij , as well as
with ai,j+1, and hence the latter elements are not the highest ones in their connected component.

Figure 9 shows how existence of a path between two elements in the same row, marked by
squares in the left picture, implies additional equalities, shown by dashes in the right picture.

x

y z

a u a

a v a

a w a

a a

a

a

a a

a a a

a a a

a a a

a a

a

Figure 9. Uniqueness of highest vertex in a connected component

�

The statement (3) from the previous lemma motivates the following definitions.

Definition 4.1.5. The rank rkP of an enhanced pattern P is the number of entries without
circles.

Definition 4.1.6. An enhanced pattern P is said to be inefficient if it contains a triangle of
the form a a

a such that its bottom entry is not connected with the right one by an edge, and
efficient otherwise. The set of all efficient enhanced patterns with the first row λ is denoted by
P+(λ).

For instance, in Example 4.1.3 the first two enhanced patterns are inefficient, while the last
two are efficient, and all patterns in Example 4.1.2 are efficient.

Proposition 4.1.7. Every enhanced pattern of rank zero is efficient.

Proof. Take an inefficient enhanced pattern P . This means that it contains a triangle of the form
a a
a such that there is no edge between the bottom and the right entries. Definition 4.1.1 (7)

implies that these two entries are contained in different connected components, both marked
with the same number a. This means that at least one of these components contains a vertex
without circle, so the rank of P cannot be zero. �

Moreover, it turns out that for an efficient enhanced pattern, the edges provide redundant
data. Namely, we have the following lemma.
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Lemma 4.1.8. The edges in an efficient enhanced pattern are uniquely determined by positions
of encircled vertices.

Proof. Given a set of encircled vertices in an efficient enhanced pattern, we can uniquely re-
construct the set of edges as follows. Let us scan the enhanced pattern row by row, from top
to bottom, starting from the second row, and draw edges going up from some of the encircled
vertices. For each encircled entry aij , consider the two elements ai−1,j and ai−1,j+1 above it. If
both of them are different from aij , then there is no edge going up from aij . If only one of them
is equal to aij , and the other is not, we must join aij with the element equal to it, according to
Definition 4.1.1, (5) and (6).

Finally, if aij is equal to the both entries ai−1,j and ai−1,j+1, two cases may occur. If there
is a path of edges situated in rows with numbers less than or equal to i − 1 and joining these
two entries, then aij must be joined with both of them, as prescribed by Definition 4.1.1, (7).
Otherwise, according to condition (8) it should be connected with only one of these two entries;
since our enhanced pattern is efficient, this is the right entry ai−1,j+1. This procedure produces
the set of edges in a unique way. �

For an efficient enhanced GZ-pattern P , we assign to it a monomial xP in the following way.
Let Si(P ) be the sum of numbers in the i-th row of the pattern P , with S0(P ) = λ1 + · · ·+ λn,
and let Di(P ) stand for the number of entries without circles in the i-th row of P . Denote
dn+1−i = dn+1−i(P ) = Si−1(P )− Si(P ) +Di(P ). Then

xP = βrkPxd11 . . . xdnn .

For an inefficient enhanced GZ-pattern P we formally set xP = 0.
In the next section we construct a cellular decomposition of GZ(λ), with cells corresponding

to enhanced patterns, and with the dimension of a cell being equal to the rank of its enhanced
pattern. Some of these cells will correspond to monomials in Lascoux polynomials; as we will
see, these will be exactly the cells constructed from the efficient enhanced patterns. This is the
motivation behind Definition 4.1.6.

4.2. Cellular decomposition of Gelfand–Zetlin polytope. In this subsection, we construct
a cellular decomposition of GZ(λ). The cells of this decomposition are indexed by enhanced
patterns; moreover, the dimension of a cell is equal to the rank of the corresponding enhanced
pattern.

Consider an enhanced Gelfand–Zetlin pattern P . For each such pattern we write a set of
equalities and inequalities that, together with the inequalities defining GZ(λ), defines a subset
CP ⊂ GZ(λ). As we will show further, these sets are pairwise disjoint, open in their affine spans
and homeomorphic to open balls; they define a cellular decomposition of GZ(λ) compatible with
the polytope structure (i.e., every face of GZ(λ) is also a union of cells).

Recall that we denote the coordinates in R
n(n−1)

2 ⊃ GZ(λ) by yij , with 1 ≤ i ≤ n − 1
and 1 ≤ j ≤ n + 1 − i. We also fix the topmost row of a Gelfand–Zetlin tableau by setting
y0,j = λn+1−j . The inequalities that define the polytope are given by the tableau (1) on p. 4:
these are

yi−1,j ≤ yij ≤ yi−1,j+1,

for each (i, j) in the aforementioned range.
Now we define the cellular decomposition of GZ(λ).

Construction 4.2.1. Let P be an enhanced pattern with entries aij . To each coordinate yij we
assign an equality or a double inequality as follows:

(1) if there is an edge going up from aij to ai−1,j (resp. to ai−1,j+1), then yij = yi−1,j (resp.
yij = yi−1,j+1);

(2) if there are no edges going up from aij , and this entry is encircled, then yij = aij ;
(3) if there are no edges going up from aij and this entry is not encircled, we impose a double

inequality on yij as follows:
(a) If the entry ai−1,j satisfies aij−ai−1,j ≥ 2, then aij−1 < yij ; otherwise, yi−1,j < yij ;
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(b) If ai−1,j+1 is equal to aij , we set yij < yi−1,j+1; otherwise, yij < aij .

Denote the set defined by these equalities and inequalities by ĈP . This is “almost” the required
cell corresponding to P ; however, it does not necessarily lie in GZ(λ). To get an actual cell, take
the affine span L of ĈP and intersect ĈP with the relative interior of GZ(λ) ∩ L in L:

CP = ĈP ∩ (GZ(λ) ∩ L)0.

This set is convex and open in L (as the intersection of two open convex sets); we shall see in
Lemma 5.1.3 that it is nonempty.

This means the following. For each connected component in P containing only encircled entries
with the same numbers, all the corresponding coordinates are equal to this number. On the other
hand, if a connected component has a non-encircled vertex, the corresponding coordinate can
take values in an interval determined by the condition (4) of Definition 4.1.1; note that the length
of this interval does not exceed i−1, where i is the row number. All the remaining coordinates in
the same connected component (corresponding to encircled entries) are equal to this coordinate.

Example 4.2.2. Consider the following pattern P and construct the set of inequalities on yij
defining the cell CP corresponding to it. The right diagram provides the set of inequalities
defining the Gelfand–Zetlin polytope in R6.

1 3 7 9

3 4 9

3 5

4

1 3 7 9

y11 y12 y13

y21 y22

y31

The first row defines the following double inequalities and equality:

2 < y11 < 3, 3 < y12 < 4, y13 = 9.

Now consider the second row. An edge from a21 going up prescribes us to impose the equality
y21 = y11. From a22 = 5 situated below 4 and an encircled 9, we get inequality y12 < y22 < 5.
Likewise, the third row defines double inequality y21 < y31 < 4.

So the set ĈP is defined by the following inequalities and equalities:

2 < y11 < 3, 3 < y12 < 4, y13 = 9, y21 = y11, y12 < y22 < 5, y21 < y31 < 4.

Note that ĈP is not a subset of GZ(9, 7, 3, 1). Indeed, the integer point given by the following
tableau, which is not a Gelfand–Zetlin pattern:

1 3 7 9
2 3 9

2 3
4

belongs to the closure of ĈP , but not to GZ(9, 7, 3, 1). To get a cell in the Gelfand–Zetlin
polytope, we need to take the affine span of ĈP , which is a subspace L defined by the equations
y13 = 9, y21 = y11, intersect the interior of GZ(9, 7, 3, 1) with L, obtaining the following subset:

1 < y11 < 3, 3 < y12 < 7, y13 = 9, y21 = y11, y12 < y22 < 9, y21 < y31 < y22.

The intersection of this subset with ĈP is the desired cell CP . It is defined by the following
inequalities and equalities:

2 < y11 < 3, 3 < y12 < 4, y13 = 9, y21 = y11, y12 < y22 < 5, y21 < y31 < min(4, y22).
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4.3. Main results. The following theorems are the main results of this paper.

Theorem 4.3.1. The cells CP for P ∈P(λ) form a cellular decomposition of GZ(λ).

The proof of this theorem is given in § 5.1.

Theorem 4.3.2. Let λ be a partition. Then the Grassmannian Grothendieck polynomial G(β)
λ

can be computed as follows:
G

(β)
λ = Lw0,λ =

∑
P∈P+(λ)

xP .

The proof of this theorem is given in § 5.2.
We can generalize this result to get a description of Lascoux polynomials. Denote by P+(w, λ)

the set of efficient patterns such that the corresponding cells are contained in the union of dual
Kogan faces corresponding to GZ(λ) and permutation w.

Theorem 4.3.3. Let w ∈ Sn be a permutation and λ be a partition. Then the Lascoux polynomial
Lw,λ is equal to

Lw,λ =
∑

P∈P+(w,λ)

xP .

We give the proof of this theorem in Section 6.

Corollary 4.3.4. Let λ be a partition and u,w ∈ Sn be permutations such that u ≤ w in the
Bruhat order on Sn. Then the polynomial Lw,λ −Lu,λ has nonnegative coefficients.

Proof. Denote the union of dual Kogan faces of GZ(λ) corresponding to permutation w by Γw,λ.
The definition of Kogan faces in terms of subwords (cf. § 2.4) implies that Γu,λ ⊆ Γw,λ if u ≤ w
in the Bruhat order. Applying Theorem 4.3.3 completes the proof. �

5. Proofs of the main results for the case of the longest permutation

5.1. Proof of Theorem 4.3.1. In this section we show that the cells described in § 4.2 form a
cellular decomposition of GZ(λ). We split the proof into several lemmas.

Lemma 5.1.1. For every point y ∈ GZ(λ) there exists a unique cell CP such that y ∈ CP .
Proof. We describe an algorithm of constructing such a P for any point y ∈ GZ(λ). First take
the table of coordinates of y and draw the edges for all pairs of equal neighboring coordinates,
no matter whether they are integer or not. Then we need to assign integer values aij to all the
vertices of P . This is done for the top vertex in each connected component, starting from the
first row. Here we follow Construction 4.2.1.

We construct the enhanced pattern P row by row, going from top to bottom. The first row
of the pattern is given by λ. Now suppose we have already filled the row number i− 1; consider
the i-th row. If an element yij is equal to yi−1,j or yi−1,j+1 (or both), this means that there is
an edge going up from this position; then we let aij be ai−1,j or ai−1,j+1 correspondingly. We
encircle this entry.

Otherwise, we distinguish between three cases. If ai−1,j + 1 ≤ yij < ai−1,j+1 and yij is integer,
we set aij = yij and encircle this element. If yij < ai−1,j + 1, we set aij = ai−1,j + 1 and do not
encircle it. Finally, for yij /∈ Z and ai−1,j + 1 < yij , we set aij = dyije, and the corresponding
entry also has no circle. Construction 4.2.1 implies that for the enhanced pattern P obtained in
such a way, the corresponding cell CP contains the point y. �

Example 5.1.2. To see how this algorithm works, consider the following tableau and the cor-
responding point y ∈ GZ(1, 3, 7, 9) ⊂ R6:

1 3 7 9

2.5 3.1 9

2.5 3.8

3.7
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First join every pair of equal numbers by an edge and encircle the lower element in each pair.

1 3 7 9

2.5 3.1 9

2.5 3.8

3.7

Then replace all the entries in the second row by integers, following the algorithm from the proof
of Lemma 5.1.1. We replace 2.5 by 3, and 3.1 by 4. Since 9 is the lower end of an edge, its
entry remains equal to the entry on the upper end of it. We obtain the following (note that this
intermediate result is not an enhanced Gelfand–Zetlin pattern!).

1 3 7 9

3 4 9

2.5 3.8

3.7

Now proceed with the third row. Since there is an edge going up from its first entry, we replace
this entry by the integer on top of this edge, i.e. by 3. With y22 = 3.8, we have y22 < a12+1 = 5,
so we need to replace 3.8 by 5; we do not encircle it.

1 3 7 9

3 4 9

3 5

3.7

The last stage is modifying y31 = 3.7. We have y31 ≤ a21 + 1 = 4, so we set a31 = 4 and obtain
the desired answer: the enhanced pattern of the cell containing y looks as follows.

1 3 7 9

3 4 9

3 5

4

Lemma 5.1.3. Every cell CP is nonempty and homeomorphic to an open ball of dimension rkP .

Proof. First, the set ĈP defined by inequalities in Construction 4.2.1 is a convex set open in its
affine span L. Replacing these strict inequalities by non-strict ones, we obtain the closure of ĈP .
It contains the point with coordinates yij = aij , so this closure is nonempty, and CP is nonempty
as well. Similarly, the relative interior (L ∩ GZ(λ))0 is convex and nonempty. So it remains to
show that their intersection is nonempty.

Indeed, consider the point y = (yij) defined by yij = aij ; it belongs to the closure of both
ĈP and (L ∩ GZ(λ))0. Moreover, in a neighborhood of y both these sets coincide. So CP also
has dimension rkP ; being the intersection of two nonempty convex bounded open sets, it is
homeomorphic to an open ball. �

Lemma 5.1.4. Let y ∈ GZ(λ), and let CP be the cell containing it. If for some cell C we have
y ∈ C, then CP ⊂ C.

Proof. Given y ∈ GZ(λ), let us find all enhanced patterns Q such that y ∈ CQ. This will be
done similarly to the proof of Lemma 5.1.1.

We construct all such patterns row by row from top to bottom. On each step, the procedure
may not be unique. The first row is given by λ; this is the induction base.
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Now suppose that the first i−1 rows are filled, and consider the coordinates yij in the i-th row,
starting from the first one. For a given coordinate yij , we proceed exactly as in Lemma 5.1.1.
Namely, if yij < ai−1,j + 1, we set aij = ai−1,j + 1; otherwise, if it is not an integer, we set
aij = dyije. In both of these cases, the corresponding entry has no circle.

If yij is an integer and ai−1,j+1 ≤ yij , we can construct the corresponding entry of the pattern
in at most three different ways. In the first case, we set aij = yij , put a circle around this vertex
and join it with entries in the previous row, just like in Lemma 5.1.1. In the second and the third
case, we set aij = yij or aij = yij + 1 and do not put a circle around this vertex, provided that
the resulting diagram (or the constructed part of it) satisfies the conditions of Definition 4.1.1.

By construction, for all the patterns Q obtained by this procedure the corresponding cell
closure CQ contains y, and this set includes CP . Moreover, for every constructed Q we have
rkP ≤ rkQ, with the equality only in the case P = Q. It is also clear that for all points y ∈ CP
the set of such patterns Q will be the same.

�

This lemma immediately implies that the boundary C \ C of each cell consists of cells of
smaller dimension. So GZ(λ) =

⊔
P∈P(λ)CP , is indeed a cellular decomposition. This concludes

the proof of Theorem 4.3.1.

5.2. Proof of Theorem 4.3.2. In this section we establish a bijection between the set P+(λ)

of efficient enhanced patterns and the multi-set of monomials in π(β)w0 (xλ).
Denote by ck the following Coxeter element sk . . . s1 ∈ Sk; here 1 ≤ k ≤ n − 1. The longest

permutation w0 can be presented as the product of such elements:

(2) w0 = s1(s2s1) . . . (sn−1 . . . s1) = c1c2 . . . cn−1.

Definition 5.2.1. A polynomial p(β, x1, . . . , xn) is said to be multiplicity free, if all its nonzero
coefficients are equal to 1.

Lemma 5.2.2. Let µ be a partition. For a monomial xµ = xµ11 . . . xµnn , the polynomial π(β)ck x
µ is

multiplicity free.

Proof. The proof is by induction on k. If k = 1, the statement is obvious:

π(β)c1 x
µ = π

(β)
1 xµ =

(
(xµ11 x

µ2
2 + · · ·+ xµ21 x

µ1
2 ) + β(xµ11 x

µ2+1
2 + · · ·+ xµ2+1

1 xµ12 )
)
· xµ33 . . . xµnn .

Note that all monomials in the right-hand side have different bidegrees over (β, x1).
Applying π(β)2 does not change the x1-degree of a given monomial, only affecting x2, x3, and β.

This means that all monomials in π
(β)
c2 x

µ will have different tridegrees over (β, x1, x2), and so
on. �

We need one more definition concerning monomials.

Definition 5.2.3. Let λ = (λ1, λ2, . . . , λn) be a partition, i.e. λ1 ≥ λ2 ≥ . . . ≥ λn. We shall
say that monomial xµ = xµ11 . . . xµnn , where µ = (µ1, µ2, . . . , µn), is λ-alternating, if λ1 ≥ µ1 ≥
λ2 ≥ µ2 . . . ≥ λn−1 ≥ µn−1 ≥ λn, and λ-nonalternating otherwise. Denote the sum of all
nonalternating monomials of a polynomial p(x1, . . . , xn) by [p]λ.

Lemma 5.2.4. Let λ = (λ1 ≥ . . . ≥ λn) be a partition. Then we have

[π(β)cn−1
xλ]λ ∈ Kerπ(β)c1...cn−2

.

Before giving the general proof of this lemma, we consider an example for n = 3.

Example 5.2.5. Let n = 3. Take a partition λ = (a, b, 0) and apply π(β)s2s1 to xλ = xa1x
b
2. The

resulting monomials are shown in Figure 10, with all λ-alternating and nonalternating monomials
located in the blue and green area, respectively. In this figure, we have the case λ = (4, 2, 0).
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Now take the rightmost column in the green triangle. The sum of its monomials is equal to

βxa1x
b+1
2 + xa−11 xb+1

2 + · · ·+ βxb+1
1 xa2 + xb1x

a
2 =

(xa1x
b
2 + βxa1x

b+1
2 + xa−11 xb+1

2 + · · ·+ βxb+1
1 xa2 + xb1x

a
2)− xa1xb2 =

π
(β)
1 (xa1x

b
2)− xa1xb2.

Since π(β)1 is idempotent, we have π(β)1 (π
(β)
1 (xa1x

b
2) = π

(β)
1 (xa1x

b
2), so π

(β)
1 applied to LHS of the

equality above is zero.
The same holds for every other column of the green triangle: the sum of nonalternating mono-

mials in it is equal either to π(β)1 (xa−i1 xb2x
i
3)−x

a−i
1 xb2x

i
3, for i = 0, . . . , a−b, or to π(β)1 (xa−i1 xb2x

i+1
3 )−

xa−i1 xb2x
i+1
3 , for i = 0, . . . , 1, a− b− 1. The monomials of the first kind correspond to vertices on

the blue diagonal, while the monomials of the second kind correspond to edges between them.
So the sum of all the nonalternating monomials in π(β)s2s1x

λ belongs to the kernel of π(β)1 .

x41x
2
2

x31x
3
2

x21x
4
2x21x

3
2x3x21x

2
2x

2
3x21x2x

3
3x21x

4
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Figure 10. Alternating and nonalternating monomials

Moreover, the sum of the nonalternating monomials in every column is equal to π(β)1 (xa−c1 xb2x
c
3)−

xa−c1 xb2x
c
3 or π

(β)
1 (βxa−c1 xb2x

c+1
3 )−βxa−c1 xb2x

c+1
3 respectively. Recall that the monomials xa−c1 xb2x

c
3

correspond to vertices on the diagonal, while the monomials βxa−c1 xb2x
c+1
3 correspond to edges

between them (cf. Sec. 3.2). This means that π(β)1 ([π
(β)
s2s1x

λ]λ) = 0: the sum of all nonalternating
monomials belongs to the kernel of π(β)1 .

Proof of Lemma 5.2.4. The proof is by induction on n. For n = 1 or 2, there is nothing to prove.
The case n = 3 was considered in Example 5.2.5.

The general case is treated similarly to the case n = 3. Consider a monomial xλ and apply
to it π(β)2 π

(β)
1 . This is the sum of monomials xν11 x

ν2
2 x

ν3
3 x

λ4
4 . . . xλnn , where ν3 ≥ λ4 ≥ . . . is a

partition. Denote by A the sum of all monomials satisfying the condition λ2 ≥ ν2 ≥ λ3. (They
correspond to the blue area in Figure 10). In Example 5.2.5, these were alternating monomials;
here these are monomials that satisfy the alternating condition for ν1 and ν2. The remaining
monomials (those in the green area) can be represented as

λ1−λ2∑
j=0

(
π
(β)
1 (xλ1−j1 xλ22 x

λ3+j
3 xλ44 . . . )− xλ1−j1 xλ22 x

λ3+j
3 xλ44 . . .

)
,
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where monomials xλ1−j1 xλ22 x
λ3+j
3 xλ44 . . . are located on the blue diagonal (see Figure 10). This

implies that the sums
(
π
(β)
1 (xλ1−j1 xλ22 x

λ3+j
3 xλ44 . . . )− xλ1−j1 xλ22 x

λ3+j
3 xλ44 . . .

)
are located in the

corresponding columns in the green area. The sum of all such monomials will be denoted by B.
Then π(β)2 π

(β)
1 (xλ) = A+B.

Now denote π(β)n−1 . . . π
(β)
3 by π. We have

π(β)cn−1
xλ = (π

(β)
n−1 . . . π

(β)
3 )(π

(β)
2 π

(β)
1 (xλ)) = π(A+B).

Since π is a linear operator, we have

π(A+B) = π(A) + π(B).

Monomials in x3, x4, . . . are symmetric in x1 and x2, hence

π
(β)
1 (xλ1−j1 xλ22 x

λ3+j
3 xλ44 . . . )− xλ1−j1 xλ22 x

λ3+j
3 xλ44 · · · =

= (xλ3+j3 xλ44 . . . ) · π(β)1 (xλ1−j1 xλ22 )− xλ1−j1 xλ22 x
λ3+j
3 xλ44 · · · =

= (xλ3+j3 xλ44 . . . )(π
(β)
1 (xλ1−j1 xλ22 )− xλ1−j1 xλ22 ).

Since (π
(β)
1 (xλ1−j1 xλ22 )− xλ1−j1 xλ22 ) is symmetric in x3, x4, . . ., we have:

π
(

(xλ3+j3 xλ44 . . . )(π
(β)
1 (xλ1−j1 xλ22 )− xλ1−j1 xλ22 )

)
= π(xλ3+j3 xλ44 . . . ) · (π(β)1 (xλ1−j1 xλ22 )− xλ1−j1 xλ22 ).

Let us introduce some extra notations. Denote by Bj
0 and Bj

1 the sum of all alternating and
nonalternating monomials in π(xλ3+j3 xλ44 . . . ), respectively. Then π(xλ3+j3 xλ44 . . . ) = Bj

0 + Bj
1.

Note that Bj
0 and Bj

1 are elements of Z[x3, x4, . . .]. Also we denote by A0 and A1 the sums of all
alternating and nonalternating monomials in π(A), respectively. Then we have:

π(β)cn−1
xλ = π(A) + π(B) = A0 +A1 +

λ1−λ2∑
j=0

(
(Bj

0 +Bj
1)(π

(β)
1 (xλ1−j1 xλ22 )− xλ1−j1 xλ22 )

)
To prove this lemma for an arbitrary n, we observe that c1 . . . cn−2 = w′0 is the longest

permutation for the subgroup 〈s1, . . . , sn−2〉 ∼= Sn−1 ⊂ Sn and fix another word for w′0. We
denote by w′′0 the longest permutation in the subgroup 〈s2, . . . , sn−2〉 ∼= Sn−2 ↪→ Sn−1 ↪→ Sn.
Then we have

(3) w′0 = (sn−2 . . . s2s1) · w′′0 = s1(s2s1) . . . (sn−2 . . . s1).

Consider the polynomial π(β)cn−1x
λ. According to Lemma 5.2.2, it is multiplicity free. Let xµ be

a λ-nonalternating monomial occurring in it. By construction, we have λ1 ≥ µ1 and µi ≥ λi+1

for each 1 ≤ i ≤ n− 1. We distinguish between the two cases:
(1) There exists a k such that µk > λk, with k ≥ 3. Denote the sum of all such nonalternating

monomials from [π
(β)
cn−1x

λ]λ by r1(β, x1, . . . , xn). With the previous notation:

r1(β, x1, . . . , xn) = A1 +

λ1−λ2∑
j=0

(
Bj

1 · (π
(β)
1 (xλ1−j1 xλ22 )− xλ1−j1 xλ22 )

)
(2) We have µ2 > λ2 and λi ≥ µi for each i ≥ 3. The sum of all such nonalternating monomials

from [π
(β)
cn−1x

λ]λ will be denoted by r2(β, x1, . . . , xn). With the previous notation:

r2(β, x1, . . . , xn) =

λ1−λ2∑
j=0

(
Bj

0 · (π
(β)
1 (xλ1−j1 xλ22 )− xλ1−j1 xλ22 )

)
Now we shall check that π(β)

w′0
applied to each of r1 and r2 equals zero. For this, we take

different words for w′0. For the first one, take

w′0 = (sn−2 . . . s2s1) · w′′0 ,
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where w′′0 = s2(s3s2) . . . (sn−1sn−2 . . . s2) is the longest permutation in the subgroup 〈s2, . . . , sn−2〉 ∼=
Sn−2 ↪→ Sn−1. Then π

(β)
w′′0
r1 = 0 by the induction hypothesis, and so is π(β)

w′0
.

In the second case, we claim that π(β)1 annihilates r2, so does π(β)
w′0

. Indeed, since the word (3)
ends with s1, we have:

π
(β)
1 (r2) = π

(β)
1

λ1−λ2∑
j=0

(
Bj

0 · (π
(β)
1 (xλ1−j1 xλ22 )− xλ1−j1 xλ22 )

) =

=

λ1−λ2∑
j=0

π
(β)
1

(
Bj

0 · (π
(β)
1 (xλ1−j1 xλ22 )− xλ1−j1 xλ22 )

)
=

λ1−λ2∑
j=0

Bj
0 · π

(β)
1 ((π

(β)
1 (xλ1−j1 xλ22 )− xλ1−j1 xλ22 ))

Recall that π(β)i (π
(β)
i f − f) = 0. It follows that:

π
(β)
1 (r2) =

λ1−λ2∑
j=0

Bj
0 · π

(β)
1 ((π

(β)
1 (xλ1−j1 xλ22 )− xλ1−j1 xλ22 )) =

λ1−λ2∑
j=0

Bj
0 · 0 = 0.

�

Now let us act on xλ by π
(β)
w0 , where we take the word for w0 given by (2). Consider the

following sequences of monomials:

xλ = xλ
(1,0) π

(β)
1−−→ xλ

(1,1) π
(β)
2−−→ xλ

(1,2) π
(β)
3−−→ . . .

π
(β)
n−1−−−→ xλ

(1,n−1)
= xλ

(2,0)
;

xλ
(2,0) π

(β)
1−−→ xλ

(2,1) π
(β)
2−−→ xλ

(2,2) π
(β)
3−−→ . . .

π
(β)
n−2−−−→ xλ

(2,n−2)
= xλ

(3,0)
;

xλ
(3,0) π

(β)
1−−→ xλ

(3,1) π
(β)
2−−→ xλ

(3,2) π
(β)
3−−→ . . .

π
(β)
n−3−−−→ xλ

(3,n−3) π
(β)
1−−→ xλ

(4,0)
;

. . .

xλ
(n−1,0)

. . .
π
(β)
1−−→ xλ

(n−1,1) π
(β)
2−−→ xλ

(n−1,2)
= x(n,0);

xλ
(n,0) π

(β)
1−−→ xλ

(n,1)
= xν .

Here each xλ(i,j) occurs as a summand in πβj x
λ(i,j−1) . Such a sequence is called a track of xλ.

For each track with a nonzero xν , we construct an efficient enhanced pattern P as follows.
First, note that by Lemma 5.2.4, each λ(i,0) is λ(i−1,0)-alternating; in particular, it is a partition.
Take a pattern P with entries pij such that its i-th row contains the first n− i parts of λ(i−1,0),
written in the decreasing order (the initial row contains the parts of λ and has number 0), that
is, pij = (λ(i−1,0))n−i−j+1. Next, draw a circle around a vertex if the degree of β in front of the
corresponding monomials xλ(i,j−1) and xλ(i,j) is equal.

This gives us the location of encircled vertices. According to Lemma 4.1.8, this defines an
efficient enhanced pattern. It is clear that all the efficient patterns can be obtained in such a
way, and different patterns correspond to different tracks. Theorem 4.3.2 is proved.

Example 5.2.6. Let λ = (2, 1, 0). Below is a track of monomial β2x21x2x23 and the corresponding
enhanced Gelfand–Zetlin pattern, being filled row by row from the right to the left, from top to
bottom.

x21x2
πβ1−→ βx21x

2
2

πβ2−→ β2x21x2x
2
3

πβ1−→ β2x21x2x
2
3.

0 1 2

• •

•

0 1 2

• 2

•

0 1 2

1 2

•

0 1 2

1 2

2
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6. Proof for the general case

6.1. Face diagrams. For every permutation u ∈ Sn there exists a dual Kogan face F such that
w(F ) = u. Moreover, there can be more than one such Kogan face; they correspond to reduced
subwords in

w0 = (sn−1, . . . , s1, sn−2, . . . , s1, . . . , s1, s2, s1)

with the product equal to u.
In this section we show how different diagrams of dual Kogan faces with the same permutation

are related to each other. This is done in Lemma 6.2.1 and Lemma 6.2.3. As we mentioned before,
(reduced) dual Kogan faces bijectively correspond to (reduced) pipe dreams; in terms of pipe
dreams these lemmas are proved in [BB93], but we still provide their proofs for for the sake of
completeness of exposition. Then we use them in § 6.3 to prove Theorem 4.3.3.

6.2. Three lemmas about dual Kogan faces.

Lemma 6.2.1. Let F and G be two dual Kogan faces corresponding to permutations wF and
wG respectively. If their diagrams are obtained one from another by moving one edge as shown
in figure below, then we have wF = wG.

×

×

×

×

Proof. Recall that simple transpositions correspond to the edges of the diagram as shown below:

si

si+2

si+1

si+1

si

si+2si+3×

si−1×

It follows that reading this diagram from bottom to top from right to left we get the word

wF = . . . si+1si+2 . . . sisi+1 . . . si . . . .

(here we underline the letter corresponding to the edge we are moving).
Since simple transpositions satisfy braid relations, we get a word for face G:

wF = . . . si+1si+2 . . . sisi+1 . . . si . . . = . . . si+1si+2 . . . sisi+1si . . . =

= . . . si+1si+2 . . . si+1sisi+1 . . . = . . . si+2si+1si+2 . . . sisi+1 . . . =

si+2 . . . si+1si+2 . . . sisi+1 . . . = wG.

�

Definition 6.2.2. A diagram is called right-adjusted if all its edges are pushed towards the right
side.
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Note that every right-adjusted diagram corresponds to a word of the form

u = (. . . , s3, s4, . . . , sm, s2, s3, . . . , sk, s1s2, . . . , sr).

Such a word is called canonical. It is easy to see that this canonical word is reduced. It follows
that there exists a unique right-adjusted diagram for every permutation.

Lemma 6.2.3. Let F and G be two dual Kogan faces such that w(F ) = w(G). Then the diagram
for F is obtained from the diagram for G by applying transformations described in Lemma 6.2.1.

Proof. Note that it is enough to prove this lemma for a face G with the right-adjusted diagram.
Suppose the diagram of F is not right-adjusted. It follows that there exists an edge such that
there is no edge immediately to the right of it. Let e0 be the lowest rightmost edge with such a
property. Since a word of simple transpositions is necessarily reduced, then we can move this edge
several rows down using Lemma 6.2.1. Continuing this procedure, we will get a right-adjusted
diagram. �

Lemma 6.2.4. Suppose that the diagram of face F is right-adjusted. Then permutation w(F )
is equal to the permutation u obtained by reading the empty places of diagram F from bottom to
top from left to right in the following way:

s1s2s3

s1s2

s1

Proof. First we recall that the word u for the face F described in § 2.2 obtained by reading a
diagram from bottom to top from right to left. The permutation w(F ) is equal to w0u, there
w0 ∈ Sn is the longest permutation.

The proof is by induction on n. For n = 1 there is nothing to prove. We denote by w′0 ∈ Sn−1
the longest permutation, here Sn−1 is generated by s2, s3, . . . , sn−1. Let the word for the face
F be equal to u = u′(s1s2 . . . sk), with exactly k edges in the first row, and let u′ ∈ Sn−1
be obtained by reading rows starting from the second one. Then w(F ) is equal to w(F ) =
w0u = (sn−1 . . . s2s1)w

′
0u
′(s1s2 . . . sk). The permutation w′0u′ corresponds to a smaller diagram

obtained by restricting our diagram on rows starting from the second. Graphically this is shown
on Figure 11 (left).

We denote by u′′ and w′′0 permutations obtained by replacing every si by si−1 in reduced
words for u′ and w′0. Since u′, w′0 ∈ Sn−1, where Sn−1 is generated by s2, . . . , sn−1, permutations
u′′ and w′′0 are well defined. It follows that w(F ) = w0u = (sn−1 . . . s2s1)w

′
0u
′(s1s2 . . . sk) =

w′′0u
′′(sn−1 . . . sk+2sk+1) (See Figure 11, right).

By the induction hypothesis, the permutation w′′0u′′(sn−1 . . . sk+2sk+1) is obtained by reading
empty places of diagram F from bottom to top from right to left. �

This lemma will play a key role in the proof of the main result. Note that the empty places
marked as shown in Lemma 6.2.4 correspond to actions of Demazure–Lascoux operators described
in § 5.2.

Remark 6.2.5. Lemma 6.2.4 is a standard fact about permutations; see, for instance, [Man98,
Rémarque 2.1.9].

6.3. Proof of Theorem 4.3.3. In this section we show that the restriction of the construction
described in Theorem 4.3.2 to the union of dual Kogan faces gives us an arbitrary Lascoux
polynomial.

The main idea of this section is to fix the canonical word for the permutation u ∈ Sn described
in Lemma 6.2.4. Then alternating monomials will be located in the face F with a right-adjusted
diagram. But not all nonalternating monomials will necessarily cancel. Their offspring will be
located in other diagrams corresponding to the permutation u.
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1 . . . . . . n

u′

w′0

k + 1 1 . . . . . . n

u′′

w′′0

k + 1

Figure 11. Wiring diagrams

Following Lemma 6.2.3 we recall that any diagram of face F is obtained from the right-adjusted
diagram by moving edges. Moreover, we first can move edges to the first row (from left to right),
and at each step, the restriction of the diagram to rows starting from the second one will be
right-adjusted.

Let us enumerate the diagonals rotated to the right-up in a triangular tableau from left to
right. Note that all edges in diagrams of dual Kogan faces will be directed along such diagonals.

Lemma 6.3.1. Consider a diagram F , where the rows starting from the second one form a right-
adjusted diagram corresponding to permutation u, and the first row is filled as follows: places from
1 to k are filled by edges, places from k + 1 to i > k + 1 are empty, the remaining places can be
filled in any way (see Figure 12). Then the nonalternating monomials appearing at the i-th step
(that means, with the power of xi bigger than necessary) do not cancel if and only if it is possible
to move an edge on the place i in the first row.

××??

i i− 1

u

Figure 12. To Lemma 6.3.1

Proof. Following Example 5.2.5, recall that nonalternating monomials could be divided into
groups of the form π

(β)
i−1(m)−m, there m is an alternating monomial with the maximal allowed

power of xi (located on the diagonal in Figure 13.
Such monomials vanish under the action of operator π(β)i−1. Since π

(β)
i−1 commutes with operators

π
(β)
i+1, . . . , π

(β)
n−1 (that correspond to the last part of the first row), we should check whether a

permutation u can start with a transposition si−1.
Recall that u = . . . · sn−3 . . . sk2 · sn−2 . . . sk1 . In braid terms this means that first the k1-th

strand is going down to the position n− 1, then the k2-th strand is going down to the position
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xai−1x
b
i

xbi−1x
a
i

..
.

xbi−1x
b
ix
a−b
i+1xbi−1x

a
i+1

xai−1x
b
i+1

Figure 13. Alternating and nonalternating monomials, general case

n−2, and so on. Then we can put transposition si−1 on the first place if and only if the (i−1)-th
and i-th strands intersect each other or, equivalently, the (i − 1)-th line goes to the end earlier
than i-th line or, equivalently, there is no edge in the corresponding place in the diagram. On
the other hand, if (i− 1)-th and i-th strands do not intersect, we can move the edge to the first
row and intersect lines. Suppose the new diagram corresponds to permutation u′. It is easy to
see that π(β)u (π

(β)
i−1(m)) coincides with π(β)u′ (m). It follows that the offsprings of π(β)i−1(m) will be

located in diagram u′. Since in this case we consider monomial m, we should add an edge to the
i-th place in the first row.

n− 1 1i i− 1

�

Proof of Theorem 4.3.3 is obtained by filling the diagram row by row from top to bottom from
left to right and applying Lemma 6.3.1 at each step.
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