Tiling of regular polygon with similar right triangles, II

Vigdorchik Leonid*

A tiling is a decomposition of a polygon into finitely many non-overlapping triangles. (Note that a tiling is not a triangulation, i.e. a vertex of a triangle can lie on a side of a triangle.)

Theorem 1. If a regular n-gon, n > 8, $n \neq 12, 14, 20, 32, 44$, can be tiled with similar right triangles, then no angle of this triangle equals to $\frac{n-2}{3n}\pi$.

Theorem 1 follows from [L20, Theorem 1] for all $n \geq 25$, $n \neq 32, 42$.

Corollary 2. A regular n-gon, n > 8, $n \neq 12, 14, 20, 28, 32, 44$, can be tiled by similar right triangles then one of the angles of these triangles is in $\frac{\pi}{n}$ or $\frac{2\pi}{n}$.

```
Theorem 1 and [V. Theorem 1] imply Corollary 2.
We denote a_n = 2\frac{n-2}{3n} for integer n. Then 1 - a_n = \frac{n+4}{3n}. For all n: a_n < 2/3 and 1 - a_n > 1/3.
```

Lemma 3. If $3a_n = p(1 - a_n) + qa_n + r$, n > 8, $n \neq 14, 20, 32$, and p, q, r are non-negative integers, then q = 3.

Proof. Since $\frac{r}{3} \le a_n = 2\frac{n-2}{3n} < \frac{2}{3}$, it follows that r < 2. Since $qa_n \le 3a_n$, it follows that $q \le 3$. We also have $p = \frac{a_n(3-q)-r}{1-a_n}, 1-a_n > \frac{1}{3}, a_n < \frac{2}{3}$ therefore $p<\frac{\frac{2}{3}(3-q)-r}{\frac{1}{2}}=2(3-q)-3r$. We consider all possible values r,q and show that either q=3 or the values of n that correspond to the integer values of p that do not suit to limitations of the lemma:

- 1. Let r = 0.
- 1.1 Let q = 0. This is only possible if $0 . Then <math>n \in \{2, 5, 8, 14, 32\}$.
- 1.2 Let q = 1. This is only possible if $0 \le p < 4$. Then $n \in \{2, 4, 8, 20\}$.
- 1.3 Let q=2. This is only possible if $0 . Then <math>n \in \{2,8\}$.
- 1.4 Let q = 3. Then we get the statement of the lemma.
- 2. Let r=1. Since $a_n<\frac{2}{3}$, it follows that $q\leq \frac{3a_n-1}{a_n}<2$. 2.1 Let q=0. This is only possible if $0\leq p<3$. Then $n\in\{4,8,20\}$.
- 2.2 Let q=1. This is only possible if $0 \le p < 1$. Then n=8.

Lemma 4. If b = 1, 2, 3, 4 and $b = p(1 - a_n) + qa_n + r$ where n > 8, $n \neq 1$ 12, 14, 20, 32, 44 and p, q, r are non-negative integers, then $q \geq p$.

^{*}This work was prepared in frame of math circle "Math and Olympiades".

Proof. We consider four cases: b = 1, 2, 3, 4 separately.

- 1. If r=1 then p,q=0. If r=0 we receive $1=p(1-a_n)+qa_n+r$. Then q=0 or 1 because $a_n\geq \frac{1}{2}$. Suppose that q=0. Then $p=\frac{1}{1-a_n}$. But $\frac{1}{3}<1-a_n<\frac{1}{2}$. Hence p is not non-negative integer. Contradiction. Hence q=1. Then p=q=1.
- 2. If r > 0 we have the previous case. If $2 = p(1 a_n) + qa_n + r$, then if $q \ge 1$ we have the previous case. Hence $p = \frac{2}{1 a_n} = \frac{6n}{n + 4}$. Then $0 < \frac{6n}{n + 4} < 7$ is non-negative integer. Hence n = 20. Hence p, q = 2.
- 3. If r>0 we have one of the previous cases. If $3=p(1-a_n)+qa_n+r$, then if $q\geq 1$ we have the previous case. Hence $p=\frac{3}{1-a_n}=\frac{9n}{n+4}$. Then $0<\frac{9n}{n+4}<10$ is non-negative integer. Hence $n\in\{14,32\}$. Hence p,q=3.
- 4. If r>0 we have one of the previous cases. If $4=p(1-a_n)+qa_n+r$, then if $q\geq 1$ we have the previous case. Hence $p=\frac{4}{1-a_n}=\frac{12n}{n+4}$. Then $0<\frac{12n}{n+4}<13$ is non-negative integer. Hence $n\in\{12,20,44\}$. Hence p,q=4.

Proof of Theorem 1. Assume that a regular n-gon, n > 8, $n \neq 12, 14, 20, 32, 44$, is tiled with similar right triangles of angles $\frac{\pi}{6} < \alpha < \frac{\pi}{4}, \frac{\pi}{2} - \alpha$ and $\frac{\pi}{2}$, and $\alpha = \frac{n+4}{6\pi}\pi$.

Take a vertex of the n-gon. By p,q,r we denote the number of smaller acute angles α , bigger acute angles $\frac{\pi}{2}-\alpha$ and angles $\frac{\pi}{2}$ respectively at this vertex. We split each angle including angle at the vertex of n-gon by $\frac{\pi}{2}$. Then $3a_n=p(1-a_n)+qa_n+r$, where $\frac{1}{2}<3a_n<\frac{2}{3}$. So $a_n=2^{\frac{\pi}{2}-\alpha}$, $1-a_n=2^{\frac{\alpha}{\pi}}$, $r=2^{\frac{\pi}{2}-\alpha}$. Then by Lemma 3 we have q=3,p=0.

For the triangles that have same vertices inside of regular n-gon or that have same vertices on the side of n-gon or on the side of a triangle we denote p, q, r as in previous case. Then by Lemma 4 $p \le q$.

Hence the number of bigger acute angles is greater than the number of smaller acute angles. Hence our tiling is not realizable.

[V] I.Vasenov, Tiling of regular polygon with similar right triangles, https://arxiv.org/abs/2010.05052

[L20] M.Laczkovich, Irregular tilings of regular polygons with similar triangles, https://arxiv.org/abs/2002.12013