Реферат «Дроз-Фарни и Симсон»

Автор: Колесникова Екатерина Научный руководитель: Морозова А.— К. В. ГБОУ школа "Интеллектуал"

Москва, 2023

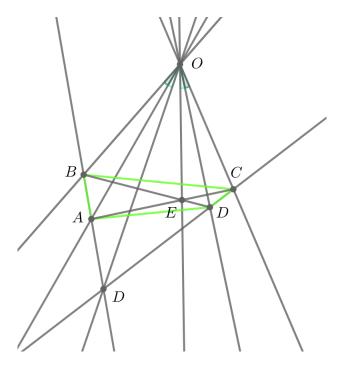
Содержание

1	Вспомогательные факты 1.1 Теорема об изогоналях	3
2	Обобщения прямой Симсона 2.1 Обобщенная теорема Дроз-Фарни	4 4
3	Авторские задачи	6
4	Литература	9

1 Вспомогательные факты

1.1 Теорема об изогоналях

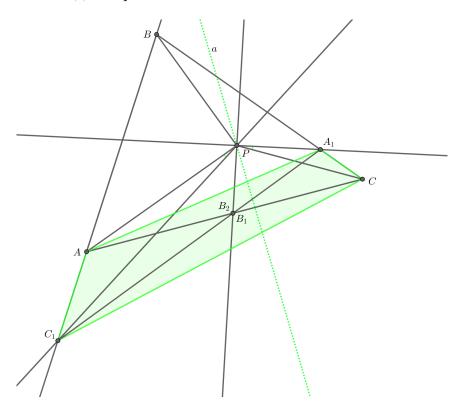
Теорема Пусть OA и OD — изогонали в угле BOC, тогда точка пересечения диагоналей четырехугольника ABCD и точка пересечения его сторон AB и CD изогонально сопряжены относительно угла BOC.



2 Обобщения прямой Симсона

2.1 Обобщенная теорема Дроз-Фарни

Теорема Пусть в треугольнике ABC взята произвольная точка P, а через нее проведена произвольная прямая a, прямые PA_1 , PB_1 , PC_1 симметричны прямым AP, BP, CP соответственно относительно прямой a. Точки A_1 , B_1 , C_1 лежат на прямых BC, AC и AB соответственно. Тогда точки A_1 , B_1 , C_1 лежат на одной прямой.



Доказательство:

- 1. Заметим, что PC, PC_1 изогонально сопряжены относительно $\angle APA_1$, так как PA_1 , PA и PC_1 , PC симметричны относительно прямой a.
- 2. Применим теорему об изогоналях для четырехугольника C_1AA_1C в $\angle APA_1$: Точки C, C_1 лежат на изогоналях $\angle APA_1PC, PC_1$ соответственно, а точки A, A_1 на сторонах $\angle APA_1PA, PA_1$ соответственно. Тогда точки пересечения прямых, содержащих его стороны $AC_1, A_1C = B$ и содержащих его диагонали $CC_1, AA_1 = B_2$ изогонально сопряжены относительнольно $\angle APA_1$.

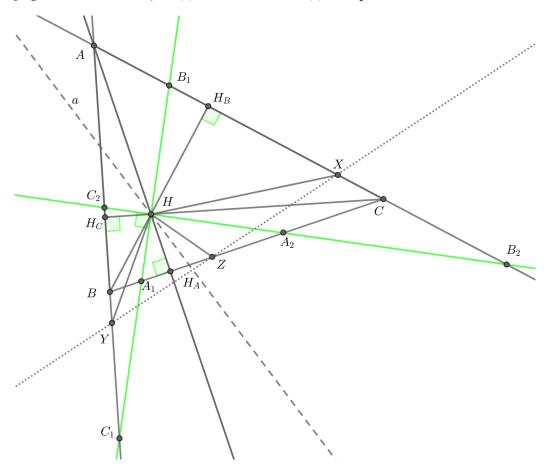
То есть прямая PB симметрична прямой PB_2 относительно прямой a, биссектрисы $\angle APA_1$.

3. По условию прямая PB_1 также симметрична прямой PB относительно прямой a, значит прямые PB_1 и PB_2 совпадают. Значит совпадают и их точки пересечения с прямой AC — точки B_1, B_2 соответственно. Точка B_2 принадлежит прямой A_1C_1 , а значит и точка B_1 принадлежит прямой A_1C_1 , и A_1, B_1, C_1 лежат на одной прямой.

Ч.Т.Д.

2.2 Теорема Дроз-Фарни

Теорема Пусть через ортоцентр H треугольника ABC проходит две перпендикулярные прямые, которые пересекают стороны в точках $B_1, B_2, A_1, A_2, C_1, C_2$, тогда пусть X, Y, Z — середины отрезков B_1B_2, C_1C_2, A_1A_2 соответственно, тогда они лежат на одной прямой.

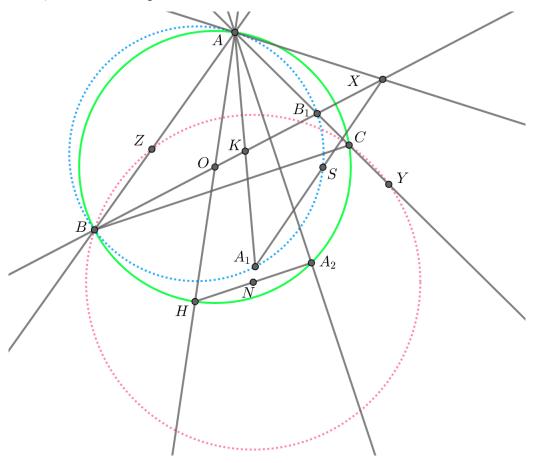


Доказательство:

- 1. $\angle XHB_2 = \angle B_1HH_B$, так как $\triangle B_1HB_2$ прямоугольный
- 2. $\angle BHA_1 = \angle B_1HH_B$ как вертикальные
- 3. Значит, $\angle BHA_1 = \angle XHB_2$, значит XH симметрична BH относительно биссектрисы $\angle A_1HA_2$
- 4. Аналогично HZ симметрична AH и HY симметрична CH(относительно той же биссектрисы)
- 5. Тогда заметим, что задача является частным случаем обобщенной теоремы Дроз-Фарни, где в качестве прямой a выступает биссектриса $\angle A_1HA_2$, ЧТД

3 Авторские задачи

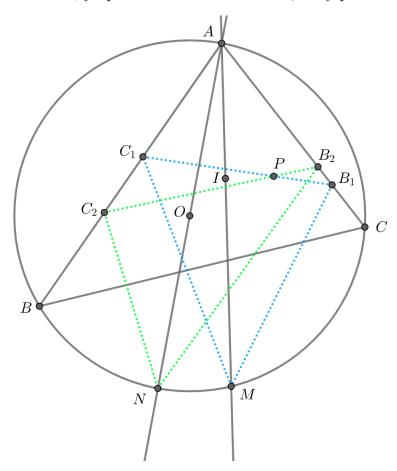
1 Дан треугольник ABC, такой что $\angle ACB > \angle ABC$. X — точка на BO, где O — центр описанной окружности треугольника ABC. A_1 — середина дуги BB_1 описанной окружности треугольника ABB_1 . Оказалось, что AB — касательная к описанной окружности треугольника KSB. Луч, симметричный AX относительно AC, пересекает описанную окружность треугольника ABC в точке A_2 , луч AO вторично пересекает ту же окружность в точке M. N — середина MA_2 . Окружность с центром в N проходит через C и пересекает отрезок AB и луч AC в точках Z и Y соответственно. Докажите, что ZY, BC и AA_2 пересекаются в одной точке.



Решение:

- 1. Лемма: AX касается окружности ABB_1 :
 - (a) Так как AB касается окр-ти KSB, $\angle ABK = \angle KSB$;
 - (b) $\angle BSA_1 = \angle BAA_1 = 1/2\angle BAC$;
 - (c) $\angle BKA_1 = \angle BAK + \angle ABK$, значит, $\angle BKA_1 = \angle KSA_1$, следовательно XK касается описанной окружности $\triangle KSA_1$.
 - (d) Следовательно, $(XK)^2 = XS * XA_1 = XB_1 * XB$.
 - (e) Заметим, если АХ касается окр-ти ABB_1 , то $XA^2 = XK^2$ (так как $\angle XAK = \angle ABA_1 = \angle ABO + 1/2 \angle BAC$), а значит $AX^2 = XB_1 * XB = XK^2$.
 - (f) Точка, для которой выполняется $XB_1*XB=XK^2$ единственна (за B_1), значит, AX касательная.
- 2. Применим лемму, получим, что AX касается окружности ABB_1
- 3. Значит $\angle XAC = \angle ABB_1 = 90 \angle ACB = \angle CAA_2$. Следовательно, AH высота.
- 4. Заметим, что M, N изогонально сопряженные точки, B, C проекции M на стороны AB, AC, значит Z, Y проекции A_2 . Тогда ZHY прямая Симсона, ЧТД.

2 Дан треугольник ABC, O — центр описанной окружности, а I — центр вписанной окружности, прямые AO и AI повторно пересекают описанную окружность в точках N и M соответственно. Точки расположены на дуге BC в порядке B, N, M. Точки C_1 , B_1 расположены на сторонах AB, AC так, что треугольник MC_1B_1 имеет наименьший периметр из всех возможных. Аналогично построен треугольник NC_2B_2 . Угол между прямыми C_1B_1 и $C_2B_2 = \alpha$, чему равен $\angle ACB - \angle BAC$?

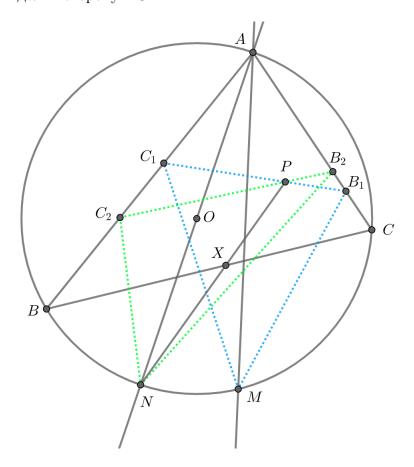


Решение:

- 1. Применим лемму, доказанную ранее, об угле между прямыми Симсона (угол между прямыми Симсона равен величине угла, опирающегося на хорду, раздел "Задачи 4.2).
- 2. В данном случае мы имеем прямые Штейнера, что следует из обобщения задачи Фаньяно на окружность. А они параллельны прямым Симсона.
- 3. Следовательно, $\angle NAM = \alpha$.
- 4. $\angle NAM = \angle IAB \angle OAB = 0, 5 \cdot \angle BAC 90 + \angle ACB = 0, 5 \cdot (\angle BAC 180 + 2\angle ACB) = 0.5 \cdot (\angle ACB CAB)$. Следовательно, $\angle ACB CAB = 2\alpha$.

OTBET: $\angle ACB - \angle CAB = 2\alpha$

3 Дан треугольник ABC, O — центр описанной окружности, X — произвольная точка внутри треугольника. Прямые AO и AP повторно пересекают описанную окружность в точках N и M соответственно. Точки C_1, B_1 расположены на сторонах AB, AC так, что треугольник MC_1B_1 имеет наименьший периметр из всех возможных. Аналогично построен треугольник NC_2B_2 . В каком отношении отрезок PN делит сторону BC?



Решение:

- 1. Заметим, что рассуждая так же, как в задаче Фаньяно, можно прийти к выводу, что C_1B_1, C_2B_2 прямые, содержащие образы точек M, N соответственно при симметрии относительно сторон AB, AC треугольника.
- 2. Заметим, что ортоцентр лежит на обеих прямых, так как они являются прямыми Штейнера точек M,N относительно описанной окружности треугольника ABC.
- 3. Значит, точка P является ортоцентром треугольник. Следовательно, PN делит BC в отношении 1/1.

ОТВЕТ: PN делит BC в отношении 1/1

4 Литература

- «От прямой Симсона до Дроз-Фарни», Д. Швецов, 2009
- «Теорема об изогоналях», А.Куликова, Д.Прокопенко, 2018
- «Свойства ортоцентра в теоремах и задачах», Цю Ноэль Гуанжун, 2015