Описание строения группы обратимых центросимметричных двумерных матриц над \mathbb{Z}_{2^k} К. Зюбин

Томск, МАОУ СОШ № 32, 10Б, 2021

Аннотация

В системе шифрования с открытым ключом МММС1, предложенной С. К. Росошеком, для создания ключей шифрования используются обратимые центросимметричные матрицы 2×2 с элементами — вычетами по модулю n:

$$\begin{pmatrix} a & b \\ b & a \end{pmatrix}$$
, где $a, b \in \mathbb{Z}_n$ и $a^2 - b^2 \in \mathbb{Z}_n^*$.

Настоящая статья показывает, что такая группа матриц изоморфна группе обратимых многочленов с коэффициентами из \mathbb{Z}_n по модулю многочлена x^2-1 . Затем доказывается, что при $n=2^k$ (k>1) последняя группа изоморфна прямой сумме групп $\mathbb{Z}_{2^{k-1}}$, $\mathbb{Z}_{2^{k-2}}$ и двух экземпляров \mathbb{Z}_2 .

1 Введение

Пусть n — некоторое целое положительное число. Напомним, что множество вычетов по модулю n с операциями сложения и умножения по модулю n обозначается \mathbb{Z}_n . Группа обратимых по умножению элементов этого множества обозначается \mathbb{Z}_n^* .

Обозначим через $SGL_2(\mathbb{Z}_n)$ группу обратимых по умножению матриц вида $\begin{pmatrix} a & b \\ b & a \end{pmatrix}$, где $a, b \in \mathbb{Z}_n$. Определитель матрицы $\begin{pmatrix} a & b \\ b & a \end{pmatrix}$ равен $a^2 - b^2$. Поэтому

$$SGL_2(\mathbb{Z}_n) = \left\{ \begin{pmatrix} a & b \\ b & a \end{pmatrix} \middle| a, b \in \mathbb{Z}_n, \ a^2 - b^2 \in \mathbb{Z}_n^* \right\}.$$

В некоторых системах шифрования, предложенных С. К. Росошеком, в частности, в системе шифрования с открытым ключом МММС1 [1], для создания ключей используются элементы группы $SGL_2(\mathbb{Z}_n)$. На школе-конференции по теории групп (2020), посвящённой 85-летию В. А. Белоногова, В. А. Романьковым был поставлен вопрос об описании строения этой группы матриц.

Теорема 1. Пусть $k - uenoe \geqslant 2$. Тогда

$$SGL_2(\mathbb{Z}_{2^k}) \cong \mathbb{Z}_{2^{k-1}} \oplus \mathbb{Z}_{2^{k-2}} \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2.$$

Замечание. Группа $SGL_2(\mathbb{Z}_{2^1})$ состоит всего из двух матриц $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ и $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ и изоморфна \mathbb{Z}_2 .

2 Двойные числа над \mathbb{Z}_n

Рассмотрим классы сравнимости многочленов с коэффициентами из \mathbb{Z}_n по модулю многочлена x^2-1 , то есть факторкольцо $\mathbb{Z}_n[x]/\langle x^2-1\rangle$. Множество таких классов также называется двойными числами над \mathbb{Z}_n и обозначается $\mathbb{Z}_n[j]$, где j— это класс сравнимости многочлена x. Каждый элемент $\mathbb{Z}_n[j]$ может быть представлен в виде a+bj, где $a,b\in\mathbb{Z}_n$. При этом $j^2=1$, а сложение и умножение двойных чисел выполняется по формулам:

$$(a + bj) + (c + dj) = (a + c) + (b + d)j,$$

 $(a + bj) \times (c + dj) = (ac + bd) + (ad + bc)j.$

Обозначим через $SM_2(\mathbb{Z}_n)$ множество всех центросимметричных матриц 2×2 с элементами из \mathbb{Z}_n :

$$SM_2(\mathbb{Z}_n) = \left\{ \begin{pmatrix} a & b \\ b & a \end{pmatrix} \middle| a, b \in \mathbb{Z}_n \right\}.$$

Множество $SM_2(\mathbb{Z}_n)$ замкнуто относительно сложения и умножения матриц.

Теорема 2. Отображение $f \colon SM_2(\mathbb{Z}_n) \longrightarrow \mathbb{Z}_n[j]$ заданное формулой $f((\begin{smallmatrix} a & b \\ b & a \end{smallmatrix})) = a + bj,$ где $a,b \in \mathbb{Z}_n$, является изоморфизмом колец.

Доказательство.

Ясно, что f является биекцией. Проверим, что f сохраняет сложение и умножение:

Таким образом, f — изоморфизм \square .

Замечание. Аналог теоремы 2 верен для произвольных ассоциативно-коммутативных колец R с единицей:

$$SM_2(R) \cong R[x]/\langle x^2 - 1 \rangle.$$

Обозначим через $\mathbb{Z}_n[j]^*$ группу обратимых по умножению двойных чисел.

Следствие 3. Группы $SGL_2(\mathbb{Z}_n)$ и $\mathbb{Z}_n[j]^*$ изоморфны.

Следствие 4. Элемент a + bj обратим в $\mathbb{Z}_n[j]$ тогда и только тогда, когда элемент $a^2 - b^2$ обратим в \mathbb{Z}_n .

3 Доказательство теоремы 1

В доказательстве будет использоваться следующая

Лемма 5. [2, Теорема 4] Пусть a - uелое $\geqslant 2$. Тогда

$$\mathbb{Z}_{2^a}^* \cong \mathbb{Z}_{2^{a-2}} \oplus \mathbb{Z}_2.$$

Групповой операцией группы $\mathbb{Z}_{2^k}[j]^*$ является умножение, поэтому будем доказывать теорему 1 в мультипликативной терминологии. В силу леммы 5 и следствия 3 достаточно доказать изоморфизм

$$\mathbb{Z}_{2^k}[j]^* \cong \mathbb{Z}_{2^k}^* \times \mathbb{Z}_{2^{k-1}} \times \mathbb{Z}_2.$$

Для этого докажем, что группа $\mathbb{Z}_{2^k}[j]^*$ изоморфная прямому произведению трёх своих подгрупп $\mathbb{Z}_{2^k}^* = \left\{ a + 0j | a \in \mathbb{Z}_{2^k}^* \right\}, \langle 3 + 2j \rangle$ и $\langle j \rangle$.

Лемма 6. Порядок элемента 3 + 2j из группы $\mathbb{Z}_{2^k}[j]^*$ равен 2^{k-1} .

Доказательство.

Докажем по индукции, что $(3+2j)^{2^t} = (1+2+2j)^{2^t} = 1+2^{t+1}m+2^{t+1}mj$ для некоторого обратимого m.

База индукции: $(1+2+2j)^{2^0} = 1+2^1 \cdot 1 + 2^1 \cdot 1 \cdot j$.

Шаг индукции: пусть $(1+2+2j)^{2^t}=1+2^{t+1}m+2^{t+1}mj$. Тогда

$$(1+2+2j)^{2^{t+1}} = (1+2^{t+1}m+2^{t+1}mj)^2 =$$

$$= 1+2^{2t+2}m^2+2^{2t+2}m^2+2^{t+2}m+2^{t+2}mj+2^{2t+3}m^2j =$$

$$= 1+2^{t+2}(m+2^{t+1}m^2)+2^{t+2}(m+2^{t+1}m^2)j.$$

Элемент $m+2^{t+1}m^2$ обратим в \mathbb{Z}_{2^k} . Таким образом, $(1+2+2j)^{2^{k-1}}=1+2^km+2^kmj=1$. Следовательно, порядок элемента 1+2+2jделит 2^{k-1} . При t < k-1 элемент $(1+2+2j)^{2^t} \neq 1$, значит, порядок элемента 1+2+2j равен 2^{k-1} . \square

Лемма 7. Подгруппа (3+2j) состоит из всех элементов вида 1+2s+2sj, где $s\in\mathbb{Z}_{2^k}$ и только из них.

Доказательство.

Убедимся, что множество $Y = \{1 + 2s + 2sj | s \in \mathbb{Z}_{2^k}\}$ является подгруппой группы $\mathbb{Z}_{2^k}[j]^*$, то есть содержит 1 и замкнуто относительно умножения и взятия обратного.

Действительно, $1 = 1 + 2 \cdot 0 + 2 \cdot 0 \cdot j \in Y$.

Далее,

$$(1+2s_1+2s_1j)(1+2s_2+2s_2j) = 1+2(s_1+s_2+4s_1s_2)+2(s_1+s_2+4s_1s_2)j \in Y.$$

Обратным к 1+2s+2sj будет элемент $1+2\cdot\frac{-s}{1+4s}+2\cdot\frac{-s}{1+4s}\cdot j\in Y$. Если $1+2s_1+2s_1j=1+2s_2+2s_2j$, то $2s_1=2s_2$ и $2(s_1-s_2)=0$. Это возможно, только если s_1 сравнимо с s_2 по модулю 2^{k-1} . Поэтому множество Y состоит ровно из 2^{k-1} различных элементов.

Элемент 3+2j=1+2+2j принадлежит Y. Поэтому подгруппа $\langle 3+2j \rangle$ лежит в Y. Поскольку порядок элемента 3+2j равен 2^{k-1} , то порядок порождённой им подгруппы также равен 2^{k-1} . Однако, порядок подгруппы Y тоже равен 2^{k-1} . Следовательно, $\langle 3+2j \rangle$ совпадает с Y. \square

Следующая лемма завершает доказательство теоремы 1.

Лемма 8. Группа $\mathbb{Z}_{2^k}[j]^*$ является прямым произведением подгрупп $\mathbb{Z}_{2^k}^*$, $\langle 3+2j \rangle$ $u \langle j \rangle$.

Доказательство.

Убедимся, что любой элемент $a+bj \in \mathbb{Z}_{2^k}[j]^*$ может быть единственным образом представлен в виде произведения zyx, где $z \in \mathbb{Z}_{2k}^*$, $y \in \langle 3+2j \rangle$ и $x \in \langle j \rangle$.

Покажем, что такое представление существует. Согласно следствию 4, если элемент a+bj обратим, то $a^2 - b^2$ обратим и, значит, обратимы a + b и a - b. Поэтому ровно один из элементов a и b обратим, при этом второй имеет вид 2s. Если a=2s, то возьмём $z=(b-a)^{-1}$. Тогда

$$a + bj = jz^{-1}z(b + aj) = j(bz + azj)z^{-1} = z^{-1}(1 + az + azj)j.$$

В случае, когда b = 2s, возьмём $z = (a - b)^{-1}$. Тогда

$$a + bj = z^{-1}z(a + bj) = (az + bzj)z^{-1} = z^{-1}(1 + bz + bzj) \cdot 1.$$

Элемент 1 + az + azj в первом случае и элемент 1 + bz + bzj во втором являются элементами подгруппы (3+2j). Таким образом, любой элемент $\mathbb{Z}_{2^k}[j]^*$ представим в виде необходимого произведения zyx.

Проверим, что такое представление единственно. Пусть $z_1, z_2 \in \mathbb{Z}_{2^k}^*, \ y_1, y_2 \in \langle 3+2j \rangle, \ x_1, x_2 \in \langle j \rangle$ и при этом $z_1y_1x_1 = z_2y_2x_2$. Тогда $y_1y_2^{-1} = z_1^{-1}x_1^{-1}z_2x_2 = (z_1^{-1}z_2)(x_1^{-1}x_2)$. Любой элемент подгруппы (3+2j), кроме 1 имеет вид a+bj, где $a\neq 0, b\neq 0$ и, значит, непредставим в виде произведения элемента из $\mathbb{Z}_{2^k}^*$ и элемента из $\langle j \rangle$. Тогда $y_1 y_2^{-1} = 1$ и $(z_1^{-1} z_2)(x_1^{-1} x_2) = 1$. Отсюда $y_1 = y_2$ и $z_1^{-1} z_2 = x_1 x_2^{-1}$. Подгруппы $\mathbb{Z}_{2^k}^*$ и $\langle j \rangle$ пересекаются только по 1. Имеем $y_1 = y_2$, $z_1^{-1} z_2 = 1$ и $x_1 x_2^{-1} = 1$. Таким образом, $z_1=z_2$, $y_1=y_2$ и $x_1=x_2$. \square

Список литературы

- [1] Rososhek S. K., *Modified matrix modular cryptosystems*, British Journal of Mathematics & Computer Science, 2015, 5 (5), 613–636.
- [2] Арнольд В. И., Группы Эйлера и арифметика геометрических прогрессий, МЦНМО, 2003, 44 с.5
- [3] Маслова Н. В., Белоусов И. Н., Минигулов Н. А., Открытые проблемы, сформулированные на XIII Школе-конференции по теории групп, посвященной 85-летию В.А. Белоногова, Труды Института математики и механики УрО РАН, 2020, 26 (3), 275–285.