Report on I. Vasenov's paper Tiling of regular polygon with similar right triangles, https://arxiv.org/abs/2010.05052v2

As far as I see, only a slightly weaker statement than Theorem 2 is proved in the paper. In line 6 from the bottom of page 3 it is stated that
"Since $\alpha \notin\{\pi / n, 2 \pi / n,(\pi / 6)+(2 \pi / 3 n)\}$, by Lemma 8 it follows that $\alpha \notin\{\pi / 10, \pi / 5,3 \pi / 14, \pi / 6, \pi / 8\}$."
This is not correct, since Lemma 8 states that if a satisfies the conditions then either a or $1-a$ is in $\{2 / n, 4 / n,(1 / 3)+(4 / 3 n)\}$. There are cases when $1-a$ belongs to this set, and these cases are not covered by the proof. For example, if $n=5$ and $a=1 / 5$, then $1-a=4 / n$, and thus the case $n=5, \alpha=\pi / 10$ should be included as a possible case in Theorem 2.

