A generalization of lemma on Triangle's Geometry

M.Volchkov

September 2022

In [1] N. I. Beluhov gave an elementary proof of Lester's theorem, using as lemma the following fact.

Theorem. In $\triangle APQ$ $(AP \neq AQ)$ point B is reflection of P over AQ and C is reflection of Q over AP. The tangent to $\odot(ABC)$ at A intersect PQ at U. Then reflection T of U over A lies on BC.

Figure 1: Original statement

Below we present the generalization, which has a very short and simple proof with an application of Desargues Involution Theorem.

1 Result

Definition. Division ratio (XY; Z) of collinear points X, Y, Z is such real number r, that $r\overrightarrow{ZY} = \overrightarrow{ZX}$.

Theorem. Given $\triangle ABC$ and points P, Q such that $ABP \stackrel{\sim}{\sim} ACQ$. Denote by \mathcal{H} homothety with center A and ratio $k = (CQ; AP \cap CQ)$. The tangent to $\odot(ABC)$ at A intersect PQ at U. Then point $T = \mathcal{H}(U)$ lies on BC.

Figure 2: Generalization

References

 N. I. Beluhov. An elementary proof of Lester's theorem. Journal of Classical Geometry, 1:53–56, 2012.