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0.1 Realizability in R3

The cone over the graph K4 embedded into the plane shows that there are 5 points 0, 1, 2, 3, 4 in
3-space such that the set of all the triangles 0jk, 1 ≤ j < k ≤ 4, is embedded. The Intersection
Property refram-cone shows that no 6 points with analogous property exist.

(In more advanced language not necessary here the above remarks state that neither a complete
2-complex on 6 vertices nor even the cone over K5 is embeddable into the 3-space.)

0.1. For each n there exist 2n points A1, . . . , An, B1, . . . , Bn in 3-space such that the set of all
the triangles

AjBjAk and AkBkBj, 1 ≤ j < k ≤ n, is embedded.

0.2 (Join). For which l,m, n does there exist l+m+n points A1, . . . , Al, B1, . . . , Bm, C1 . . . , Cn ∈
R3 such that the set of all the triangles

AiBjCk, 1 ≤ i ≤ l, 1 ≤ j ≤ m, 1 ≤ k ≤ n,

is embedded? (Start with the cases (l,m, n) = (222), (223), (233)!)
Hint: use the Intersection Property refram-cone. Answer: at most one of numbers l,m, n is

greater than 2.
An alternative proof of the Product Theorem. Assume to the contrary that there exists a linear

embedding K5 ×K3 → R3. Then the vertex A5,1 is joined
• to the vertex Ai,1 by the segment A5,1Ai,1, for each 1 ≤ i ≤ 4;
• to the vertex Ai,j by the broken line A5,1A5,jAi,j, for each 1 ≤ i ≤ 4, 2 ≤ j ≤ 3.
Denote by T4,3 the union of triangles of the linear embedding K4×K3 → R3 formed by vertices

Aij, i ∈ {1, 2, 3, 4}, j ∈ {1, 2, 3}. Since no vertex A5,j belongs to T4,3, each of these segments and
broken lines intersects X only at the endpoints. Denote by B the boundary of the connected
component of R3 − T4,3 containing point A5,1. Then B ∋ Ai,j for each 1 ≤ i ≤ 4 and 1 ≤ j ≤ 3,
because Ai,j is joined to A5,1 by a segment or a broken line whose interior is disjoint with T4,3.
Thus B ⊃ T4,3, so B = T4,3. This is impossible. (It is not easy to prove the impossibility, cf.
Problem 0.3.) QED

0.3. (a) Существует невыпуклый многогранник в пространстве и 3 его вершины A,B,C,
для которых треугольник ABC не разбивает не внутренности, ни внешности многогранника.

(b) Describe outer-spatial 2-polyhedra.
1This is a complement to §1 and §5 of A. Skopenkov, Algorithms for recognition of the realizability of hypergraphs,

in Russian, www.mccme.ru/circles/oim/algor.pdf.
2www.mccme.ru/~skopenko
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0.2 How to work with four-dimensional space?

One can define
• the line as the set of all real numbers;
• the plane as the set of all ordered pairs (x, y) of real numbers x and y;
• three-dimensional space as the set of all ordered triples (x, y, z) of real numbers;
• four-dimensional space R4 as the set of all ordered quadruples (x, y, z, t) of real numbers.
Then one can ‘analytically’ define lines in a plane, lines and planes in three-dimensional space,

lines, planes and (three-dimensional) hyperplanes in four-dimensional space. However, usually
only the simplest properties of planar and spatial geometric objects are deduced from the analytic
definition (or just accepted as axioms). More complicated properties can be deduced ‘synthetically’
from the simplest ones (i.e., as in school geometry, without using the analytic definition). Often
it is convenient to reduce a planar problem to a linear one (i.e., to a problem in a line), and a
spatial problem to a planar one. Similarly, the best approach to the following four-dimensional
problems is an analogy or a reduction to spatial ones. While solving problems about R4, you can
use without proof all rigorously formulated and correct facts about solutions of systems of linear
equations.

Examples of simple arguments in four-dimensional space are presented as hints to problems,
or below the problems.

0.4. (a) For each two points, which are not in the plane x = y = 0 in four-dimensional space,
there exists a broken line which connects these points and does not intersect this plane.

(b) For each hyperplane in four-dimensional space, there exist two points not in this hyperplane
such that each broken line connecting them intersects this hyperplane.

In Problems 0.5 and 0.6 below it suffices to give correct answers.
0.5. What is the intersection of the 3-dimensional sphere

S3 := {(x, y, z, t) ∈ R4 | x2 + y2 + z2 + t2 = 1}

with the following sets:
(a) the line x = y = z = 0, containing the center of the sphere;
(b) the plane x = y = 0, containing the center of the sphere;
(c) the (3-dimensional) hyperplane x = 0, containing the center of the sphere;
(d) the intersection of the positive sixteenth of R4 and the union of the 2-dimensional coordinate

planes, i.e.

{(x, y, z, t) ∈ R4 | x ≥ 0, y ≥ 0, z ≥ 0, t ≥ 0 and two of four numbers x, y, z, t are zeros}.

0.6. Eight points 1,2,3,4,5,6,7,8 in general position in four-dimensional space are given. What
is the intersection of:

(a) the line 12 and the hyperplane 5678? (b) the line 12 and the plane 567?
(c) the plane 123 and the hyperplane 5678? (d) the hyperplanes 1234 and 5678?
(e) the planes 123 and 567? (e’) the triangles 123 and 567?
Answers. (a), (e), (e’) A point or the empty set. (b) The empty set.
(c) A line or the empty set. (d) A plane or the empty set.

0.3 Realizability in R4

Let us present a more complicated (but still simple) proof of the van Kampen-Flores Theorem
ref0-ne4 which illustrates a generalization to arbitrary graphs.

Proof of the van Kampen-Flores Theorem ref0-ne4. For a set f ⊂ R4 of seven general position
points denote by v(f) the modulo 2 residue in question. For the set f0 of seven points from Example

2



0.7.d we have v(f0) = 1 because by general position |conv∆ ∩ conv∆′| = 1. Hence it suffices to
prove that if we change one point keeping the remaining six fixed, so that new seven points are in
general position, then v(f) is not changed. Assume that K ∈ f , K ′ ̸∈ f and f ′ := (f−{K})∪{K ′}
is a general position set.

Proof that v(f) = v(f ′) when f ∪ {K ′} is a general position set. Denote s := f − {K}. For
each segment e with the endpoints from f − {K} denote by

• E1, E2 the endpoints of e;
• Te the surface of the tetrahedron with the vertices at four points from s other E1, E2;
• Ke the triangle with the vertices at K,E1, E2.
From now on in any sum, if the limits of the summation are not written, the sum is over

segments e with the endpoints from s. We have

v(f)− v(f ′)
1
=

∑
(|Ke ∩ Te| − |K ′e ∩ Te|)

2
=

=
∑

|(KK ′E1 ∪KK ′E2) ∩ Te|
3
=

∑
|KK ′E1 ∩ Te|+

∑
|KK ′E2 ∩ Te|

4
= 0 mod 2.

• The first equality is clear.
• The second equality follows by the Parity Lemma ref0-evens.
• The third equality holds because f ∪ {K ′} is a general position set.
• Let us prove the last equality. For any point E1 ∈ s we have |KK ′E1∩Te| =

∑
|KK ′E1 ∩ PQR|,

where the sum is over triangles PQR from Te. For any three distinct points P,Q,R ∈ s − {E1},
the triangle PQR is contained in exactly two tetrahedra with the vertices from s− {E1}. So the
number |KK ′E1 ∩PQR| ‘appears twice’ in the sum

∑
|KK ′E1 ∩ Te|. Therefore this sum is equal

to 0. Analogously
∑

|KK ′E1 ∩ Te| = 0.
Proof that v(f) = v(f ′) in general. There exists a point K ′′ such that both f ∪ {K ′′} and

f ′ ∪ {K ′′} are general position sets. Then v(f) = v((f − {K}) ∪ {K ′′}) = v(f ′) by the previous
case. QED

Proof of Proposition ref0-ne4j. Analogously to the beginning of the above proof, Proposition
ref0-ne4j is reduced to the case of general position points. (However, in order to prove the general
position case we would consider non-general position points satisfying certain condition.). Let
f1, f2, f3 be three-element subsets of R4 such that for any six distinct points Ak, Bk ∈ fk, k = 1, 2, 3,
the triangles A1A2A3 and B1B2B3 intersect in at most one point. Let v(f1, f2, f3) ∈ Z2 be the
modulo 2 reduction of the number of intersection points (in R4) of the interiors of such triangles.
Analogously to the above proof, v(f1, f2, f3) does not depend on f1, f2, f3 if f1∪f2∪f3 is a general
position set. So, it remains to prove that there exist three-element subsets f1, f2, f3 of R4 such
that f1 ∪ f2 ∪ f3 is a general position set and v(f1, f2, f3) = 1. Analogously to Example 0.7.a, it
suffices to prove this assertion when f1 ∪ f2 ∪ f3 is not a general position set.

For this denote the vertices of one part of the graph K3,3 by A1, A2, A3 and of the other part
by B1, B2, B3. Embed this graph in R3 in such a way that A1B1A2B2 is a square and points A3

and B3 are in different half-spaces of R3 w.r.t. the plane A1B1A2. Let C1 and C2 be in different
half-spaces of R4 w.r.t. R3. Finally, take a point C3 inside the pyramid C1A1B1A2B2 with the
vertex C1. One can check that v({A1, A2, A3}, {B1, B2, B3}, {C1, C2, C3}) = 1. QED

0.7. (a) There exist 7 points in R4 such that only for one non-ordered pair ∆1,∆2 of two
3-element subsets among all such pairs we have conv∆1 ∩ conv∆2 ̸= conv(∆1 ∩∆2), and for such
pair ∆1 ∩∆2 = ∅. (By convV we denote the convex hull of a set V .)

(b) Same for general position points.
Proof of Example 0.7.a. Let ABCD be a regular tetrahedron in R3 and let E be the center

of ABCD. Let I be a point in the interior of the tetrahedron ABCE such that the points
A,B,C,D,E, I are in general position in R3. Let l be a line R4 perpendicular to R3 and intersecting
R3 at I. Finally, choose points F , G on l which are on opposite sides with respect to I.
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Clearly, if a triangle whose vertices are from f0 := {A,B,C,D,E, F,G} and the triangle DFG
have a common vertex or a common side, then the intersection of these triangles is this vertex or
this side. Thus in order to show that the set f0 is as required, it suffices to prove the following
assertions.

(1) For any two 3-element subsets ∆1,∆2 ̸= {D,F,G} of f0 we have conv∆1 ∩ conv∆2 =
conv(∆1 ∩∆2) (this means that the set of all the triangles with the vertices from f0, except the
triangle DFG, is embedded, so this is sufficient for the simplified version);

(2) There is exactly one 3-element subset ∆1 ⊂ f0 such that ∆1∩{D,F,G} = ∅ and conv∆1∩
DFG ̸= conv(∆1 ∩ {D,F,G}).

Proof of (1). There are three types of triangles with the vertices from f0:

(1) XFG, (2) XY F or XYG, (3) XY Z,

where X,Y, Z ∈ {A,B,C,D,E}. Clearly, the set of triangles of each type is embedded. The
triangle XFG intersects a triangle of type 2 either at a common vertex F or G, or at a common
edge XF or XG. A triangle of type 2 intersects a triangle of type 3 either at a common vertex
X or at a common edge XY . The triangle XFG intersects R3 by the segment XI. If X ̸= D,
then the segment XI lies inside ABCE. Then XI intersects any triangle of type 1 in at most a
common vertex. QED

Proof of (2). We have DFG ∩ ABCD = DI. (By a tetrahedron we mean the convex hull
of its vertices.) Since I is inside the tetrahedron ABCE and D is outside it, it follows that the
segment DI intersects the surface of the tetrahedron ABCE at a unique point. So the triangle
FGD intersects exactly one of the triangles with the vertices at the other points, more precisely,
the triangle EXY , where X, Y ∈ {A,B,C}. So (2) holds for ∆1 = {E,X, Y }. QED

Proof of Example 0.7.b. Take the set f0 of 7 points in R4 given by (a). Denote by d the
minimum of the distances between unordered pairs of disjoint triangles with the vertices from f0.
If we replace each point K ∈ f0 by a point K ′ ∈ R4 such that |KK1| < d/2, then the set of all
triangles with the vertices at shifted points, except the shifted triangle corresponding to conv∆1,
is embedded. By Example 0.7.c there exists a number d′ > 0 such that, if we replace each point
K ∈ f0 by a point K ′ ∈ R4 such that |KK ′| < d′, then conv∆′

1 ∩ conv∆′
2 ̸= conv(∆′

1 ∩∆′
2), where

∆′
1 and ∆′

2 are shifted sets corresponding to ∆1 and ∆2, respectively. So if we replace each point
K ∈ f0 by a point K ′ ∈ R4 such that |KK ′| < min{d/2, d′} and the shifted set is general position,
then the shifted set is as required. QED
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