The Minisatellite Transformation Problem: The Run-Length-Encoding Approach and Further Enhancements

Behshad Behzadi & Jean-Marc Steyaert, Ecole Polytechnique
Mohamed Abouelhoda, Cairo University
Robert Giegerich, Bielefeld University
Biology…

- Minisatellites consist of tandem arrays of short repeat units found in genome of most higher eukaryotes.

- High degree of polymorphism at minisatellites has applications from forensic studies to the investigation of the origins of modern human groups.
...Biology...

- These repeats are called variants.

- MVR-PCR is designed to find the variants.

- As an example, MSY1 is the minisatellite on the human Y-chromosomes. There are five different repeats (variants) in MSY1.
Different Repeat Types (Variants) of MSY1

Map Types:

<table>
<thead>
<tr>
<th>Type 1:</th>
<th>C</th>
<th>A</th>
<th>C</th>
<th>T</th>
<th>ATACAT</th>
<th>G</th>
<th>ATGTATATTATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 1a:</td>
<td>C</td>
<td>A</td>
<td>A</td>
<td>C</td>
<td>ATACAT</td>
<td>G</td>
<td>ATGTATATTATA</td>
</tr>
<tr>
<td>Type 2:</td>
<td>C</td>
<td>T</td>
<td>A</td>
<td>A</td>
<td>T</td>
<td>ATACAT</td>
<td>G</td>
</tr>
<tr>
<td>Type 3:</td>
<td>C</td>
<td>A</td>
<td>T</td>
<td>A</td>
<td>T</td>
<td>ATACAT</td>
<td>C</td>
</tr>
<tr>
<td>Type 3a:</td>
<td>C</td>
<td>A</td>
<td>A</td>
<td>C</td>
<td>ATACAT</td>
<td>C</td>
<td>ATGTATATTATA</td>
</tr>
<tr>
<td>Type 4:</td>
<td>C</td>
<td>T</td>
<td>A</td>
<td>A</td>
<td>T</td>
<td>ATACAT</td>
<td>C</td>
</tr>
<tr>
<td>Type 4a:</td>
<td>C</td>
<td>T</td>
<td>A</td>
<td>A</td>
<td>C</td>
<td>ATACAT</td>
<td>C</td>
</tr>
</tbody>
</table>

Distance between types:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>1a</th>
<th>2</th>
<th>3</th>
<th>3a</th>
<th>4</th>
<th>4a</th>
<th>null</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>1a</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3a</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>4a</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>null</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>
Minisatellite Maps: The MSY1 Dataset

DNA Sequence: ... CGGCGAT CGGCGAC CGGCGAC CGGCGAC CGGAGAT ...

Unit types (Alphabet): X = CGGCGAT Y = CGGCGAC Z = CGGAGAT

Minisatellite Map: XYYYYZ

• Example Maps from the MSY1 Dataset:

<table>
<thead>
<tr>
<th>Code</th>
<th>Pop.</th>
<th>Hg</th>
<th>MVR map</th>
</tr>
</thead>
<tbody>
<tr>
<td>m1</td>
<td>English</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>m19</td>
<td>English</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>m110</td>
<td>Indian</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>m47</td>
<td>Pygray</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>m82</td>
<td>San</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>m121</td>
<td>Finn</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>m707</td>
<td>Maya</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>m65</td>
<td>Japanese</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>m6</td>
<td>English</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>m125</td>
<td>Berber</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>m715</td>
<td>Bantu</td>
<td>21</td>
<td></td>
</tr>
</tbody>
</table>

Type 1: ○ Type 2: ● Type 3: ● Type 4: ○ Null (or type 0): ⊗ (undetermined variant)
The unequal crossover is a possible mechanism for tandem duplication:
Evolutionary Operations

- Insertion
- Deletion
- Mutation
 - Amplification \((p\text{-plication})\)
 - Contraction \((p\text{-contraction})\)
Examples of operations

- Insertion of d
 \[abbc \rightarrow abbd\textit{c} \]

- Deletion of c
 \[abb\textit{cb} \rightarrow abbb \]

- Mutation of c into d
 \[caab \rightarrow daab \]

- 4-plication of c
 \[ab\textit{cb} \rightarrow ab\textit{cccccb} \]

- 2-contraction of b
 \[ab\textit{bc} \rightarrow abc \]
Cost Functions

$I(x)$
insertion of symbol x

$D(x)$
deletion of symbol x

$M(x, y)$
mutation of symbol x to y

$A_p(x)$
p-lication of symbol x

$C_p(x)$
p-contraction of symbol x
Hypotheses

- All the costs are positive.
- The cost of duplications (and contractions) is less than all other operations.
- Triangle inequality holds:
 \[M(x,y) + M(y,z) \leq M(x,z) ; M(x,x) = 0 \]
Transformation distance between s and t

- Applying a sequence of operations on s transforming it into t.
- The cost of a transformation is the sum of costs of its operations.
- $TD = \text{Minimum cost for a possible transformation of } s \text{ into } t$.
- Any transformation which gives this minimum is called an optimal transformation.
Previous Works

- Bérard & Rivals (RECOMB’02)
- Behzadi & Steyaert (CPM’03, JDA’04)
- Behzadi & Steyaert (WABI'04)
Generation vs. Reduction

- The symbols of s which generate a non-empty substring of t are called \textbf{generating symbols}.
- Other symbols of s are \textbf{vanishing symbols}. (These symbols are eliminated during the transformation by a deletion or contraction.)
- The transformation of symbol x into non-empty string s is called \textbf{generation}.
- The transformation of a non-empty string s into a unique symbol x is called \textbf{reduction}.
The optimal generation of a non-empty string s from a symbol x can be achieved by a non-
di
ti
The schema for an optimal transformation

There exists an optimal transformation of s into t in which all the *contractions* are done *before* all amplifications.
Run-Length Encoding and Run Generation

- The RLE encoding of $aaaabbbcccaabbbccc$ is $a^4b^4c^3a^1b^4c^2$.
- The lengths of the encoded strings with length n and m is denoted by m' and n'.
- There exists an optimal generation of a non-empty string t from a single symbol x in which for every run of size $k > 1$ in t the $k-1$ right symbols of the run are generated by duplications of the leftmost symbol of the run.
Preprocessing --> Core algorithm

- Compute the generation cost of all substrings of the target string t from any symbol x of the alphabet: $G(t)[x,i,j]$.
- Compute the optimal generation/reduction costs over the substrings by recurrence using dynamic programming.
- The running time is given by:
 $$O((m'^3 + n'^3)|\text{Alpha}| + mn'^2 + nm'^3 + mn)$$
A different look at Duplication History

Observed

- Right duplication: s_3, s_6
- Left duplication: s_3s_4, s_6
- Right duplication: $s_1s_3s_4s_5$, s_6
- Left duplication: $s_1s_3s_4s_5$, s_6
- Right duplication: $s_1s_2s_3s_4s_5$, s_6
- Right duplication: $s_1s_2s_3s_4s_5$, s_6s_7
- Right duplication: $s_1s_2s_3s_4s_5$, $s_6s_7s_8$
Alignment of Minisatellite Maps (1)

Complications: comparing maps is more than copy number
1) Types are not identical
2) Types duplicate according to a duplication model
3) Parts of the map may be foreign, appeared by transposition

Example of an alignment:

The two maps S and R

Alignment of S and R
Alignment of Minisatellite Maps (2)

- Matches refer to common history
- Duplication events refer to individual duplication history
- Insertions/Deletions refer to foreign units
Improved Model of Comparison
Left and Right Simultaneous Dups

Example:

Assume: \(d(a,b)=d(d,c)=d(c,d) < d(a,c)=d(b,d) < d(a,d) \)

Bérard et al., Model

Our NEW Model

There is no rule to allow simultaneous left/right duplications in \(S \) and \(R \)

It has less score. Because there is a rule to allow simultaneous left/right duplications in \(S \) and \(R \)
Algorithm Layout

Observations:

-- Duplications compose intervals in S/R
-- The duplications within an alignment originate either from the leftmost or from the rightmost unit of the interval containing the duplications
-- Optimal alignment must contain optimal duplication history of these intervals

Therefore:

1. Pre-compute and store score of optimal history for all sub-intervals of S and R originated from leftmost/rightmost unit
2. Use Dynamic programming alignment algorithm considering that intervals of S/R appeared as duplications (optimal scores are look-up
Finding an Optimal Duplication History

Duplication history can be represented by an **ordered directed tree ORDT**: Nodes are the units

Edges are directed and weighted by distance between the unit

Each sub-tree can be written as contiguous units \([s_i..s_j]\)

Optimal duplication history:= an optimal ORDT

An optimal ORDT can be found in \(O(n^3)\) time and \(O(n^2)\) space by partitioning contiguous non-overlapping intervals:

\(\text{P1-P5: } O(n^2 \log \log n) \) time
Experimental Running Times

Duplication history:

	Without RLE		With RLE			
5	147	65		5	0.46	0.46
10	262	65		10	0.59	0.55
20	472	61		20	0.95	0.59
30	703	65		30	1.11	0.56
50	1165	65		50	1.5	0.48
60	1428	67		60	1.7	0.6

Alignment algorithm:

<table>
<thead>
<tr>
<th>Data</th>
<th>Algn. No.</th>
<th>MS_ALIGN</th>
<th>MSATcompare</th>
<th>MSATcompareRLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>rand 50</td>
<td>1225</td>
<td>5.58</td>
<td>2.3</td>
<td>0.23</td>
</tr>
<tr>
<td>rand 100</td>
<td>4950</td>
<td>24.2</td>
<td>10.2</td>
<td>0.98</td>
</tr>
<tr>
<td>rand 150</td>
<td>11175</td>
<td>49.8</td>
<td>21.4</td>
<td>2.1</td>
</tr>
<tr>
<td>rand 250</td>
<td>3112</td>
<td>161.5</td>
<td>70</td>
<td>5.9</td>
</tr>
<tr>
<td>rand 350</td>
<td>61075</td>
<td>317</td>
<td>140</td>
<td>12</td>
</tr>
<tr>
<td>MSY1 345</td>
<td>59340</td>
<td>87</td>
<td>25</td>
<td>4.8</td>
</tr>
</tbody>
</table>

- MS_ALIGN is the algorithm of Bérard et al.
- MSATcompare is ours
Detection of Duplication Bias in MSY1 Dataset

E1: run algorithm allowing left- and right- duplications
EL: allow only left duplications
ER: allow only right duplications

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Total Algn.</th>
<th>$r = 1 \times d_H$</th>
<th>$r = 2 \times d_H$</th>
<th>$r = 5 \times d_H$</th>
<th>$r = 10 \times d_H$</th>
<th>$r = \infty$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>L</td>
<td>R</td>
<td>L</td>
<td>R</td>
<td>L</td>
</tr>
<tr>
<td>with nulls</td>
<td>59340</td>
<td>186</td>
<td>0</td>
<td>616</td>
<td>16</td>
<td>3005</td>
</tr>
<tr>
<td>with max. 3 nulls</td>
<td>53956</td>
<td>148</td>
<td>0</td>
<td>398</td>
<td>0</td>
<td>2403</td>
</tr>
<tr>
<td>with no nulls</td>
<td>30876</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>869</td>
</tr>
</tbody>
</table>

L: number of alignments in EL with cost higher than that in E1
R: number of alignments in ER with cost higher than that in E1

There is an important bias: R keeps small while E increases quickly as $r=M/DUP$ increases; this suggests that the units are most often generated from right to left

This raises questions about the underlying duplication mechanisms and the process of evolution.