Tiling of regular polygon with similar right triangles, II

Vigdorchik Leonid*

A tiling is a decomposition of a polygon into finitely many non-overlapping triangles. (Note that a tiling is not a triangulation, i.e. a vertex of a triangle can lie on a side of a triangle.)

Theorem 1. If a regular n-gon, $n>8, n \neq 12,14,20,32,44$, can be tiled with similar right triangles, then no angle of this triangle equals to $\frac{n-2}{3 n} \pi$.

Theorem 1 follows from [L20, Theorem 1] for all $n \geq 25, n \neq 32,42$.
Corollary 2. A regular n-gon, $n>8, n \neq 12,14,20,28,32,44$, can be tiled by similar right triangles then one of the angles of these triangles is in $\frac{\pi}{n}$ or $\frac{2 \pi}{n}$.

Theorem 1 and [V. Theorem 1] imply Corollary 2.
We denote $a_{n}=2 \frac{n-2}{3 n}$ for integer n. Then $1-a_{n}=\frac{n+4}{3 n}$.
For all $n: a_{n}<2 / 3$ and $1-a_{n}>1 / 3$.
Lemma 3. If $3 a_{n}=p\left(1-a_{n}\right)+q a_{n}+r, n>8, n \neq 14,20,32$, and p, q, r are non-negative integers, then $q=3$.
Proof. Since $\frac{r}{3} \leq a_{n}=2 \frac{n-2}{3 n}<\frac{2}{3}$, it follows that $r<2$. Since $q a_{n} \leq 3 a_{n}$, it follows that $q \leq 3$. We also have $p=\frac{a_{n}(3-q)-r}{1-a_{n}}, 1-a_{n}>\frac{1}{3}, a_{n}<\frac{2}{3}$ therefore $p<\frac{\frac{2}{3}(3-q)-r}{\frac{1}{3}}=2(3-q)-3 r$. We consider all possible values r, q and show that either $q=3$ or the values of n that correspond to the integer values of p that do not suit to limitations of the lemma:

1. Let $r=0$.
1.1 Let $q=0$. This is only possible if $0 \leq p<6$. Then $n \in\{2,5,8,14,32\}$.
1.2 Let $q=1$. This is only possible if $0 \leq p<4$. Then $n \in\{2,4,8,20\}$.
1.3 Let $q=2$. This is only possible if $0 \leq p<2$. Then $n \in\{2,8\}$.
1.4 Let $q=3$. Then we get the statement of the lemma.
2. Let $r=1$. Since $\frac{1}{3}<a_{n}<\frac{2}{3}$, it follows that $q \leq \frac{3 a_{n}-1}{a_{n}}<2$.
2.1 Let $q=0$. This is only possible if $0 \leq p<3$. Then $n \in\{2,4,8,20\}$.
2.2 Let $q=1$. This is only possible if $0 \leq p<1$. Then $n=8$.

Lemma 4. If $b=1,2,3,4$ and $b=p\left(1-a_{n}\right)+q a_{n}+r$ where $n>8, n \neq$ $12,14,20,32,44$ and p, q, r are non-negative integers, then $q \geq p$.

[^0]Proof. If $r=1$ then $p, q=1$. If $1=p\left(1-a_{n}\right)+q a_{n}+r$, then if $q=0$ we have $p=\frac{1}{1-a_{n}}$. But $\frac{1}{3}<1-a_{n}<\frac{1}{2}$. Hence p is not non-negative integer. Contradiction. Hence $p, q=1$.

If $r>0$ we have the previous case. If $2=p\left(1-a_{n}\right)+q a_{n}+r$, then if $q=1$ we have the previous case. Hence $p=\frac{2}{1-a_{n}}=\frac{6 n}{n+4}$. Then $0<\frac{6 n}{n+4}<7$ is non-negative integer. Hence $n=20$. Hence $p, q=2$.

If $r>0$ we have one of the previous cases. If $3=p\left(1-a_{n}\right)+q a_{n}+r$, then if $q=1$ we have the previous case. Hence $p=\frac{3}{1-a_{n}}=\frac{9 n}{n+4}$. Then $0<\frac{9 n}{n+4}<10$ is non-negative integer. Hence $n \in\{14,32\}$. Hence $p, q=3$.

If $r>0$ we have one of the previous cases. If $4=p\left(1-a_{n}\right)+q a_{n}+r$, then if $q=1$ we have the previous case. Hence $p=\frac{4}{1-a_{n}}=\frac{12 n}{n+4}$. Then $0<\frac{12 n}{n+4}<13$ is non-negative integer. Hence $n \in\{12,20,44\}$. Hence $p, q=4$.

Proof of Theorem 1. Assume that a regular n-gon, $n>8, n \neq 12,14,20,32,44$, is tiled with similar right triangles of angles $\frac{\pi}{6}<\alpha<\frac{\pi}{4}, \frac{\pi}{2}-\alpha$ and $\frac{\pi}{2}$, and $\alpha=\frac{n+4}{6 n} \pi$.

Take a vertex of the n-gon. By p, q, r we denote the number of smaller acute angles α, bigger acute angles $\frac{\pi}{2}-\alpha$ and angles $\frac{\pi}{2}$ respectively at this vertex. Then $3 a_{n}=p\left(1-a_{n}\right)+q a_{n}+r$, where $\frac{1}{2}<3 a_{n}<\frac{2}{3}$. So $a_{n}=2 \frac{\frac{\pi}{2}-\alpha}{\pi}, 1-a_{n}=2 \frac{\alpha}{\pi}$, $r=2 \frac{\frac{\pi}{2}-\alpha}{\pi}$. Then by Lemma 3 we have $q=3, p=0$.

For the triangles that have same vertices inside of regular n-gon or that have same vertices on the side of n-gon or on the side of a triangle we denote p, q, r as in previous case. Then by Lemma $4 p \leq q$.

Hence the number of bigger acute angles is greater than the number of smaller acute angles. Hence our tiling is not realizable.
[V] I.Vasenov, Tiling of regular polygon with similar right triangles, https://arxiv.org/abs/2010.05052
[L20] M.Laczkovich, Irregular tilings of regular polygons with similar triangles, https://arxiv.org/abs/2002.12013

[^0]: *This work was prepared in frame of math circle "Math and Olympiades".

