A generalization of lemma on Triangle's Geometry

M.Volchkov

September 2022

In [1] N. I. Beluhov gave an elementary proof of Lester's theorem, using as lemma the following fact.
Theorem. In $\triangle A P Q(A P \neq A Q)$ point B is reflection of P over $A Q$ and C is reflection of Q over $A P$. The tangent to $\odot(A B C)$ at A intersect $P Q$ at U. Then reflection T of U over A lies on $B C$.

Figure 1: Original statement

Below we present the generalization, which has a very short and simple proof with an application of Desargues Involution Theorem.

1 Result

Definition. Division ratio $(X Y ; Z)$ of collinear points X, Y, Z is such real number r, that $r \overrightarrow{Z Y}=\overrightarrow{Z X}$.
Theorem. Given $\triangle A B C$ and points P, Q such that $A B P \approx A C Q$. Denote by \mathcal{H} homothety with center A and ratio $k=(C Q ; A P \cap C Q)$. The tangent to $\odot(A B C)$ at A intersect $P Q$ at U. Then point $T=\mathcal{H}(U)$ lies on $B C$.

Figure 2: Generalization

References

[1] N. I. Beluhov. An elementary proof of Lester's theorem. Journal of Classical Geometry, 1:53-56, 2012.

