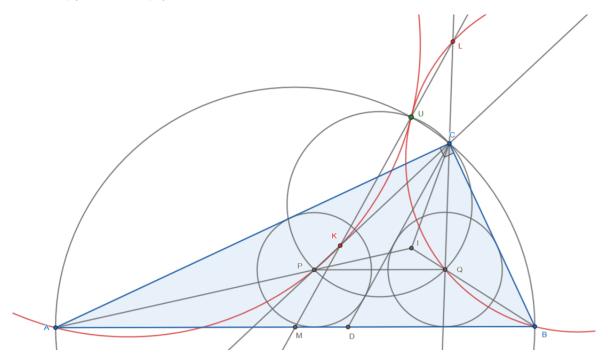
Две равные вписанные окружности в прямоугольном треугольнике

Комаров Сергей Сергеевич СУНЦ МГУ

Теорема:

Точка D выбрана на гипотенузе AB прямоугольного треугольника ABC так, что окружности, вписанные в треугольники ACD и BCD, имеют равные радиусы. Назовём центры этих окружностей P и Q соответственно, а середину AB обозначим через M. Определим точки K и L как пересечения прямой, проходящей через M параллельно CD, с прямыми PC и QC соответственно. Обозначим точку пересечения, отличную от C, описанных окружностей треугольников $\triangle ABC$ и $\triangle PCQ$ через U. Тогда описанные окружности треугольников $\triangle AKP$ и $\triangle BQL$ касаются в точке U.



Обозначение основных точек:

```
I - центр вписанной окржности тругольника \triangle ABC. E — точка касания вписанной окружности \triangle ABC с прямой AB. F — середина PQ. G — точка пересечения CI и прямой, симметричной CD относительно PQ. T — точка пересечения прямой IE, прямой CD и окружности CD. CD0 и окружности CD0 и окружности CD0 и окружности CD0. CD1 и описанной окружности CD1 и описаника CD1 и описаника CD2 и окружности CD3. CD4 и описаника CD4 и описании CD4 и описании CD5 и окружности CD6 и окружности CD6 и окружности CD7 и окружности CD9 и окружнос
```

Наметим план доказательства, разбив задачу на отдельные факты, которые сами по себе довольно интересны. В доказательстве леммы с номером n не используются леммы с но-

мерами большими, чем n.

Лемма 1. Прямая CD проходит через середину отрезка PQ; CD симметрична CI относительно биссектрисы угла $\angle PCQ$; прямая, симметричная CD относительно PQ, персекает CI на описанной окружености треугольника $\triangle PCQ$.

Лемма 2. Точка F равноудалена от точек P, D, E, Q. [1]

Лемма 3. Прямая, проходящая через M параллельно CD, прямая IE u описанная окружность треугольника $\triangle ABC$ пересекаются в одной точке U'.

Лемма 4. Четырёхугольник PQCU' – вписанный. $\Rightarrow U' = U$.

Лемма 5. Точка I – ортоцентр треугольника $\triangle PUQ$; $\triangle APU \sim \triangle UQB$.

Основная теорема. APKU и BQUL – вписанные четырёхугольники, описанные окружности которых касаются в точке U.

А вот ещё один интересный факт. Биссектриса угла $\angle AUB$ проходит через W; UG симметрична UA относительно UP и UG симметрична UB относительно UQ.

Известный факт №1. Если отразить медиану относительно стороны, к которой она проведена, то она пересечет симедиану, проведённую к той же стороне, в точке на описанной окружности этого треугольника. (Эта точка будет являться отраженной точкой Шалтая. Она же дополняет вершины треугольника до гармонического четырехугольника).

Известный факт №2. $B \triangle ABC$ на стороне AB взята точка D. Общая внутренняя касательная, проведённая к вписанным окружностям треугольников $\triangle ACD$ и $\triangle BCD$, отличная от CD, проходит через точку касания вписанной окружности $\triangle ABC$ со стороной AB.

Доказательство леммы 1

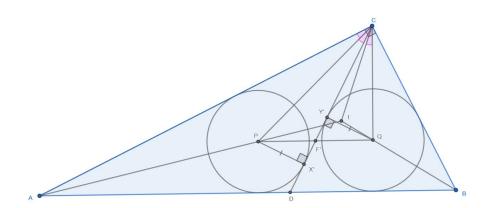


Рис. 1: К утверждениям 1.2 и 1.3

 X^{\prime} и Y^{\prime} – точки касания вписанных окружностей с CD.

$$F' = CD \cap PQ$$
.

Утверждение 1.1. F' совподает с точкой F.

Для этого докажем, что F' - это середина PQ.

CD – это общая внутренняя касательная к вписанным окружностям равного радиуса \Rightarrow

$$\begin{cases} \mathrm{PX'} = \mathrm{QY'} \text{ (как радиусы)} \\ \angle \mathrm{PX'F'} = \angle \mathrm{F'Y'Q} = 90^\circ \qquad \Rightarrow \quad \triangle PX'F' = \triangle QY'F' \quad \Rightarrow \quad F' - \mathrm{середина} \ PQ. \ \mathbf{QED} \\ \angle \mathrm{PF'X'} = \angle \mathrm{Y'F'Q} \text{ (как вертикальные)}. \end{cases}$$

Утверждение 1.2. $\angle ICQ = \angle PCF'$.

Заметим, что
$$CP$$
 и CQ биссектрисы $\angle ACD$ и $\angle DCB \Rightarrow \angle PCQ = \frac{\angle ACB}{2} = 45^\circ = \angle ACI$ (т. к. CI –

биссектриса $\angle ACB = 90^{\circ}$) $\Rightarrow \angle ACP = \angle ICQ$, а также $\angle ACP = \angle PCF'$ (т. к. CP биссектриса угла $\angle ACD$) $\Rightarrow \angle ICQ = \angle PCF'$. **QED**

Утверждение 1.3. Прямая, симметричная CD относительно PQ, персекает CI на описанной окружности треугольника $\triangle PCQ$.

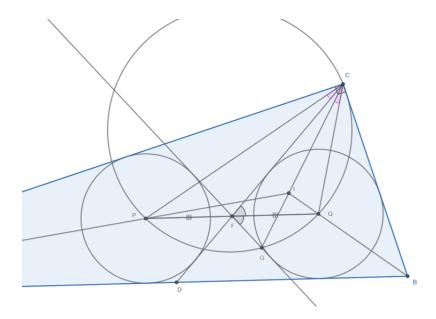


Рис. 2: К утверждению 1.3

Из утверждений 1.1 и 1.2 следует, что CI – симедиана в $\triangle PCQ$, а CF – его медиана. Отразим CD относительно PQ. Это будет вторая общая внутренняя касательная двух вписанных окружностей. (т. к. PQ линия центров) Назовём точку пересечения этой общей касательной с прямой CI – G. Тогда, применив известный факт №1 для треугольника $\triangle PCQ$, докажем, что G будет лежать на описанной окружности треугольника $\triangle PCQ$. **QED**

Доказательство леммы 2

Доказательство этой леммы в общем случае и ещё много интересных фактов про две вписанные окружности, в том числе и доказательство того, что $CD^2 = AC \cdot CB$, приведены в статье.[1] Я же напишу доказательство этой леммы здесь, чтобы не нарушать целостность рассуждений.

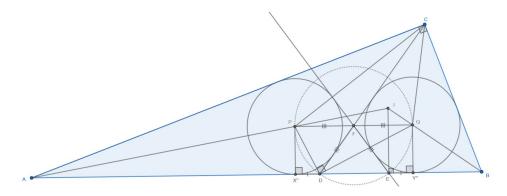


Рис. 3: К лемме 2

E — точка касания вписанной окружности $\triangle ABC$ с прямой AB. E' — точка пересечения прямой симметричной CD относительно PQ с AB. X'' и Y'' — точки касания вписанных окружностей $\triangle ACD$ и $\triangle BCD$ соответственно со стороной AB.

Заметим, что DP и DQ биссектрисы смежных углов $\Rightarrow \angle PDQ = 90^{\circ} \Rightarrow PF = FQ = DF$ (по лемме 1). Применив известный факт №2 для $\triangle ABC$, докажем, что E = E'. Очевидно, X''PQY'' – прямоугольник. Заметим, что при симметрии относительно серединного перпендикуляра к $PQ : F \to F, \ P \to Q, \ X'' \to Y''$, а также из известного факта №2: DX'' = EY'', то и $D \to E \Rightarrow DF = FE \Rightarrow F$ равноудалена от точек P, D, E, Q. **QED**

Доказательство леммы 3

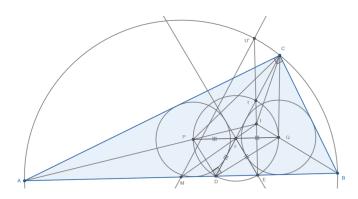


Рис. 4: К лемме 3

- Продлим IE до пересечения с CD до точки T. При симметрии относительно $PQ:IE \to IE$ (т. к. $IE \perp AB, PQ \parallel AB \Rightarrow IE \perp PQ$), $CD \to$ вторая общая касательная FE. Тогда при обратной симметрии прямые CD и IE тоже пересекутся на окружности PDEQ. (т. к. PQ диаметр этой окружности PDEQ она переходит сама в себя). Значит, IE и CD пересекаются на окружности PDEQ в точке T.
- Сделаем гомотетию с центром в I, переводящую $P \to A$, так как $PQ \parallel AB \Rightarrow \frac{IP}{IA} = \frac{IQ}{IB} = k \Rightarrow Q \to B$. Тогда при $H_I^k: PQ \to AB \Rightarrow F \to M \Rightarrow$ окружность $PDEQT \to$ окружность, описанную около $\triangle ABC$. (т. к. PQ и AB диаметры соответственных окружностей). Пусть точка T при гомотетии H_I^k переходит в U''. Тогда $U'' \in IE$ (т. к. прямая IE переходит сама в себя), $U'' \in$ окружности, описанной около $\triangle ABC$ (т. к. $T \in$ окружности PDEQ, которая переходит в окружность, описанную около $\triangle ABC$) $\Rightarrow U'' = U'$. Прямая $TF \parallel U'M$ (т. к. при $H_I^k: TF \to U'M$) $\Leftrightarrow CD \parallel U'M$. **QED**

Доказательство леммы 4

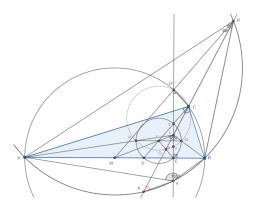


Рис. 5: К лемме 4 (1): равенство разноцветных углов не доказано.

Из утверждения $1.3 \Rightarrow G$ лежит на описанной окружности треугольника $\triangle PCQ$. Тогда PQCU' – вписанный $\Leftrightarrow GJCU'$ – вписанный $\Leftrightarrow \angle CU'I = \angle IGJ$. Пусть R – это точка, в которую перешла C при гомотетии H_I^k (гомотетия из леммы 3). Тогда при H_I^k $\triangle PCQ \rightarrow \triangle ARB \Rightarrow$ отрезок $CF \rightarrow$ отрезок RM, как медианы в соответсвенных треугольниках. Также описанная окружность $\triangle PCQ$ перешла в описанную окружность $\triangle ARB$, но $\angle PCQ = 45^\circ \Rightarrow \angle ARB = 45^\circ$.

 $(1) \angle ARB = 45^{\circ}$, а ARBY – вписанный $\Rightarrow \angle AYB = 135^{\circ}$.

 $(2)\ \angle AIB = 90^{\circ} + \frac{\angle ACB}{2} = 135^{\circ}$

1), 2) \Rightarrow окружности ${}^{2}AIB$ и ${}^{2}AYB$ симметричны относительно ${}^{2}AB$.

(3) $IE \perp AB$

1), 2), 3) \Rightarrow IE = EY Тогда, так как при H_I^k окружность $PCQ \to$ окружность ARB, то $G \to X$, $J \to Y \Rightarrow \triangle GIJ \to \triangle XIY \Rightarrow \triangle GIJ \sim \triangle XIY \Rightarrow \angle IGJ = \angle IXY$.

Значит, $\angle CU'I = \angle IGJ \Leftrightarrow \angle CU'I = \angle IXY \Leftrightarrow XYCU'$ – вписанный, что мы и будем доказывать.

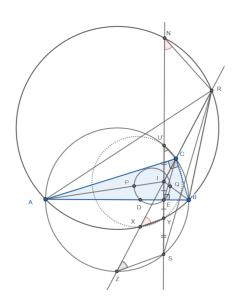


Рис. 6: К лемме 4 (2)

Так как при гомотетии H^k_I окружность $PDEQ \to$ окружность ABC, а $IE \to IE$, то $E \to S \Rightarrow$ отрезок $EC \rightarrow$ отрезок $RS \Rightarrow EC \parallel RS$.

По доказанному выше: IE = EY = x, EU' = ES (т. к. AB – диаметр окружности ABC, а $IE \perp AB$) $\Rightarrow U'I = YS = y.$

XYCU' – вписанный $\Leftrightarrow IY \cdot IU' = IX \cdot IC \Leftrightarrow 2xy = IX \cdot IC$.

2)
$$EC||RS \Rightarrow \frac{IC}{IR} = \frac{IE}{IS} \Leftrightarrow \frac{IC}{IR} = \frac{x}{2x+y} \Leftrightarrow IR = \frac{IC \cdot (2x+y)}{x}$$

1) $IX \cdot IR = IN \cdot IY = 2x \cdot (y + U'N)$ (степень точки I относительно окружности ARB)
2) $EC ||RS \Rightarrow \frac{IC}{IR} = \frac{IE}{IS} \Leftrightarrow \frac{IC}{IR} = \frac{x}{2x+y} \Leftrightarrow IR = \frac{IC \cdot (2x+y)}{x}$.
3) $EN \cdot EY = AE \cdot EB$ (степень точки E относительно окружности ARB), $EU' \cdot ES = AE \cdot EB$ (степень точки E относительно окружности ACB) $\Rightarrow EN \cdot EY = EU' \cdot ES \Leftrightarrow (x+y+U'N) \cdot x = (x+y)^2 \Leftrightarrow$

ТОЧКИ Е ОТНОСИТЕЛЬНО ОКРУЖНОСТИ
$$ACB$$
) $\Rightarrow EN \cdot EY = EU \cdot ES \Leftrightarrow (x+y+UN) \cdot x = (x+y)^2 \Leftrightarrow x^2 + xy + x \cdot U'N = x^2 + 2xy + y^2 \Leftrightarrow U'N = \frac{y \cdot (x+y)}{x}$

$$1), 2) \Rightarrow IX \cdot \frac{IC \cdot (2x+y)}{x} = 2x \cdot (y+U'N), 3) \Rightarrow IX \cdot \frac{IC \cdot (2x+y)}{x} = 2x \cdot (y+\frac{y \cdot (x+y)}{x}) \Leftrightarrow IX \cdot IC = \frac{2x^2y + 2xy \cdot (x+y)}{2x+y} = 2xy \Leftrightarrow PQCU'$$
 – вписанный. $\Rightarrow U' = U$. **QED**

Доказательство леммы 5

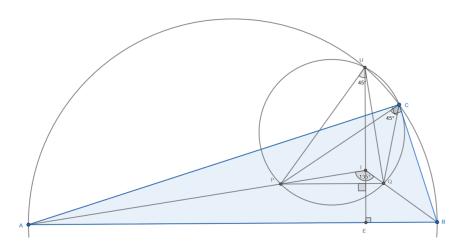


Рис. 7: К лемме 5 (1)

- $(1)IE \perp PQ$ (см. Лемма 2)
- $(2) \angle PIQ = 135^{\circ}$ (см. Лемма 4)
- $(3) \angle PCQ = 45^{\circ} = \angle PUQ$ (т. к. PQCU вписанный + Лемма 1)
- Из 2) и 3) $\Rightarrow \angle PIQ + \angle PUQ = 180^{\circ}$.

Также из 1) следует, что I – ортоцентр $\triangle PUQ$.

Здесь: $X = BQ \cap PU$, $Y = BQ \cap PU$.

Так как I – ортоцентр $\triangle PUQ$, то $BQ \perp PU \Rightarrow \angle UXQ = 90^\circ, \angle XUQ = 45^\circ$ (см. выше) $\Rightarrow \angle XQU =$ $45^{\circ} \Rightarrow \angle UQB = 135^{\circ}$, аналогично $\angle APU = 135^{\circ}$.

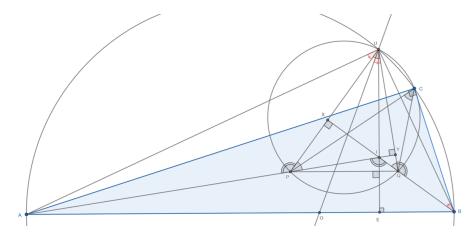


Рис. 8: К лемме 5 (2): две серые душки - 135° , одна серая душка - 45°

Проведем биссектрису UO в треугольнике ABU. Тогда $\angle AUO = \angle OUB = \frac{\angle AUB}{2} = 45^\circ$ (т. к. AB - диаметр). Как смежный $\angle UQB = 135^\circ$ (1), а из суммы углов треугольника QBU: $\angle QBU + \angle QUB = 45^\circ$, $OUB = 45^\circ \Rightarrow \angle QBU = \angle OUQ$.

(*) Заметим, что из равенства углов $\angle QBU = \angle OUQ$ следует касание описанной окружности $\triangle QUB$ и прямой UO (по теореме про угол между касательной и хордой). Аналогично описанная окружность $\triangle PUA$ касается UO. Значит окружности, описанные около треугольнкиов $\triangle QUB$ и $\triangle PUA$ касаются в точке U.

$$\angle PUQ = \angle AUO = 45^{\circ} \Rightarrow \angle AUP = \angle OUQ = \angle QBU (2)$$

Из (1) и (2) видно, что $\triangle APU \sim \triangle UQB$. **QED**

Теперь мы готовы доказать теорему полностью

Будем доказывать, что BQUL – вписанный. Для четырёхугольника AKPU рассуждения аналогичны.

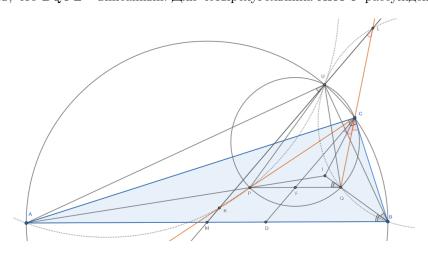


Рис. 9: Равенство разноцветных углов не доказано

$$BQUL$$
 — вписанный $\Leftrightarrow \angle ULC = \angle UBQ$. Введём $\angle ABC = 2\beta, \angle DCB = 2\gamma$. $MU \parallel CD$ (лемма 3) $\Rightarrow \angle ULQ = \angle DCQ = \angle QCB = \gamma$ (т. к. CQ — биссектриса $\angle DCB$)

(1) $\triangle APU \sim \triangle UQB$ (лемма 5) $\Rightarrow \angle UBQ = \angle AUP = \angle AUC - \angle PUC$. $AB \parallel PQ$ (см. Лемма 2) $\angle ABI = \angle PQI = \beta$, $\angle IQC = \angle QCB + \angle QBC = \gamma + \beta \Rightarrow \angle PQC = \gamma + 2\beta$ (2) PQCU — вписанный (лемма 4) $\Rightarrow \angle PUC = 180^{\circ} - \angle PQC = 180^{\circ} - \gamma - 2\beta$. (3) AUCB — вписанный (лемма 3) $\Rightarrow \angle AUC = 180^{\circ} - \angle ABC = 180^{\circ} - 2\beta$. Из (1), (2), (3) следует, что $\angle UBQ = 180^{\circ} - 2\beta - (180^{\circ} - \gamma - 2\beta) = \gamma = \angle ULQ \Rightarrow BQUL$ — вписанный. Тогда из замечания (*) в лемме 5 следует, что окружности APKU и BQUL касаются в точке U. **QED**

Докозательство интересного факта

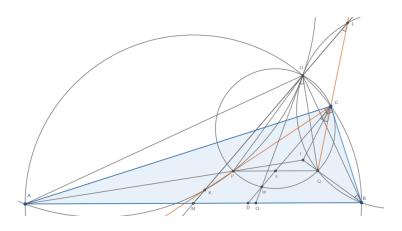


Рис. 10: К доп. факту (1)

 $W = CD \cap (PQCU).$

Из замечания (*) в лемме 5 мы знаем, что окружности APKU и BQUL касаются биссектрисы $\angle AUB - UO \Rightarrow \angle OUQ = \angle QBU, \angle QBU = \angle ULQ$ (т. к. BQUL – вписанный по лемме 6), $\angle ULQ = \angle WCQ$ (т. к. $MU \parallel CD$ по лемме 3) $\Rightarrow \angle OUQ = \angle WCQ \Rightarrow UO$ проходит через W (т. к. WQCU - вписанный). **QED**

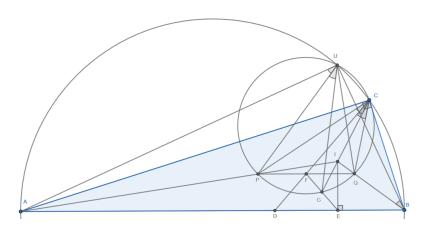


Рис. 11: К доп. факту (2)

 $\angle DCB = 2\gamma$.

В лемме 6 мы доказали, что $\angle UBQ = \gamma = \angle FCQ$, $\angle FCQ = \angle PCG$ (т. к. CF и CG симметричны относительно биссектрисы $\angle PCQ$ по лемме 1), $\angle PCG = \angle PUG$ (PQCU — вписанный по лемме 4) \Rightarrow

- (1) $\angle UBQ = \angle PUG$
- (2) Из леммы $5 \Rightarrow \triangle APU \sim \triangle UQB \Rightarrow \angle UBQ = \angle AUP$

Из 1), 2) следует, что $\angle AUP = \angle PUG \Rightarrow UG$ симметрична UA относительно UP. Аналогично доказывается, что UG симметрична UB относительно UQ. **QED**

Приложения:

Известный факт №1

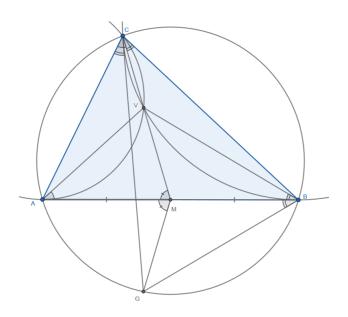


Рис. 12: К известному факту 1

Точка Шалтая (V) — пересечение двух окружностей, проходящих через вершину C треугольника ABC и касающихся прямой AB в точках A и B.

M – точка пересечения прямой CV и AB.

Т.к. VC - радикальная ось окружностей AVC и BCV: $AM^2 = MV \cdot MC = MB^2 \Rightarrow AM = MB \Rightarrow CM$ – медиана в $\triangle ABC$.

 $\angle ACV = \angle VAB$ (по теореме про угол между касательной AB и хордой AV), аналогично $\angle VCB = \angle VBA \Rightarrow \angle VBA + \angle VAB = \angle ACB$. Тогда $\boxed{\angle ACB + \angle AVB = 180^{\circ}}$.

Отразим V относительно AB и получим точку G. Тогда $\triangle AVB = \triangle AGB \Rightarrow \angle AVB = \angle AGB \Rightarrow \angle ACB+$ $\angle AGB = 180^{\circ} \Rightarrow ACBG$ – вписанный $\Rightarrow \angle ACG = \angle ABG$, $\angle ABG = \angle ABV$ (т. к. $\triangle AVB = \triangle AGB$) \Rightarrow $\angle ACG = \angle ABV = \angle VCB \Rightarrow CG$ – симедиана (т. к. AV – медиана) \Rightarrow симедиана и медиана, отраженная относительно AB, пересекаются на описанной окружности $\triangle ABC$. **QED**

Известный факт №2

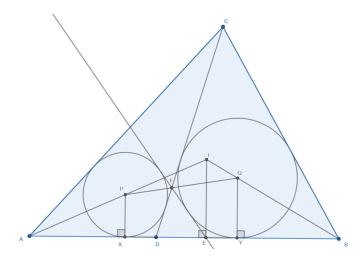


Рис. 13: К известному факту 2

E – точка касания вписанной окружности $\triangle ABC$ с прямой AB.

E' – точка пересечения прямой симметричной CD относительно PQ с AB.

 $F = CD \cap PQ$

X и Y — точки касания вписанных окружностей треугольников $\triangle ACD$ и $\triangle BCD$ соответственно со стороной AB.

Обозначим $AC=b,\ CB=a,\ CD=d,\ AD=x,\ DB=y$

Вписанные окружности $\triangle ACD$ и $\triangle BCD$ являются вневписанными окружностями $\triangle DFE' \Rightarrow XE' =$

Вписанные окружности
$$\triangle ACD$$
 и $\triangle BCD$ являются вневписанными окружностями $\triangle DY = \frac{P_{\triangle DFE'}}{2} \Rightarrow DX = \frac{P_{\triangle ADC} - b}{2} = \frac{x + d - b}{2} = E'Y$ (1)
$$EY = EB - YB = \frac{P_{\triangle ABC} - b}{2} - \frac{P_{\triangle DCB} - d}{2} = \frac{x + y + a - b}{2} - \frac{a + y - d}{2} = \frac{x + d - b}{2}$$
 (2) Из (1) и (2) $\Rightarrow E = E'$. **QED**

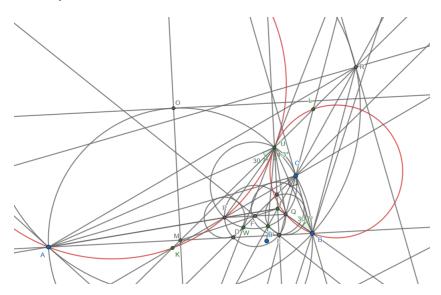


Рис. 14: Всё вместе: красота

Автор выражает благодарность А.Б. Скопенкову за внимание к работе и ценные указания, а также Ю.С. Симаковой за помощь в освоении LaTeX.

Список литературы

[1] А. Блинков, Ю. Блинков Две окружности в треугольнике, три окружности в треугольнике // КВАНТ 2012 N2