Tiling of regular polygon with similar right triangles, II

Vigdorchik Leonid^{*}

A tiling is a decomposition of a polygon into finitely many non-overlapping triangles. (Note that a tiling is not a triangulation, i.e. a vertex of a triangle can lie on a side of a triangle.)

Theorem 1. If a regular n-gon, n > 8, $n \neq 12, 14, 20, 32, 44$, can be tiled with similar right triangles, then no angle of this triangle equals to $\frac{n-2}{3n}\pi$.

Theorem 1 follows from [L20, Theorem 1] for all $n \ge 25$, $n \ne 32, 42$.

Corollary 2. A regular n-gon, n > 8, $n \neq 12, 14, 20, 28, 32, 44$, can be tiled by similar right triangles then one of the angles of these triangles is in $\frac{\pi}{n}$ or $\frac{2\pi}{n}$.

Theorem 1 and [V. Theorem 1] imply Corollary 2. We denote $a_n = 2\frac{n-2}{3n}$ for integer n. Then $1 - a_n = \frac{n+4}{3n}$. For all n: $a_n < 2/3$ and $1 - a_n > 1/3$.

Lemma 3. If $3a_n = p(1 - a_n) + qa_n + r$, n > 8, $n \neq 14, 20, 32$, and p, q, r are non-negative integers, then q = 3.

Proof. Since $\frac{r}{3} \leq a_n = 2\frac{n-2}{3n} < \frac{2}{3}$, it follows that r < 2. Since $qa_n \leq 3a_n$, it follows that $q \leq 3$. We also have $p = \frac{a_n(3-q)-r}{1-a_n}$, $1-a_n > \frac{1}{3}$, $a_n < \frac{2}{3}$ therefore $p < \frac{\frac{2}{3}(3-q)-r}{\frac{1}{3}} = 2(3-q) - 3r$. We consider all possible values r, q and show that either q = 3 or the values of n that correspond to the integer values of p that do not suit to limitations of the lemma:

1. Let r = 0. 1.1 Let q = 0. This is only possible if $0 \le p < 6$. Then $n \in \{2, 5, 8, 14, 32\}$. 1.2 Let q = 1. This is only possible if $0 \le p < 4$. Then $n \in \{2, 4, 8, 20\}$. 1.3 Let q = 2. This is only possible if $0 \le p < 2$. Then $n \in \{2, 8\}$. 1.4 Let q = 3. Then we get the statement of the lemma. 2. Let r = 1. Since $\frac{1}{3} < a_n < \frac{2}{3}$, it follows that $q \le \frac{3a_n - 1}{a_n} < 2$. 2.1 Let q = 0. This is only possible if $0 \le p < 3$. Then $n \in \{2, 4, 8, 20\}$. 2.2 Let q = 1. This is only possible if $0 \le p < 1$. Then n = 8.

Lemma 4. If b = 1, 2, 3, 4 and $b = p(1 - a_n) + qa_n + r$ where n > 8, $n \neq 12, 14, 20, 32, 44$ and p, q, r are non-negative integers, then $q \ge p$.

^{*}This work was prepared in frame of math circle "Math and Olympiades".

Proof. If r = 1 then p, q = 1. If $1 = p(1 - a_n) + qa_n + r$, then if q = 0 we have $p = \frac{1}{1-a_n}$. But $\frac{1}{3} < 1 - a_n < \frac{1}{2}$. Hence p is not non-negative integer. Contradiction. Hence p, q = 1.

If r > 0 we have the previous case. If $2 = p(1 - a_n) + qa_n + r$, then if q = 1 we have the previous case. Hence $p = \frac{2}{1-a_n} = \frac{6n}{n+4}$. Then $0 < \frac{6n}{n+4} < 7$ is non-negative integer. Hence n = 20. Hence p, q = 2.

If r > 0 we have one of the previous cases. If $3 = p(1 - a_n) + qa_n + r$, then if q = 1 we have the previous case. Hence $p = \frac{3}{1-a_n} = \frac{9n}{n+4}$. Then $0 < \frac{9n}{n+4} < 10$ is non-negative integer. Hence $n \in \{14, 32\}$. Hence p, q = 3.

If r > 0 we have one of the previous cases. If $4 = p(1-a_n) + qa_n + r$, then if q = 1 we have the previous case. Hence $p = \frac{4}{1-a_n} = \frac{12n}{n+4}$. Then $0 < \frac{12n}{n+4} < 13$ is non-negative integer. Hence $n \in \{12, 20, 44\}$. Hence p, q = 4.

Proof of Theorem 1. Assume that a regular n-gon, n > 8, $n \neq 12, 14, 20, 32, 44$, is tiled with similar right triangles of angles $\frac{\pi}{6} < \alpha < \frac{\pi}{4}, \frac{\pi}{2} - \alpha$ and $\frac{\pi}{2}$, and $\alpha = \frac{n+4}{6n}\pi$.

Take a vertex of the *n*-gon. By p, q, r we denote the number of smaller acute angles α , bigger acute angles $\frac{\pi}{2} - \alpha$ and angles $\frac{\pi}{2}$ respectively at this vertex. Then $3a_n = p(1-a_n) + qa_n + r$, where $\frac{1}{2} < 3a_n < \frac{2}{3}$. So $a_n = 2\frac{\frac{\pi}{2} - \alpha}{\pi}$, $1-a_n = 2\frac{\alpha}{\pi}$, $r = 2\frac{\frac{\pi}{2} - \alpha}{\pi}$. Then by Lemma 3 we have q = 3, p = 0.

For the triangles that have same vertices inside of regular *n*-gon or that have same vertices on the side of n-gon or on the side of a triangle we denote p, q, r as in previous case. Then by Lemma 4 $p \leq q$.

Hence the number of bigger acute angles is greater than the number of smaller acute angles. Hence our tiling is not realizable.

[V] I.Vasenov, Tiling of regular polygon with similar right triangles,

https://arxiv.org/abs/2010.05052

[L20] M.Laczkovich, Irregular tilings of regular polygons with similar triangles, https://arxiv.org/abs/2002.12013