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Algebraic Topology From a Geometric Standpoint

A. Skopenkov

Abstract.

It is shown how main ideas, notions and methods of algebraic
topology naturally appear in a solution of geometric problems. The
main ideas are exposed in simple particular cases free of technical
details. We keep algebraic language to a necessary minimum. So
most of the book is accessible to beginners and non-specialists,
although it contains beautiful non-trivial results. Part of the
material is exposed as a sequence of problems, for which hints
are provided. The book is intended for students, researchers, and
teachers, who wish to know

e why what I learn or teach is interesting and useful?

e how the main idea of a result / proof / theory is exposed in
simple terms?

e how is this idea elaborated to produce the result / proof /
theory?

Here students could be undergraduate or postgraduate; with
majors in mathematics, computer science or physics. All this would
hopefully allow them to make their own useful discoveries (not
necessarily in mathematics).

Thus the book is different from other textbooks on algebraic
topology.

We start from important visual objects of mathematics: graphs
and vector fields on surfaces, continuous maps and their deformations.
In §§1,2,5 basic theory of graphs on surfaces is exposed in a
simplified way. In later sections I carry such a ‘non-specialist’, or
‘user’ or ‘computer science’ approach to topology pretty far. The
appearing instruments include homology groups, obstructions and
invariants, characteristic classes.

The book is based on decades of teaching topology courses in
leading mathematical centers of Moscow (Moscow State University,
Independent University of Moscow, Moscow Institute of Physics
and Technology).
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§ 1. Graphs in the Plane

Dass von diesem schwer lesbaren Buche noch vor
Vollendung des ersten Jahrzehntes eine zweite
Auflage notwendig geworden ist, verdanke ich
nicht dem Interesse der Fachkreise. ..

S. Freud. Die Traumdeutung, Vorwort zur zweiten Auflage®

1.1. Introduction and Main Results

In §1.3 we prove basic results on graphs and map colorings in the
plane, Assertions 1.1.1 and 1.3.2.

1.1.1. (a) A triangle is divided into finitely many convex polygons.
They can be colored in six colors in such a way that any two polygons
sharing a common boundary segment receive different colors.

(b)* The same for five colors.

(The famous Four Color Conjecture claims that four colors are
enough, but its proof is much more involved.)

A graph is said to be planar (or embeddable in the plane) if it can be
drawn in the plane without edges crossing. The basic notions of graph
theory are recalled in §1.2; a more rigorous definition of planarity is
given in §1.3.

Embeddability of graphs (or graphs with an additional structure)
in the plane, torus, Mobius strip, and other surfaces (see §2) is one of
the main problems in topological graph theory [MTO01].

Proposition 1.1.2. There is an algorithm for deciding whether
a graph is planar. (See [Sk, footnote 4], [Sk18, footnote 7].)

One of the simplest (but slow) algorithms is constructed in §§1.5
and 1.6 (Assertion 1.1.2 follows from Assertions 1.6.1 (f) and 1.6.3 (a)).
It is based on an important construction of thickening, which arises in
many problems of topology and its applications (synonyms: graph with

*If within ten years of the publication of this book (which is very far from being
an easy one to read) a second edition is called for, this is not due to the interest
taken in it by the professional circles. .. (S. Freud. The Interpretation of Dreams.
Preface to the second edition.)
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rotations, dessin [Ha, LZ, MTO01]). The algorithm uses no nontrivial

results (such as Kuratowski’s theorem or Fary’s theorem; for the
statements, as well as for a polynomial-time algorithm, see [Sk, §1.2
‘Algorithmic results on graph planarity’]).

The proofs of these results illustrate applications of Euler’s Formula 1.3.3 (c).

(So, they are better postponed until the reader becomes familiar with

it.) This formula is proved in §1.4, where we also explain, in the
language of algorithms, the nontriviality of this result ignored in some
expositions.

1.2. Glossary of Graph Theory

The reader is probably familiar with the notions introduced below,
but we give clear-cut definitions in order to fix the terminology (which
can be different in other books).

A graph G = (V, E) is a finite set V = V(G) together with a set
E = E(G) of two-element subsets (i.e., unordered pairs of distinct
elements). (A more precise term for the notion we have introduced
is graph without loops or multiple edges, or simple graph.) Elements
of the set V are called wertices, elements of the set E are called
edges. Although edges are unordered pairs, in graph theory they are
traditionally denoted by parentheses. Given an edge (a, b), the vertices
a and b are called its endpoints, or vertices.

When working with graphs, it is convenient to use their drawings,
e.g., in the plane or in the space (or, in more technical terms, maps
of their geometric realizations to the plane or to the space, cf. §5.1).
See Figs. 1.3.1, 1.3.2, 1.7.2 below. Vertices are represented by points.
Every edge is represented by a polygonal line joining its endpoints. (But
only the endpoints of polygonal lines represent vertices of the graph.)
The polygonal lines are allowed to intersect, but their intersection
points (other than the common endpoints) are not vertices. Importantly,
a graph and a drawing of this graph are not the same. For example,
Figs. 1.3.2 (middle and right), 1.3.1 show different drawings of the same
graph (more exactly, of isomorphic graphs). Sometimes, not all vertices
are shown in a drawing, see Figs. 1.2.1 and 1.6.2 (left).

The path P, is the graph with vertices 1,2,...,n and edges
(i,i+1),i=1,2,...,n— 1. The cycle C, is the graph with vertices
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O b

Figure 1.2.1. A cycle, a wedge of cycles, and the graph K4

1,2,...,n and edges (1,n) and (i,7+1),i=1,2,...,n— 1. (Do not
confuse these graphs with a path in a graph and a cycle in a graph,
which are defined below.)

The graph with n vertices any two of which are joined by an edge is
called a complete graph and denoted by K,,. If the vertices of a graph
can be partitioned into two sets so that no edge joins two vertices from
the same set, then the graph is said to be bipartite, and the two sets of
vertices are called its parts. By K,, , one denotes the bipartite graph
with parts of size m and n that contains all the mn edges joining vertices
from different parts. See Fig. 1.3.2.

Roughly speaking, a subgraph of a given graph is a part of this
graph. Formally, a graph G is called a subgraph of a graph H if every
vertex of GG is a vertex of H and every edge of GG is an edge of H. Note
that two vertices of G joined by an edge in H are not necessarily joined
by an edge in G.

A path4 in a graph is a sequence wviejvses ...e,_1v, such that
for every i the edge e; joins the vertices v; and wv;y1. (The edges
€1, ea, ..., e,_1 are not necessarily pairwise distinct.) A cycle is a sequence
v1€e1v2€2 . . . en_1Une, such that for every ¢ < n the edge e; joins the
vertices v; and v;+1, while the edge e, joins the vertices v, and v.

A graph is said to be connected if every pair of its vertices can be
joined by a path, and disconnected otherwise. A graph is called a tree
if it is connected and contains no simple cycles (i.e., cycles that do not
pass twice through the same vertex). A spanning tree of a graph G is
any subgraph of GG that is a tree and contains all vertices of G. Clearly,
every connected graph contains such a subgraph.

The definition of the operations of deleting an edge and deleting
a vertex is clear from Fig. 1.2.2. The operation of contracting an edge
(Fig. 1.2.2) deletes this edge from the graph, replaces its endpoints
A and B with a vertex D, and replaces each edge from A or B to

*In graph theory, as opposed to topology, the term ‘walk’ is used.



1.3. Graphs and Map Colorings in the Plane 21

a vertex C with an edge from D to C. (In contrast to the case of
contracting an edge in a multigraph, each resulting edge of multiplicity
greater than 1 is replaced with an edge of multiplicity 1.) For example,
if the graph is a cycle with four vertices, then contracting any its edge
results in a cycle with three vertices.

< 7 >§<>

| | |
L
4 < X e

Figure 1.2.2. Deleting an edge G — e, contracting an edge G/e,
and deleting a vertex G — x

In most of this book, one can use the notion of graph without loops
or multiple edges. However, everything we have said is valid for the
following generalization, which is even indispensable in some cases.
A multigraph (or a graph with loops and multiple edges) is a square
array (matrix) of nonnegative integers symmetric with respect to the
main diagonal. The integer at the intersection of the ¢th row and jth
column is interpreted as the number of edges (or the multiplicity of the
edge) between the vertices i and j if ¢ # j, and as the number of loops
at the vertex i if ¢ = 7. An edge is said to be multiple if its multiplicity
is greater than 1.

1.3. Graphs and Map Colorings in the Plane

A plane graph is a finite collection of non-self-intersecting polygonal
lines in the plane such that any two of them meet only at their common
endpoints (in particular, those with no common endpoints are disjoint).



22 § 1. Graphs in the Plane

The endpoints of the polygonal lines are called the vertices of the plane
graph, and the polygonal lines themselves are its edges. Thus, to a plane
graph there corresponds a graph (in the sense of §1.2) for which the
plane graph is a plane drawing. Sometimes, a plane graph is called just
a graph, but this is not exactly correct, because one and the same graph
can be drawn in the plane in different ways (if it can be drawn at all),
see Fig. 1.3.1.

Figure 1.3.1. Different plane drawings of a graph

A graph is said to be planar if it can be represented by a plane
graph.

1.3.1. The following graphs are planar:

(a) the graph K5 without one edge (Fig. 1.7.2); (b) any tree;

(¢) the graph of any convex polyhedron.

2 W-O

Figure 1.3.2. The nonplanar graphs K5 and K3 3

1.3.2. (a) The graph K5 is not planar. (b) The graph K33 is not
planar.

(¢) For every plane connected graph with V vertices and E > 1
edges, £ < 3V — 6.

(d) Every plane graph contains a vertex with at most 5 incident
edges.

A plane graph divides the plane into regions called its faces. Here
is a rigorous definition.

A subset of the plane is said to be connected if any two its
points can be joined by a polygonal line inside this set. (Caution:
for subsets more general than those we consider here, the definition
of connectedness is different!)
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A face of a plane graph G is any of the connected parts into
which the plane R? is divided by the cuts along all the polygonal lines
(= edges) of G, i.e., any maximal connected subset of R? — G. Note
that one of these parts is ‘infinite’.

1.3.3. (a) Draw a plane graph G that has a face whose boundary
contains three pairwise disjoint cycles.

(b) For every plane graph with F > 1 edges and F faces, 3F' < 2F.

(¢)* Euler’s Formula. For every connected plane graph with
V wertices, E edges, and F faces, V — E + F = 2.

(d) Find a version of Euler’s Formula for a plane graph with
s connected components.

As to part (b), think about how many faces an edge belongs to and
what is the smallest number of edges bounding a face.

The proof of Euler’s Formula is given below. First, using this formula
without proof, solve Problems 1.1.1 and 1.3.2.

1.4. Rigorous Proof of Euler’s Formula

1.4.1. (a) We are given a non-closed non-self-intersecting polygonal
line L in the plane and two points outside it. There is an algorithm
for constructing a polygonal line that joins these points and does not
intersect L.

(b) The same for a tree L in the plane whose edges are segments.

(c) If two segments are disjoint, then the distance between them is
positive.

Hint. To construct the algorithms, use induction (or recursion).
The induction step is based on deleting a pendant vertex. Cf. the
construction of the regular neighborhood of a tree, see Fig. 1.6.3 (left)
and the definition near this figure, [BE82, § 6], [CR, pp. 293—294]. Part
(¢) can be proved by looking at the possible relative positions of the
segments.

The nontriviality of the algorithms from Problems 1.4.1 illustrates
the nontriviality of the following assertions. (A similar remark applies
to Assertion 1.4.3 (a) and Jordan’s Theorem 1.4.3 (b).)

1.4.2. (a) Any non-closed non-self-intersecting polygonal line L in
the plane R? does not separate the plane, i.e., R? — L is connected.
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(b) No tree in the plane separates the plane.

(c) Deleting an edge in a plane graph decreases the number of faces
at most by 1.

(d) For any connected plane graph with V' vertices, E' edges, and
F faces, V — F 4+ F < 2.

Hint. Use the ideas from the solution of Problem 1.4.1.

1.4.3. (a) There is an algorithm that, given a closed non-self-
intersecting polygonal line L in the plane and two points outside L,
decides whether these points can be joined by a polygonal line that
does not intersect L.

(The same is true even if a part of the given polygonal line outside
some square containing the given points is deleted.)

(b) Jordan’s Theorem. Any closed non-self-intersecting polygonal
line L in the plane R? divides the plane into exactly two connected parts,
i.e., R2 — L is disconnected and is a union of two connected sets.

Usually, by Jordan’s Theorem one means a version of Theorem 1.4.3 (b)
for continuous curves L, whose proof is much more involved [An03,
Ch99|. While Theorem 1.4.3(b) is sometimes called the Piecewise
Linear Jordan Theorem.

A simple proof of Jordan’s Theorem 1.4.3(b) is given in [CR,
pp. 292—295], see Remark 1.4.8. We present a similar, but slightly more
complicated, proof. In return, it involves an interesting Intersection
Lemma 1.4.4 and demonstrates the parity and general position techniques
(Lemmas 1.4.5 and 1.4.6) useful for what follows.

Sketch of the proof of Jordan’s Theorem 1.4.3(b). The claim
that the number of parts is at most 2 is simpler; it follows from
Assertions 1.4.2 (b, c). Cf. [BE82, §6[, [CR, pp. 293—294].

The claim that the number of parts is greater than 1 is more difficult.
To prove it, pick two points that are sufficiently close to a segment of
the polygonal line L and symmetric with respect to this segment. Then

(x) it 1s these points that cannot be joined by a polygonal line that
does not intersect L.

This is implied by the following Intersection Lemma 1.4.4. [

Lemma 1.4.4 (intersection). Any two polygonal lines in a square
joining different pairs of opposite vertices must intersect.
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The Intersection Lemma can be deduced from the following Parity
Lemma 1.4.5 and Approximation Lemma 1.4.6 (a, b).

Several points in the plane are said to be in general position if
no three of them lie on the same line and no three segments between
them share a common interior point.

Lemma 1.4.5 (parity). If the vertices of two closed plane polygonal
lines are in general position, then the polygonal lines meet in an even
number of points.

Cf. the comments and proof in [Sk, § 1.3 ‘The intersection number
for polygonal lines in the plane’].

A polygonal line Ap... A, is said to be wertex-wise e-close to
a polygonal line By...B,, if m =n and |4; — B;| < e for every
1=0,1,...,n.

Lemma 1.4.6 (approximation). (a) For every € > 0 and any
polygonal lines L1, Lo in a square joining different pairs of opposite
vertices there exist polygonal lines LY, L, in the square joining different
pairs of opposite vertices such that Ly, L, are vertex-wise e-close
to L1, Lo and the vertices of LY, L}, are in general position.

(b”) For every pair of disjoint segments XY and ZT there is o > 0
such that for any points X', Y', Z',T" in the plane, the inequalities
X — X',|)Y =Y'|,|Z = Z'|,|]T — T'| < « imply that the segments
X'Y" and Z'T" are disjoint.

(b) If two polygonal lines L1, Lo do not intersect, then there exists
e > 0 such that any polygonal lines L', L}, that are verter-wise e-close

to L1, Lo do not intersect either.

Sketch of the proof of FEuler’s Formula 1.3.3(c). Induction on
the number of edges outside a spanning tree. The induction base is
Assertion 1.4.2 (b). The induction step follows from the fact that

(xx) if deleting an edge from a plane graph results in a connected
graph, then the number of faces decreases at least by 1.

This can be proved analogously to the difficult part of Jordan’s
Theorem 1.4.3 (b) using the Intersection Lemma 1.4.4. ]

The Intersection Lemma 1.4.4 is also useful for other results. It is

often (e.g. in the following problem) more convenient to apply it instead
of Jordan’s Theorem 1.4.3 (b).
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1.4.7. (a) Two bikers start at the same point moving northward
and eastward, respectively. Both return (for the first time) to the initial
point from south and west, respectively.

(b) Three bikers start at the same point moving westward, northward,
and eastward, respectively. All of them arrive at another point from
west, north, and east, respectively.

(a,b) Show that one of the bikers has crossed the track of another
one. (See the middle pictures at Figs. 1.5.2 and 1.6.2 (left); the starting
point is not counted as an intersection point of tracks; you may assume
that the paths of the bikers are polygonal lines.)

Remark 1.4.8. (a) (on the proof of Jordan’s Theorem 1.4.3 (b))
Jordan’s Theorem is the special case of Euler’s Formula 1.3.3(c) for
a graph that is a cycle. So deducing Jordan’s Theorem from Euler’s
Formula would create a vicious circle.

The idea of the proof of claim (x) is given in [CR, pp. 293—294],
though the claim itself (i.e., the fact that B # &) is neither stated
nor proved there. The argument uses simplified versions of the Parity
Lemma (in the fifth paragraph at p. 293). At the beginning of the
argument, one must pick a direction that is not parallel to any line
passing through two vertices of the polygon (including nonadjacent
ones); otherwise, in the fifth paragraph at p. 293, there arise more than
two cases, contrary to what is stated.

The proof of claim (%) given in [BE82, §6] uses the Parity
Lemma 1.4.5.

The proof of Jordan’s Theorem in [Pr14’, pp. 19—20] is incomplete,
because it uses without proof nontrivial facts similar to the Parity
Lemma. More specifically, for the reader not familiar with Jordan’s
Theorem, the claim (given without proof) from the second proposition
at p. 20 (as well as the fact from the first proposition at p. 20 that
the parity changes continuously) seems to be more complicated than
Jordan’s Theorem itself, whose proof uses this claim.

(b) (on the proof of Euler’'s Formula 1.3.3(c)) In a beginners’
course, it is reasonable not to prove the above assertion (xx), which
is geometrically obvious. One should only draw the reader’s attention
to the fact that this assertion is not proved, to algorithmic problems
illustrating its nontriviality (cf. Problems 1.4.1 and 1.4.3 (a)), and to the
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remark about ‘vicious circle’ given in the solution of Problem 1.3.2 (a).
Unfortunately, this assertion is not proved, and even not commented
upon, in some expositions which claim to be rigorous®. This might
give the wrong idea that the proof of Euler’s Theorem does not use
results close to Jordan’s Theorem, and hence does not involve the
corresponding difficulties.

1.5. Planarity of Disks with Ribbons

Consider a word of length 2n in which each of n letters occurs
exactly twice. Take a convex polygon in the plane. Choose an orientation
of the closed polygonal line that bounds it. Take 2n disjoint segments on
this polygonal line corresponding to the letters of the word in the order
they occur in it. For each letter, join (not necessarily in the plane) the
two corresponding segments by a ribbon (i.e., a ‘stretched’ and ‘creased’
rectangle) so that different ribbons do not intersect each other. The
disk with ribbons corresponding to the given word is the union of
the constructed (two-dimensional) convex polygon and the ribbons®.

A ribbon is said to be twisted if the arrows on the boundary of the
polygon have the same direction ‘when translated’ along the ribbon,
and untwisted if they have opposite directions (Fig. 1.5.1).

For example, the annulus and the cylinder (Fig. 2.1.2 and the text
before it) are disks with one untwisted ribbon, while the disk with

"Here are two examples. In [Pr14’, proof of Theorem 1.6], it is not explained why
“deleting one boundary edge decreases the number of faces by 1”; this fact is not
simpler than Jordan’s Theorem 1.4.3 (b), whose proof [Pr14’, p. 19—20] is nontrivial
for a beginner and contains the gap described at the end of Remark 1.4.8. The proof
of Euler’s Formula in [Om18, Chapter 7, §2] also includes neither explanations of
a similar fact, no references to Jordan’s Theorem (though the nontriviality of this
theorem is discussed earlier).

®More precisely, a disk with ribbons is any shape obtained by this construction;
cf. the remark before Problem 2.2.2. Still more precisely, it is the pair consisting of
this union and the union of loops corresponding to the ribbons. This terminological
distinction is not relevant for the realizability we study here, but it is important for
calculating the number of disks with ribbons, see §1.7 and [Sk, ‘Orientability and
classification of thickenings’|.

This informal definition can be formalized using the notions of homeomorphism and
gluing (§2.7 and Example 5.1.1.c); cf. §1.7.
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>

Figure 1.5.1. Left: arrows that have opposite directions ‘when
translated’ along the ribbon. Right: a disk with a twisted ribbon
(the Mo6bius strip)

n holes (Fig. 3.9.2) is a disk with n untwisted ribbons. For other
examples of disks with untwisted ribbons, see Figs. 1.5.2 and 1.5.3.

Figure 1.5.2. Left: the top picture shows a multigraph with
one vertex and two loops, the middle one is a drawing of this
multigraph in the plane, and the bottom one is the corresponding
disk with untwisted ribbons; it corresponds to the word (abab).
Middle and right: the disks with three untwisted ribbons
corresponding to the words (abacbc) and (abcabe).

Ribbons a and b in a disk with untwisted ribbons are said to
interlace if the segments along which they are glued to the polygon
alternate along its boundary, i.e., occur in the cyclic order (abab), and
not (aabb).
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Figure 1.5.3. Disks with four untwisted ribbons (which cannot,
be realized on the torus)

Lemma 1.5.1. A disk with untwisted ribbons can be cut out of the
plane if and only if it has no interlacing ribbons.

A boundary circle of a disk with ribbons is a connected part of
the set of its points that it approaches ‘from one side’. This informal
definition is formalized in §5.5. In Fig. 1.5.2 (middle and right), the
boundary circles are shown in bold. For example, the disks with
untwisted ribbons in Fig. 1.5.2 have one, two, and two boundary circles,
respectively.

1.5.2. (a) How many boundary circles can a disk with two untwisted
ribbons have (more precisely, find all F' for which there exists a disk
with two untwisted ribbons that has F' boundary circles)?

(b) How many boundary circles do the disks with untwisted ribbons
in Fig. 1.5.3 have?

(¢) How many boundary circles can a disk with five untwisted
ribbons have?

(d) Adding a non-twisted ribbon changes the number of boundary
circles by £1.

1.5.3. (a) The number of boundary circles of a disk with n untwisted
ribbons does not exceed n + 1.

(a’) The number of boundary circles of a disk with n ribbons, of
which at least one is twisted, does not exceed n.

(b) Lemma. For a disk with n untwisted ribbons, each of the
assumptions of Lemma 1.5.1 is equivalent to the number of boundary
circles being equal to n + 1.
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(c) Given a word of length 2n in which each of n letters occurs
exactly twice, construct a graph with the number of connected components
equal to the number of boundary circles of the disk with untwisted
ribbons corresponding to this word. (Thus, this number can be found
by computer without drawing a figure.)

1.6. Planarity of Thickenings

Given a graph with n vertices, consider the union of n pairwise
disjoint convex polygons in the plane. On each of the closed polygonal
lines bounding the polygons take disjoint segments corresponding to the
edges incident to the corresponding vertex. For each edge of the graph,
join (not necessarily in the plane) the corresponding two segments by a
ribbon so that the ribbons do not intersect each other (Fig. 1.6.1).
A thickening of the graph is the union of the constructed convex
polygons and ribbons. The graph is called the spine, or the thinning, of
this union. A remark similar to that in footnote 6 at the beginning of
§ 1.5 applies to this case as well.

— 1 =

Figure 1.6.1. Joining disks with a ribbon

A thickening is said to be orientable if the boundary circles
of the polygons can be endowed with orientations so that every
ribbon becomes untwisted, i.e., the arrows on the boundaries of the
polygons have the opposite direction ‘when translated’ along the ribbon
(Fig. 1.5.1, left). Note that each of the pictures in Fig. 1.6.1 can
correspond to such a way of joining disks with ribbons. A thickening is
said to be non-orientable if there are no such orientations.

For example, orientable thickenings of the graphs K3 > and K3 3 are
shown in Fig. 1.6.2.

A disk with ribbons (§ 1.5) is a thickening of a multigraph consisting
of one vertex with several loops.

The regular neighborhood of a graph drawn in the plane (or
on a surface, see §2.1) without edges crossing is the union of caps
and ribbons constructed as shown in Fig. 1.6.3 (left). For a rigorous
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Figure 1.6.2. Left: the top picture shows the graph Kso, the
middle one is a drawing of this graph in the plane, and the
bottom one is the corresponding thickening.

Right: an oriented thickening of the graph K3 3

Figure 1.6.3. Left: the caps and ribbons (called clusters and
pipes in [MTO01]|) form the regular neighborhood (thickening) of
a graph on a surface.

Right: drawings of the graph K, in the plane

definition, see §5.9. The regular neighborhood of a graph G is an
oriented thickening of G (Fig. 1.6.3 (left)). More generally, if we have
a general position map of a graph G to the plane (or to a surface, see
§2.1), then we can construct an oriented thickening of G ‘corresponding’
to this map (Figs. 1.5.2 and 1.6.2 (left), Fig. 1.6.3 (right)).

An oriented thickening is said to be planar if it can be cut out of
the plane.
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1.6.1. (a) Every thickening of a tree is planar.

(b) Every orientable thickening of a cycle is planar.

(c) Every orientable thickening of a unicyclic graph is planar. (A
graph is said to be unicyclic if it becomes a tree after deleting an edge.)

(d) Is the orientable thickening of the graph Ks3o shown in
Fig. 1.6.2 (left) planar?

(e) Which of the orientable thickenings of the graph K4 (Fig. 1.6.3 (right))
are planar?

(f) A graph is planar if and only if it has a planar orientable
thickening.

(g) A rotation system of a graph is an assignment to each vertex of an
oriented cyclic order on the edges incident to this vertex. Every graph
has finitely many rotation systems (moreover, there is an algorithm
searching through those rotation systems).

Deciding the planarity of graphs reduces to deciding the planarity
of orientable thickenings, see Assertion 1.6.1 (f, g).

1.6.2. (a) Define the operation of contracting an edge of a thickening
so that it would give the operation of contracting an edge of a graph
and preserve planarity.

(b) Draw the thickenings obtained from the thickenings of the
graph K, (Fig. 1.6.3 (right)) by contracting the ‘top horizontal’ edge.

Figure 1.6.4. Walking around a spanning tree

Theorem 1.6.3. (a) There is an algorithm for deciding the planarity
of thickenings.

(b) Each of the following conditions on an orientable thickening of
a connected graph G s equivalent to the planarity of this thickening.
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(I) For every spanning tree T, going along the boundary of the
thickening of T (Fig. 1.6.4) we obtain a cyclic sequence of edges not
from T, in which every edge occurs twice; then any two edges in this
sequence do not alternate, i.e., occur in the cyclic order (aabb), and
not (abab).

(E) The number of boundary circles of the thickening is E —V + 2,
where V and E are the numbers of vertices and edges.

(Boundary circles of a thickening are defined analogously to boundary
circles of a disk with ribbons.)

(S) The thickening ‘does not contain’ the ‘figure eight’ and ‘letter
theta’ subthickenings shown in Figs. 1.5.2 and 1.6.2 (left). (More
precisely, the graph does not contain a subgraph homeomorphic to one
of the graphs shown in the top pictures of these figures such that the
restriction of the thickening to this subgraph is homeomorphic to one
of the thickenings shown in the bottom pictures of these figures.)

1.6.4. Every orientable thickening

(a) of a tree has one boundary circle;

(b) of a cycle has two boundary circles.

(c) of a connected graph with V vertices and F edges has at most
E —V 4+ 2 boundary circles.

1.6.5. Every non-orientable thickening of a connected graph with
V vertices and E edges has at most & — V' + 1 boundary circles.

Hint: Assertions 1.6.4.c and 1.6.5 follow from Assertions 1.5.3.a,a’.

1.7. Hieroglyphs and Orientable Thickenings*

In this subsection we give an interpretation of the constructions
from §§1.5 and 1.6. A representation of a hieroglyph is a word of
length 2n in which each of n letters occurs exactly twice. A hieroglyph
is an equivalence class of such words up to renaming of letters and
cyclic shift. Other names: chord diagram, one-vertex multigraph with
rotations.

Hieroglyphs are drawn as shown in Figs. 1.5.2 (left) and 1.7.1, i.e.,
as families of loops in the plane with a common vertex. A cyclic order
is determined by enumerating the segments incident to the vertex in
the counterclockwise direction.
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Wissen war ein bisschen Schaum, der iiber eine
Woge tanzt. Jeder Wind konnte ihn wegblasen,
aber die Woge blieb.

E. M. Remarque. Die Nacht von Lissabon”

In §2.1 we recall the definitions of basic surfaces. The reader may
omit this subsection and return to it when necessary. Subsection 2.2
contains intuitive problems about cutting surfaces and cutting out of
surfaces. Here we state Riemann’s and Betti’s Theorems 2.3.5, which
are used to prove than a surface cannot be cut out of another surface.
Subsection 2.4 contains basic results about graphs and map colorings
on surfaces (Theorems 2.4.4, 2.4.5(b), 2.4.7). They are similar to the
results from §§1.1 and 1.3 about graphs and map colorings in the
plane. The proofs involve an analog of Euler’s Formula, namely, Euler’s
Inequality 2.5.3 (a). This inequality is proved in §2.5 together with
Riemann’s Theorem 2.3.5(a). In § 2.6, an algorithm is constructed for
deciding whether a graph can be realized on a given surface (i.e.,
Theorem 2.4.5(b) is proved). In §2.7 we informally introduce and
study the notion of topological equivalence of surfaces. In particular,
Assertions 2.7.8 (b) and 2.7.9 (b) demonstrate one of the main ideas of
the proof of Theorem 5.6.2 on classification of surfaces. Subsection 2.8
contains versions of the previous examples and results for non-orientable
surfaces.

2.1. Examples of Surfaces

If you are not familiar with Cartesian coordinates in the space, then
at the beginning of the book you may omit coordinate definitions and
work with intuitive descriptions and drawings (given after coordinate
definitions).

"Knowledge was a speck of foam dancing on top of a wave. Every gust of wind
could blow it away; but the wave remained. (E. M. Remarque. The Night in Lisbon)
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The sphere S? is the set of points (z,y,z) € R® such that
22+ 2+ 22 =1

S? ={(z,y,2) ER>: 2® +y* 4+ 22 =1}.
This is the same thing as the set of all points (x, y, 2) of the form

(cos @ cos 1, sin p cos 1, sin ).
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Figure 2.1.1. The surfaces obtained by gluing together sides of a rectangle

In what follows, by a rectangle we mean a two-dimensional part of
the plane (and not its boundary), and ‘gluing’ includes a ‘continuous
deformation’ that drags the points to be glued to each other.

The sphere is obtained from a rectangle ABC'D by ‘gluing together’
the pairs of adjacent sides 1@ and AD, CB and C'D with the directions
indicated in the picture (the fourth column in Fig. 2.1.1).

The annulus is the set {(z,y) € R? : 1< a? +y? <2} (Fig. 6.3.1).
The lateral surface of a cylinder (Fig. 2.1.2 (right)) is the set

{(z,y,2) eR>: 2> + 9> =1,0< 2 < 1}.

Each of these shapes is obtained from a rectangle ABC'D by ‘gluing
together’ the pair of opposite sides ﬁ and m ‘with the same
direction’ (the second column in Fig. 2.1.1).
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Figure 2.1.2. The torus, Md&bius strip, and lateral surface of a cylinder

The torus 72 is the shape obtained by rotating the circle (z — 2)? + y? =1

about the Oy axis (Fig. 2.1.2 (left)).

The torus is the ‘surface of a doughnut’. It is obtained from
a rectangle ABC’D by ‘gluing together’ the pairs of opposite sides
AB and DC, BC and AD ‘with the same direction’ (the fifth column
in Fig. 2.1.1).

The Mébius strip is the set of points in R3 swept by a bar
of length 1 rotating uniformly about its center as this center moves
uniformly along a circle of radius 9 when the bar makes half a turn
(Fig. 2.1.2 (middle)).

The Mobius strip is obtained from a rectangle ABC'D by ‘gluing
together’ two opposite sides AB and CD ‘with opposite directions’ (the
third column in Fig. 2.1.1).

Figure 2.1.3. The spheres with two and three handles
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The sphere with g handles S,, where g > 1, is the set of points
(z,y, 2) € R3 such that

g
H ((z —4k)> + > —4)* =1

The sphere with 0 handles is the sphere S?. The sphere with one handle
is the torus. The spheres with two and three handles are shown in

Fig. 2.1.3.

Figure 2.1.4. A ‘chain of circles’ in the plane

The equation H ((z — 4k)? + y* — 4) = 0 defines a ‘chain of circles’

in the plane Oyz (Flg 2.1.4). The sphere with g handles is the boundary
of the ‘tubular neighborhood’ of this chain in the space. Hence, the
sphere with g handles is obtained from the sphere by ‘cutting out’
2g disks and then attaching g curvilinear lateral surfaces of cylinders
to g pairs of boundary circles of these disks (Fig. 2.1.5).

LT MDY

Figure 2.1.5. Attaching a handle

The sphere with g handles and a hole S, is the part of the
sphere with g handles that lies below or on the plane situated slightly
below the tangent plane at the top point (i.e., the part of S, that lies
in the domain z < 4¢g + 2). This shape is obtained from the sphere with
handles by ‘cutting out a hole’.
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) ) '

(a) (b)

Figure 2.1.6. The Klein bottle: (a) gluing; (b) a drawing in R3

Y
Y

A
A

Informally, the Klein bottle is obtained from a rectangle ABC D by
‘gluing together’ the pairs of opposite sides, the pair zﬁ : lﬁ ‘with the
same direction’, and the other pair B?, 17)4 ‘with opposite directions’
(Fig. 2.1.6 (a)).

Consider in R* the circle 22 + y2 =1, 2 =t =0 and the family
of three-dimensional normal planes to this circle. Strictly speaking, the
Klein bottle K is the set of points in R* swept by a circle w as its center
moves uniformly along the circle under consideration, while the circle w
itself rotates uniformly by angle 7 (in the moving three-dimensional
normal plane, about its own diameter moving together with this plane).

The projection of the Klein bottle to R? is shown in Fig. 2.1.6 (b).

In what follows, ‘surface’ is a collective term for the shapes defined

above, and not a mathematical term (cf. the definition of a 2-manifold
in §4.5).

2.2. Cutting Surfaces and Cutting out of Surfaces

In the problems of this subsection, you are asked to give not rigorous
proofs, but large, comprehensible, and preferably beautiful pictures.

2.2.1. (a) For every n there exist n points in R3 such that the
segments between them have no common interior points (i.e., every
graph can be drawn in R? without edges crossing).

(b) Every graph can be drawn without edges crossing on a book with
a certain number of sheets (Fig. 2.2.1; the definition is given after the
figure) depending on the graph. More precisely, for every n there exists
an integer k, as well as n points and n(n — 1)/2 non-self-intersecting
polygonal lines on a book with £ sheets such that every pair of points is
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joined by a polygonal line and no polygonal line intersects the interior
of another polygonal line.
(¢) The same as in part (b) with 3 sheets instead of k.

a

Figure 2.2.1. A book with three sheets

In R3 consider n rectangles XY B Ay, k=1,2,...,n, any two of
which have only the segment XY in common. The book with n sheets
is the union of these rectangles; see Fig. 2.2.1 for the case n = 3.

(a) (

Figure 2.2.2. Nonstandard (a) annuli; (b) Md&bius strips

b)

A nonstandard annulus is any shape obtained from a rectangle by
gluing a pair of opposite sides ‘with the same direction’ (Fig. 2.2.2 (a)).
This informal definition can be formalized using the notions of homeo-
morphism and gluing (§ 2.7 and Example 5.1.1.c). In a similar way
one defines a nonstandard Mobius strip (Fig. 2.2.2 (b)), torus with a
hole, Klein bottle with a hole, etc. They will be used only in this
subsection (one cuts nonstandard shapes out of standard ones); the
word ‘nonstandard’ will be omitted.

2.2.2. Cut the Md6bius strip so as to obtain
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(a) an annulus; (b) an annulus and a M6bius strip.

2.2.3. Cut the Klein bottle (Fig. 2.1.6) so as to obtain
(a) two Mobius strips;  (b) one Md&bius strip.

2.2.4. Cut out the following shapes from the book with three sheets
(Fig. 2.2.1):

(a) a Mobius strip; (b) a torus with a hole;

(¢) a sphere with two handles and a hole;

(d) a Klein bottle with a hole.

2.2.5. Let A, B,C, D be points on the boundary circle of a torus
with a hole (in this order along the circle). A rectangle A’B'D'C’ is
attached to the torus with a hole by gluing AB to A’B’ and C'D to C'D’.
From the resulting shape (i.e., from a torus with a hole and a Md&bius
strip), cut out three pairwise disjoint Mébius strips.

2.3. Impossibility of Cutting and Separating Curves

2.3.1. (a) A torus with a hole cannot be cut out of the plane.

(b) For k < n, a sphere with n handles and a hole cannot be cut out
of the sphere with k£ handles.

(¢) Two disjoint M6bius strips cannot be cut out of the Mébius strip.

(d) Find all g, m, ¢’, m’ for which ¢’ tori with a hole and m’ Mdbius
strips (all ¢’ + m’ shapes pairwise disjoint) can be cut out of a disk with
g handles and m Mobius strips (see the definitions before Figs. 2.1.5
and 2.8.1).

Proof of (a). Part (a) follows from the Intersection Lemma 1.4.4
or from the (essentially equivalent) nonplanarity of the graph Kj
(Assertion 1.3.2 (a)), because the analogues of these results for the torus
are false (cf. Assertion 2.4.1 (a)).

Alternatively, assume to the contrary that a torus with a hole is
cut out of the plane. Take a closed non-self-intersecting curve v on this
torus with a hole such that v does not separate it (Assertion 2.3.2.a).
In the next paragraph we prove that v does not separate the sphere,
contradicting Jordan’s Theorem 1.4.3 (b) (the details are necessary
because e.g. the boundary circle of the disk does not separate the disk,
but does separate the plane containing the disk).
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Pick any two points in the plane that do not lie on ~. Join them
with a polygonal line o ‘in general position’ with respect to . This
polygonal line meets v in a finite number of points. For each such
point A, take a small segment a4 of a that contains A in its interior.
The endpoints of a4 lie on the torus with a hole. Hence, they can be
joined by a polygonal line /4 that does not intersect . Replace each
segment oy with o’y. We obtain a polygonal line that joins the given
points and does not intersect . L]

Comments on the proof of (b,c,d). Part (b) follows from Theorem 2.3.5 (c)
and Assertion 2.3.3.c. Part (b) can also be deduced from Assertion 2.4.4 (c),
or from Theorem 2.3.5(a) and Assertion 2.3.3.a (observe that both
Assertion 2.4.4 (¢) and Theorem 2.3.5 (a) use Euler’s Inequality 2.5.3 (a)).
The details of deduction from Theorems 2.3.5 (¢) or 2.3.5 (a) have to be
checked, cf. (a).

Analogously, parts (¢) can be deduced from either of Assertions 2.8.2 (a),
2.8.2(c) or 2.8.3 (b).

To solve part (d), it is helpful to use Assertion 2.8.5(c), see also
Assertion 2.6.6 and Problem 6.7.7. ]

2.3.2. (a) Draw a closed curve on the torus such that cutting along
this curve does not separate the torus.

(b) The same for the Mobius strip.

(c) Draw two closed curves on the torus such that cutting along
their union does not separate the torus.

(d) Draw two closed disjoint curves on the Klein bottle such that
cutting along their union does not separate the Klein bottle.

Curves and graphs on the torus can be easily defined by regarding
the torus as obtained from a rectangle by gluing. A (piecewise linear)
curve on the torus is then a family of polygonal lines in the rectangle
satisfying certain conditions (work out these conditions!). In a similar
way, other surfaces can be obtained from plane polygons by gluing (for
spheres with handles, see Problem 2.3.4). This allows one to define
curves and graphs on other surfaces. Another formalization is given in
§ 5, see also §4.

2.3.3. On the sphere with g handles S, there are
(a) g closed pairwise disjoint curves, whose union does not separate

S,.
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(b) 2¢g closed curves, of which any two intersect by a finite number
of points, and whose union does not separate .S,.
(¢) a non-separating wedge of 2¢g cycles.

2.3.4. For every g > 0, obtain S, by gluing together sides of
a 4g-gon. (See visualization in https://www.youtube.com/watch?v=
GlyyfPShgqw and in https://www.youtube.com/watch?v=U5N5mg3MePM.)

It turns out that cutting the torus along the union of any two disjoint
closed curves inevitably separates the torus. This is a special case of the
following generalizations of Jordan’s Theorem 1.4.3 (b).

Theorem 2.3.5. (a) (Riemann) The union of any g+ 1 pairwise
disjoint closed curves on S, separates S, .

(b) (Betti) Suppose that on S, there are 2g + 1 closed curves, of
which any two intersect by a finite number of points. Then the union of
the curves separates the sphere with g handles.

(¢) Any wedge of 2g + 1 cycles drawn without self-intersections on
S, separates S,.

Here the curves are allowed to be self-intersecting; however, the case
of non-self-intersecting curves is the most interesting, and the general
case can be easily reduced to it.)

These results (strictly speaking, for the piecewise linear case) follow
from Euler’s Inequality 2.5.3 (a). For part (c) the deduction is clear, for
parts (a,b) see §2.5.

2.4. Graphs on Surfaces and Map Colorings

The definition and discussion of a drawing of a graph on a surface
without edges crossing is analogous to the case of the plane, see §1.3.
The formalization is outlined after Problem 2.3.2 and described in § 5.2,
but can be omitted on first acquaintance.

The torus, Mobius strip, and other shapes are assumed to be
transparent, i.e., a point (or a subset) that ‘lies on one side of a surface’
‘lies on the other side as well’. In a similar way, in geometry we speak
about a triangle in the plane, rather than a triangle on the upper (or
lower) side of the plane.

2.4.1. Draw the following graphs on the torus without edges
crossing:
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(a) K5; (b) K33; (c) Kg; (d) K7; (e)* Kyg; (f)* Ko 3.

The definition of a graph realizable on the torus or on a sphere
with handles is analogous to that of a planar graph.

Proposition 2.4.2. Any graph can be realized on a sphere with
a certain number (depending on the graph) of handles.

2.4.3. (a) The graph Kg; (b) the graph K5 4; (c)* the graph K5 Ll K5
are not realizable on the torus.

To prove Assertions 2.4.3 and 2.4.4, we need Euler’s Inequality 2.5.3 (a).
Here is a version of Assertion 2.4.3 for spheres with handles.

Proposition 2.4.4. (a) The graph K, is not realizable on a sphere
with less than (n — 3)(n — 4)/12 handles.

(b) The graph K, , is not realizable on a sphere with less than
(m —2)(n — 2)/4 handles.

(c)* The disjoint union of g + 1 copies of the graph Ks is not
realizable on the sphere with g handles S.

In view of Assertions 2.4.4 (a,c), for every g there is a graph (for
example, K415 or the disjoint union of g + 1 copies of K5) that is not
realizable on S, (the second of these graphs is realizable on S;1). The
estimations in Assertion 2.4.4 are sharp [Pr14, 13.1].

Theorem 2.4.5. For every g there is an algorithm for deciding
whether a graph s realizable on S, .

This result is deduced from Theorem 2.6.8 (a).

2.4.6. A map on the torus is a partition of the torus into (curved)
polygons. A coloring of a map on the torus is said to be proper if
different polygons sharing a common boundary curve have different
colors. Is it true that any map on the torus has a proper coloring with

(a) 5 colors; (b) 6 colors?

It turns out that any map on the torus has a proper coloring
with 7 colors. This is a special case of the following result. A map on
Sy handles and a proper coloring of such a map are defined analogously
to the case of the torus.

Theorem 2.4.7 (Heawood). If 0 < g < (n — 2)(n — 3)/12, then
every map on S, has a proper coloring with n colors.
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The version of this theorem for g = 0 is true: this is the Four Color
Conjecture. In view of Ringel’s results on embeddings of K, [Pr14, 13.1]
n — 1 colors are not sufficient for g > (n — 2)(n — 3)/12.

Heawood’s Theorem 2.4.7 is implied by the following result, whose
proof relies on Euler’s Inequality 2.5.3 (a).

2.4.8. (a) Any graph drawn on the torus without edges crossing has
a vertex with at most 6 incident edges.

(b) If 0<g< (k—1)(k—2)/12, then any graph drawn on S,
without edges crossing has a vertex with at most k incident edges.

2.5. Euler’s Inequality for Spheres with Handles

Given a graph drawn on a surface without edges crossing, a face
is any of the connected parts into which cutting along all edges of the
graph divides the surface.

On the torus there are two closed curves such that cutting along
them divides the torus into different numbers of parts (Problem 2.3.2 (a)).
So, the number of faces depends on the way the graph is drawn on the
given surface. However, we still have a version of Euler’s Formula for
surfaces. These are the following inequalities 2.5.1 (d) and 2.5.3 (a).

2.5.1. (a,b,c,d) The same as in Assertions 1.4.2, with the plane
replaced by a sphere with handles and a planar graph replaced by
a graph drawn on the sphere with handles without edges crossing.

(d") In a parliament consisting of n members there are several
(pairwise distinct) 3-person commissions. It is known that if two
persons x, y belong to a commission, then the set {z, y} is contained in
exactly two commissions. Such two commissions are said to be adjacent.
It is also known that for any two persons A, B there is a sequence of
commissions such that A is in the first commission, B is in the last
commission, and any two consecutive commissions are adjacent. Show
that the number of commissions is not less than 2n — 4.

(e) If G is a subgraph of a connected graph H on a sphere with
handles, then Vg — Eg + Fg > Vg — Eg + F.

Hint. Part (e) follows from part (c¢). Use the operations of deleting
an edge, or deleting a hanging vertex.
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Warning. Part (e) is not true for a disconnected graph H, but is
true for a disconnected graph H if every connected component contains
a vertex of G.

2.5.2. Given a connected graph with V vertices and E edges drawn
on the torus without edges crossing, denote by F' the number of faces.

(a) If the graph (more exactly, its drawing) contains a parallel, then
F=F-V.

Hint. Cut the torus along the parallel. The result is a plane graph
lying between two its cycles. Apply Euler’s Formula to this graph.

(b F>FE-V.

Clarification. Prove the assertion under the following assumption:
the graph meets a parallel in a finite number of points, and cutting the
graph along the parallel with subsequently unfolding it into the plane
results in a union of polygonal lines (a more learned way of saying this
is that the given embedding of the graph into the torus is piecewise
linear and in general position with respect to the parallel).

Hint. Use part (a) and Assertion 2.5.1 (e).

2.5.3. (a) Euler’s Inequality®. Given a connected graph with
V' wertices and E edges drawn on S, without edges crossing, denote
by F' the number of faces. Then

V-_E+F>2-2g.

(b) Given a graph with V vertices, E edges, and s connected
components drawn on S, without edges crossing, denote by I’ the
number of faces. Then V — FE+ F > 1+ s — 2g.

Euler’s Inequality 2.5.3 (a) can be proved analogously to the case of
the torus 2.5.2 (b) using Assertion 2.3.4.

Sketch of proof of Riemann’s Theorem 2.3.5(a). Consider the case
of the torus (the general case is proved analogously). Suppose that the
union of two disjoint closed curves does not separate the torus. We may
assume that the curves are simple. Similarly to the proof of Jordan’s
Theorem 1.4.3 (b), we use the orientability of the torus to conclude

$Usually, instead of Euler’s Inequality, which is sufficient for solving many
interesting problems, one considers the more complicated Euler’s Formula 5.9.2 (cf.
Assertion 2.5.2 (a)), whose statement involves the notion of a cellular subgraph.
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that there are a ‘figure eight’ and a circle that are non-self-intersecting,
disjoint, and whose union does not separate the torus. Joining the figure
eight and the circle by an arc on the torus, we obtain a graph with
V — E = —2 that does not separate the torus, contradicting Euler’s
Inequality. [

Betti’s Theorem 2.3.5 (b) follows from Euler’s Inequality 2.5.3 (b)
(or from Euler’s Inequality 2.5.3 (a) and Riemann’s Theorem 2.3.5 (a);
the details are similar to the arguments in [Bi20, bottom of p. 6]).

2.6. Realizability of Hieroglyphs and Orientable Thickenings

Disks with untwisted ribbons are defined in § 1.5. We will call them
hieroglyphs, cf. §1.7. A hieroglyph is said to be realizable on a given
surface if it can be cut out of this surface.

2.6.1. (a,b,c¢) The hieroglyphs corresponding to the words (abab),
(abcabe), and (abachbe) (Fig. 1.5.2) are realizable on the torus.

A solution of (b, c) is presented in Fig. 2.6.1.

2.6.2. The hieroglyphs shown in Fig. 1.5.3
(a/,b’, ¢, d’) are realizable on the sphere with two handles.
(a,b,c,d) are not realizable on the torus.

For a proof of (a’,b’,¢’,d’) pick two interlacing ribbons and show
that the disk with the two remaining ribbons is realizable on the torus
(a proof via attaching ribbons one by one also works, but is more
complicated). Parts (a,b,c,d) are proved analogously to Assertion 2.3.1 (b)
(in fact, every hieroglyph with 4 ribbons that has one boundary circle
cannot be realized on the torus).

Denote by h(M) the number of boundary circles of a hieroglyph or
a thickening M.

2.6.3. (a) If a hieroglyph M is cut out of the sphere with g handles
Sy, then the number of obtained connected components of S; — M does
not exceed h(M).

(a’) If a hieroglyph M with n ribbons is cut out of S,, then
h(M)>n+1— 2g.

(b) For every g there exists a hieroglyph not realizable on Sj,.
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(c) If a hieroglyph M is realizable on S, and removing any of
its ribbons results in a hieroglyph non-realizable on S,, then M has
2g + 2 ribbons.

Here part (a’) follows from part (a) and Euler’s Inequality 2.5.3 (a)
(cf. Assertion 2.3.1(b)). Part (b) follows by part (a’) (take e.g.

hieroglyph (a1b1a1b1 . .. agy1bgr1ag+1bg41))-

2.6.4. (a) Every hieroglyph with 3 ribbons is realizable on the torus.

(b) Does there exist a hieroglyph with 4 ribbons that has two
boundary circles?

(¢) Every hieroglyph with 4 ribbons that has three boundary circles
is realizable on the torus.

(d) Every hieroglyph with n ribbons that has at least n — 1 boundary
circles is realizable on the torus.

The proof is analogous to that of Assertions 2.6.2(a’,b’,c’,d"), cf.
Assertions 1.5.3 (a, b).

Theorem 2.6.5. (a) For every g there is an algorithm for deciding
whether a hieroglyph is realizable on S.

(b) FEach of the following conditions on a hieroglyph M with
n ribbons 1s equivalent to its realizability on Sy.

(E) The inequality h(M) >n + 1 — 2g holds.

(I) Among any 29 + 1 rows of the interlacement matriz (see
the definition below) there are several (= 1) rows whose sum is zero
modulo 2. (In other words, the rank of the interlacement matriz over Zo
does not exceed 2g.)

The interlacement matrixz of a hieroglyph with n ribbons is the n x n
matrix whose a x b cell contains 1 if a # b and the letters a and b do
not interlace, and 0 otherwise. Cf. §6.7.

Here part (a) follows from (b). The condition (E) is necessary for
the realizability by Assertion 2.6.3.a’. The sufficiency of (E) is proved
analogously to Assertion 2.6.4, cf. Assertion 2.7.8 (b) and its proof.
Criterion (I) can be proved analogously to Assertion 2.7.8 (¢).

The rank vk M of a hieroglyph M is the rank of its interlacement
matrix over Zso. The rank measures the ‘complexity of intersections’ on
the hieroglyph.
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2.6.6. A hieroglyph M can be cut out of a hieroglyph M’ if and
only if rk M <tk M’.

Orientable thickenings are defined in §§1.6 and 1.7. A thickening
is said to be realizable on a given surface if it can be cut out of this
surface.

2.6.7. Does there exist an orientable thickening of
(a) the graph Ky4; (b) the graph Kj
that is not realizable on the torus?

Theorem 2.6.8. (a) For every g there is an algorithm for deciding
whether a thickening is realizable on S,.

(b) Each of the following conditions on an orientable thickening M
of a connected graph is equivalent to its realizability on S,.

(E) The inequality 2g > 2 —V + E — h(M) holds, where V and E
are the numbers of vertices and edges of the graph.
(I) =2.6.5.b(I).

Given an orientable thickening of a connected graph G and a
spanning tree, we construct a hieroglyph corresponding to the edges
not in the tree (Fig. 1.6.4). The interlacement matriz, corresponding to
the tree, of the orientable thickening is the interlacement matrix of the
resulting hieroglyph. The rank of an orientable thickening is the rank of
its interlacement matrix (corresponding to an arbitrary tree) over Zs.

Theorem 2.6.8 is reduced to Theorem 2.6.5 by contracting an edge
or considering a spanning tree.

b

< |

Figure 2.6.1. The disks with ribbons corresponding to the words
(abcabe) and (abacbe) on the torus

2.7. Topological Equivalence (Homeomorphism)

2.7.1. Can the graph K5 be drawn without edges crossing
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(a) on the sphere; (b) on the lateral surface of a cylinder (Fig. 2.1.2)7

In this section, we do not give a rigorous definition of the notion
of homeomorphism (topological equivalence); for a rigorous definition,
see §5.2. To ‘prove’ that shapes are homeomorphic, in this section you
must draw a chain of pictures similar to Fig. 2.7.1.

Here it is allowed to temporarily cut a shape, and then glue together
the ‘edges’ of the cut. For example,

e the sphere with a point removed is homeomorphic to the plane,
and the lateral surface of a cylinder is homeomorphic to the annulus on
the plane (here a chain of pictures can be obtained from the solution
of Problem 2.7.1);

e the sphere with one handle (Fig. 2.1.5) is homeomorphic to the
torus (Fig. 2.1.2);

e the disk with two ribbons (Fig. 2.7.1 (right)) is homeomorphic to
the torus with a hole (Fig. 2.7.1 (left));

@D L

Figure 2.7.1. The torus with a hole is homeomorphic to the disk

with two ribbons

e the three ribbons in Fig. 2.2.2 (b) are homeomorphic (here we can
no longer do without cutting);

e the two ribbons in Fig. 2.2.2 (a) are homeomorphic (here again we
cannot do without cutting).

The ribbons in Fig. 2.2.2 (a) and in Fig. 2.2.2 (b) are not homeomorphic.
We will deal with nonhomeomorphic shapes in §5, after introducing
a rigorous definition and other notions, which allow one to turn the
informal arguments of this section into rigorous proofs.

One should not confuse the notion of homeomorphism with that of

isotopy, see Problem 6.6.1 (b) and §15.5.

2.7.2. (a,b) The shapes in Fig. 1.5.2 (middle and right) are
homeomorphic to the torus with two holes.
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o —
7 ™

R -~

Figure 2.7.2. Are these shapes homeomorphic?

(¢) The shape in Fig. 2.7.2 (left) is homeomorphic to the torus with
a hole.

(d) Is the shape in Fig. 1.6.2 (right) homeomorphic to a sphere with
handles and holes? If yes, with how many handles and holes?

2.7.3. (a,b,c,d) The shapes in Fig. 1.5.3 are homeomorphic to the
sphere with two handles and a hole.

2.7.4. Cutting the torus

(a) along any non-separating cycle results in a shape homeomorphic
to the annulus;

(b) along any non-separating ‘figure eight’ results in a shape
homeomorphic to the disk (i.e., to a convex polygon).

2.7.5. The regular neighborhoods of different drawings of a graph
in the plane without edges crossing (i.e., of isomorphic plane graphs,
see Fig. 1.3.1) are homeomorphic.

Concerning hieroglyphs and thickenings, see §§ 2.6 and 1.5-1.7.

2.7.6. (a) Every hieroglyph with two ribbons is homeomorphic
either to the disk with two holes or to the disk with one hole.

(b) (Riddle) To what surfaces can an orientable thickening of the
graph K4 be homeomorphic?

Proposition 2.7.7. (a) Any thickening of a tree is homeomorphic
to the disk D?.

(b) Any disk with non-twisted ribbons, for which no two ribbons
interlace, 1s homeomorphic to the disk with holes.

(¢c) Let M be a thickening of a connected graph with V vertices and
E edges. If V. — E + h(M) =2, then M is homeomorphic to the sphere
with h(M) holes.



2.8. Non-Orientable Surfaces* 61

Proposition 2.7.7.c is proved using Proposition 2.7.7.ab (together
with Assertions 1.5.3.a,b and 1.6.4.c; cf. Euler formulas 2.7.9 (b)
and 2.8.11 (b)).

Proposition 2.7.8. (a) Two hieroglyphs with the same number of
ribbons are homeomorphic if and only if they have the same number of
boundary circles.

(b) Euler’s Formula. Let M be a hieroglyph with n ribbons. Then
h(M) —n is odd, h(M) <n+ 1, and M is homeomorphic to the sphere
with (n + 1 — h(M))/2 handles and h(M) holes.

(c)* Mohar’s Formula. Let M be a hieroglyph of rank r with
n ribbons. Then r 1s even and M is homeomorphic to the sphere with
r/2 handles and n + 1 —r holes.

The names ‘Euler’s Formula’ and ‘Mohar’s Formula’ for Assertions 2.7.8,
2.7.9, and 2.8.8 (see below) are not widely used. Cf. Problems 5.9.2
and 6.7.5 (f, g).

Proposition 2.7.9. (a) Two orientable thickenings of a connected
graph are homeomorphic if and only if they have the same number of
boundary curcles.

(b) Euler’s Formula. Assume that M is an orientable thickening of
a connected graph with V vertices and E edges. Then V. — E + h(M) is
even, V — E + h(M) <2, and M is homeomorphic to the sphere with
(2—V +FE—h(M))/2 handles and F holes.

(¢)* Mohar’s Formula. Assume that M is an orientable thickening of
rank r of a connected graph with V vertices and E edges. Then r is even,
V — E+1r<1, and M is homeomorphic to the sphere with r /2 handles
and 2 —V + E —r holes.

2.8. Non-Orientable Surfaces*
Graphs and Map Colorings on a Disk with Mo6bius strips

2.8.1. Draw the following graphs on the Mobius strip without edges
crossing:
(a) K33; (b) K345 (c) K5; (d) Ke.

2.8.2. (a) Euler’s Inequality. Assume that a connected graph with
V vertices and F edges is drawn on the Mobius strip without edges
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crossing so that it does not intersect the boundary circle. Denote by F
the number of faces. Then V — FE + F' > 1.

(b) The graph K7 cannot be realized on the Mobius strip.

(¢) The graph K5 LI K5 cannot be realized on the M6bius strip.

(d) Any map on the Md&bius strip has a proper coloring with 6 colors.

Figure 2.8.1. The disk with M6bius strips

The disk with m Mobius strips (Fig. 2.8.1) is the union of the
disk and m ribbons such that

e cach ribbon is glued along a pair of opposite sides to the boundary
circle S of the disk, and the directions on these sides determined by an
arbitrary direction on S ‘coincide along the ribbon’,

e the ribbons are ‘separated’, i.e., there are m pairwise disjoint arcs
on S such that the endpoints of the ¢th ribbon are glued to two disjoint
subarcs contained in the ¢th arc for every i =1,2,..., m.

2.8.3. (a) Draw m closed non-self-intersecting pairwise disjoint
curves on the disk with m Mobius strips such that their union does
not separate the disk with m Mo&bius strips.

(b) The union of any m + 1 pairwise disjoint closed curves on the
disk with m Mobius strips separates it.

(¢) Any graph can be drawn without edges crossing on a disk with
a certain number (depending on the graph) of Md&bius strips.

(d) For every m > 0, obtain the disk with m Mobius strips by gluing
from a regular 4m-gon.

2.8.4. (a) Euler’s Inequality. Assume that a connected graph with
V vertices and E edges is drawn without edges crossing on the disk with
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m Mobius strips, so that the graph does not intersect the boundary
circle. Denote by F' the number of faces. Then V — E+ F > 2 —m.
(b) State and prove versions of Theorem 2.4.4 for the disk with
m Mobius strips, where m # 2.
(c) State a prove a version of Heawood’s Theorem 2.4.7 for the disk
with m Mobius strips, where m # 2.

It turns out that the graph K7 cannot be realized on the Klein bottle
(i.e., on the disk with 2 Mdbius strips), and that any map on the Klein
bottle has a proper coloring with 6 colors [Fr34, SK86].

Homeomorphic Non-Orientable Surfaces

2.8.5. (a) The Mébius strip with a handle is homeomorphic to the
Mobius strip with an inverted handle, see Fig. 2.1.5, 2.8.2 (a).

(b) The shape in Fig. 2.8.2(b) (i.e., the disk with two ‘twisted’
‘separated’ ribbons) is homeomorphic to the Klein bottle with a hole
(Fig. 2.1.6).

(a) (b)

Figure 2.8.2. (a) Attaching an inverted handle (cf. Fig. 2.1.5).
(b) The disk with two ‘twisted’ ‘separated’ ribbons (c) The disk
with ribbons corresponding to the word (aabcbe) with w(a) =1
and w(b) =w(c) =0.

(¢) The shape in Fig. 2.8.2(c) is homeomorphic to the disk with
three Mobius strips.

(d) The shapes in Fig. 2.8.3 (a) are homeomorphic.

(e) The shapes in Fig. 2.8.3 (b) (i.e., an annulus with two ‘twisted’
‘separated’ ribbons glued to the same boundary circle and an annulus
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Figure 2.8.3. (a) Are the boundary circles of the Md&bius strip
with a hole equivalent? (b) Are these annuli with two Mobius

~

b)

strips homeomorphic?

with two ‘twisted’ ribbons glued to different boundary circles) are
homeomorphic.

Beautiful examples from Problems 2.8.5(d,e) are of importance
since they show that dissimilar shapes can still be homeomorphic.

Disks with Twisted Ribbons

Given a disk with ribbons and a ribbon k in it, set w(k) = 1 if the
ribbon is twisted, and w(k) = 0 otherwise.

Figures 2.8.2 (b,c) and 1.5.1 (right), 2.8.1 show, respectively,

e the disk with ribbons corresponding to the word (aabb) for which
w(a) =w(b) =1;

e the disk with ribbons corresponding to the word (aabcbe) for which
w(a) =1 and w(b) = w(c) = 0;

e the disk with n Mobius strips, i.e., the disk with ribbons corre-
sponding to the word (1122 . .. nn) for which w(1) =w(2) =... =w(n) = 1.

2.8.6. (a) How many boundary circles can a disk with two ribbons
have?

(b) To what surfaces can a disk with two ribbons be homeomorphic?

(¢) To one of the boundary circles of the disk with n Md&bius strips
and k > 0 holes, a twisted (with respect to this boundary circle) ribbon
is attached. The resulting shape is homeomorphic to the disk with
n + 1 Mobius strips and k holes.
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2.8.7. State and prove versions of Theorems 2.6.5(a,b) for the
realizability of disks with ribbons on the disk with m Mobius strips.

Proposition 2.8.8. (a) Two disks with the same number of ribbons
are homeomorphic if and only if they have the same number of boundary
circles and either both have a twisted ribbon or neither has one.

(b) Euler’s Formula. Assume that M is a disk with n ribbons among
which there is a twisted one, and M has h boundary circles. Then h < n,
and M 1s homeomorphic to the disk with n +1 — h Mdébius strips and
h —1 holes.

(c)* Mohar’s Formula. The interlacement matrix of a hieroglyph
with ribbons 1,2, ..., n and nonzero map w: {1,2,...,n} — {0, 1} is
defined analogously to the interlacement matrix of a hieroglyph, with
the difference that the diagonal cell a x a contains the number w(a).
Denote by r the rank of the interlacement matriz over Zs. Then
the corresponding disk with ribbons is homeomorphic to the disk with
r Mobius strips and n — r holes.

Thickenings of Graphs

2.8.9. (a) The thickening in Fig. 2.8.4 cannot be realized on the
Mobius strip.

(b) Every thickening of a unicyclic graph can be realized on the
Mobius strip.

(¢) Which thickenings of the graph K4 can be realized on the Mdbius
strip?

=00

Figure 2.8.4. Thickenings that cannot be realized on the M&bius strip
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I should say it meant something simple and ob-
vious, but then I am no philosopher!

I. Murdoch. The Sea, the Sea.

5.1. Hypergraphs and their geometric realizations

Let us give a combinatorial definition of two-dimensional surfaces
(and somewhat more general objects). This definition is convenient for
theoretical purposes as well as for storing in computer memory; cf. §1.2.

A two-dimensional hypergraph!? (or 2-hypergraph, for short)
(V, F') is a collection F of three-element subsets of a finite set V. The
elements of V' and F' are called vertices and faces (or hyperedges) of
the 2-hypergraph. An edge of a 2-hypergraph is a two-element subset
of the vertex set that is contained in a face.

P-4

Figure 5.1.1. Building (the geometric realization of) a complete

2-hypergraph with 4 vertices

Example 5.1.1. (a) A complete 2-hypergraph with n vertices (or
the two-dimensional skeleton of an (n — 1)-dimensional simplex) is the
collection of all three-element subsets of an n-element set. See Figure 5.1.1
for n =4 and Figure 5.1.2 for n = 5. In this section the complete 2-
hypergraph on 4 vertices is called the sphere S?.

'3Sometimes called a 3-uniform hypergraph, or a dimensionally homogeneous
(pure) two-dimensional simplicial complex, see [Sk, § 5|
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Figure 5.1.2. A complete 2-hypergraph with 5 vertices

(b) The book with n pages is the 2-hypergraph with vertices
a,b,1,2,...,n and faces {a, b, j}, j=1,2,...,n. See Figure 2.2.1 for
n=3.

(¢) Suppose one has a 2-hypergraph, and a gluing diagram showing
which pairs of edges should be identified, so that no two vertices
of intersecting faces get identified. Then one can obtain a new 2-
hypergraph by gluing the edges according to the diagram. For instance,
Figure 2.1.1 shows the 2-hypergraphs obtained by gluing the sides of
a square (triangulations are not shown there; see §5.9 and §6.2 for the
formalization).

(d) A triangulation of 2-manifold (see §4.6) can be naturally viewed
as a 2-hypergraph, which is also called a triangulation.

For 1 <i < n, denote by e, ; € R" the point whose i-th coordinate
is 1 whereas the others are 0. The convex hull A, of the points
€nt1,1s- - -3 Entlntl € Rt is called'? the n-dimensional sitmplex. It is
a convex polyhedron with n 4 1 vertices; the union of its edges ‘forms’
the complete graph K, 1. The geometric realization (or body) of a
2-hypergraph (V, F') is the union of those two-dimensional faces of the
simplex with vertex set V that correspond to the faces from F.

Main results stated in this section (but not used later) are Theorems
5.2.4. 5.3.1, 5.3.3, and 5.6.2.

"“One could define the n-dimensional simplex as the convex hull
of (0,...,0),en,1,...,6nn € R". This might be more visually intuitive but
this is less convenient for us.
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Remark 5.1.2 (on geometric realization of hypergraphs). Similarly
to the case of graphs, one builds a geometric shape from a 2-hypergraph,
and calls it the geometric realization (cf. the above rigorous definition).
Informally speaking, the shape is obtained by gluing several triangles
corresponding to the faces. The gluing procedure does not have to
happen in three-dimensional space; the procedure is either done in
higher dimensions, or even abstractly, without any reference to an
ambient space.

For example, Figure 5.1.1 shows how to build the geometric
realization of the complete 2-hypergraph with 4 vertices. The geometric
realization of the 2-hypergraph that is obtained as a surface triangulation
is homeomorphic to that surface. More generally, 2-hypergraphs, just
like graphs, can be specified by geometric shapes, including ‘smooth’ or
self-intersecting ones. See the last two rows of Figure 2.1.1. One shape
specifies multiple 2-hypergraphs.

Usually all these 2-hypergraphs are homeomorphic (see §5.2, Theorem 5.2.4
and the example before Problem 10.3.3). Then a 2-hypergraph bears
the name of the shape. In this case non-isomorphic but homeomorphic
2-hypergraphs have the same name.

Despite having a geometric realization, a 2-hypergraph is a combinatorial
object. It is impossible, say, to take a point on its face. However, ‘taking
a point on a face of the geometric realization of a 2-hypergraph’ can be
formalized as ‘taking the newly added vertex of the new 2-hypergraph
obtained by the subdivision of that face’; see Figure 5.2.2 on the right.
We will not follow such a level of formality.

The definition of a 2-hypergraph isomorphism is analogous to
the one for graphs. 2-Hypergraphs (V, F) and (V’/, F’) are called
isomorphic if there is a 1-1 correspondence f: V — V' satisfying the
following property: vertices A, B, C' € V lie in the same face if and only
if the vertices f(A), f(B), f(C) € V' lie in the same face.

5.2. Homeomorphic 2-hypergraphs

Remark 5.2.1 (homeomorphism of graphs). (a) The operation
of edge subdivision is shown in Figure 5.2.1. Two graphs are called
homeomorphic if one of them can be obtained from the other using
edge subdivisions and the inverse operations. Equivalently, two graphs
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are homeomorphic if there is a graph that can be obtained from either
of the two using edge subdivisions.

>—=<

—

Figure 5.2.1. Edge subdivision

(b) The definition of a homeomorphism for subsets of Euclidean
space is given in §3.1. It turns out that graphs G; and G2 are
homeomorphic if and only if the realizations |G1| and |G2| are homeomorphic.
This criterion motivates the definition of a graph homeomorphism,
which allows us to study certain shapes using combinatorial language.

(¢) A one-dimensional polyhedron is a homeomorphism class of
graphs. A topologist is usually interested in polyhedra even if calling
them graphs. On the other hand, graphs and their realizations are
convenient tools for studying polyhedra and storing them in computer
memory. A combinatorialist or discrete geometer are mostly interested
in graphs, though they might find polyhedra useful as well.

The definition of homeomorphic (combinatorial topology equivalent)
2-hypergraphs is analogous to the one for graphs.

The operation of an edge subdivision of a 2-hypergraph is shown
in Figure 5.2.2, on the left.

5.2.2. The operation of a face subdivision in Figure 5.2.2, on the right,
can be expressed using edge subdivision and its inverse.

Two 2-hypergraphs are said to be homeomorphic, if one of them
can be obtained from the other (to be precise, from a 2-hypergraph
isomorphic to the latter, see the end of §5.1) using the operations of edge
subdivision and its inverse.

5.2.3. (a) The 2-hypergraph with vertices 0,1,...,n and faces
{0,1,2},{0,2,3},...,{0,n — 1, n} is homeomorphic to complete 2-
hypergraph with three vertices.

(b) The same for the set of faces {0, 1, 2}, {0,2,3},...,{0,n — 1,n}, {0, n, 1}.
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A
A

Figure 5.2.2. Subdivision of an edge and a face

&

(c) The 2-hypergraphs in each separate column of Figure 2.1.1 are
homeomorphic to each other (for some triangulation of square), while
the 2-hypergraphs from different columns are not.

Hint: the material of the following sections can be used in order to
prove that certain 2-hypergraphs are not homeomorphic.

(d)* Any two triangulations of triangle are homeomorphic.

Theorem 5.2.4. (a) Two-dimensional hypergraphs are homeomorphic
if and only of their geometric realizations are homeomorphic.

(b) The 2-hypergraphs corresponding to different triangulations of
the same 2-manifold in R™ (see §4.5) are homeomorphic.

This is an important statement (‘Hauptvermutung’). It illustrates
the connection between the notions of ‘combinatorial’ homeomorphism
of 2-hypergraphs and ‘topological’ homeomorphism of their geometric
realizations.

Theorem 5.2.4 is neither proved nor used in this book. This
result is nontrivial even when one of the 2-hypergraphs is a triangle
(Assertion 5.2.3 (d)) or a sphere with handles (§2.1).1°

15Be careful: visually intuitive explanations of this and analogous results might
not be proofs! For example, in [Pr14, proof of Theorem 11.5] the following things are
not defined: ‘surface edges’, ‘piecewise linear graph on the surface’, and ‘transverse
intersection of edges’. To overcome this, one needs a version of Triangulation
Theorem 4.6.4. An easier way is to prove the equality of the Euler characteristics
not for arbitrary closed two-dimensional surfaces, but for the examples in question,
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A two-dimensional polyhedron is a homeomorphism class of 2-
hypergraphs. An analogue of Remark 5.2.1.c is valid for 2-hypergraphs.

A graph is said to be embeddable (or realizable) in a 2-hypergraph
if a certain 2-hypergraph homeomorphic to the given one contains a
graph homeomorphic to the given one.

5.3. Recognition of 2-hypergraphs being homeomorphic

Theorem 5.3.1. There exists an algorithm deciding whether
(a) a 2-hypergraph is homeomorphic to the sphere S?;
(b) two arbitrary 2-hypergraphs are homeomorphic.

Theorem 5.3.1 is neither proved nor used in this book. Theorem 5.3.1 (a)
follows from Theorem 5.3.3 on sphere recognition. The latter and
Theorem 5.6.2 on classification of surfaces can be regarded as important
special cases of Theorem 5.3.1(b), which suggest how to prove the
general case (see Problem 5.5.2(b) and the notion of attaching word
before Problem 10.5.4). Let us introduce the notions required to state
these special cases.

A 2-hypergraph is called connected, if any two vertices can be
joined by a path along the edges.

A 2-hypergraph is called locally Euclidean, if for every its vertex v,
the faces containing v form a chain

{Ua ai, a2}a {’U, az, 0,3}, SR {’U, an—1, an} or
{U7 ay, a2}7 {Ua az, CL3}, ceey {Ua an—1, CLn}, {’U, G, al}
for some pairwise distinct vertices aq, ..., a,.

E.g. 2-hypergraphs that are triangulations of surfaces in Figure 2.1.1,
or of a disk with ribbons (§ 1.5), are locally Euclidean.

5.3.2. (a) For which n is the complete 2-hypergraph on n vertices
locally Euclidean?

(b) There is a 2-hypergraph that is not locally Euclidean but with
each edge incident to two faces.

(¢) A 2-hypergraph homeomorphic to a locally Euclidean one is
locally Euclidean itself.

and take in place of G2 the specific triangulation that we constructed (this suffices
for Theorem 11.5). Even after this, the phrase ‘Graph G can be modified in order
to...” in not obvious; it seems that this fact is as difficult as Theorem 5.2.4.b.
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The Euler characteristic of a 2-hypergraph K with V vertices,
E edges and F faces is the number

X(K):=V —E+F.

The methods for computing the Euler characteristics are presented
in §5.4.
Theorem 5.3.3 (Sphere recognition). A 2-hypergraph is homeomorphic

to the sphere S? if and only if it is connected, locally Fuclidean, and
its Buler characteristic equals 2.

A sketch of the proof is presented in §5.5. For higher dimensional
analogues see §10.1.

5.4. Euler characteristic of a 2-hypergraph

5.4.1. (a—i) Find the Euler characteristic of the triangulations
constructed in your solution of Problem 4.6.3.

The Euler characteristic can be computed easier (for example, in
Problem 5.4.1) not by definition but using its properties. They are
presented below.

5.4.2. (a) (Riddle) Guess and prove the formula for the Euler
characteristic of a union.
(b) Cutting a hole decreases the Euler characteristic by 1.

5.4.3. (a) The Euler characteristics of homeomorphic 2-hypergraphs
are equal.

(b) The triangulations of spheres with distinct numbers of handles,
which you constructed in Problem 4.6.3 (e), are not homeomorphic.
(This fact is not obvious since seemingly different shapes might happen
to be homeomorphic, see §2.7 and especially §2.8.)

5.4.4. Find the Euler characteristic of

(a) the disk with m Mobius bands (see Figure 2.8.1 and definition
thereafter);

(b) the Klein bottle with g handles;

(c) the projective plane with g handles;

(d) the sphere with m Mobius bands attached;

(e) the sphere with m Mdobius bands attached, and h holes cut.
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5.4.5. Which 2-hypergraphs from Problem 5.4.4 (b, ¢, d) are homeomorphic?

5.4.6. Denote by K a triangulation of 2-manifold.

(a) The Riemann Theorem. Suppose g + m pairwise disjoint loops
are chosen in K so that cutting along any of the first g of them gives two
boundary circles, and cutting along any of the last m of them gives one
boundary circle. If 2g +m > 2 — y(K) then the union of these loops
splits the triangulation.

(b) The FEuler inequality. A connected subgraph G of K with
V vertices and E edges splits the triangulation into at least £ — V + x(K)
parts. In other words, x(G) > x(K).

(c)* What is the minimum number of parts in a splitting of K by a
subgraph with V vertices, E edges and s connected components?

The Riemann Theorem 5.4.6 (b) generalizes the Riemann Theorem 2.3.5 (a)
and is implied by the following assertion (cf. [Pr14, §11.4]).

5.4.7. Cut a triangulation of 2-manifold along a non-splitting curve
that is built from some edges of the triangulation. The resulting
triangulation of 2-manifold has the same Euler characteristic as the
original one.

Answers to 5.4.1. (a,b) 0; (c,h) 2; (d,i) 1; (e, f,g) 2g.

5.5. Proof of Sphere Recognition Theorem 5.3.3

Theorem 5.3.3 is reduced to its version for thickenings (Proposition
2.7.7.c) using Assertion 5.5.1.d.

The boundary 0N of a locally Euclidean 2-hypergraph N is the
union of all its edges each of which is contained in a single face.

5.5.1. (a) The boundary is a disjoint union of cycles, i.e., graphs
homeomorphic to a triangle.

(b) The number of boundary circles is the same for homeomorphic
locally Euclidean 2-hypergraphs.

(¢) 2-Hypergraphs ‘representing’” annulus and M&bius band are not
homeomorphic.

(d) Let K = L be triangulations of 2-manifolds. Let Sk and
S, be connected components of 0K and 0L, respectively. Then
K Ug,. con Sk = L Ug, con Sf..
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Proof of Theorem 5.3.3. The ‘only if” part follows from Assertion 5.3.2 (¢)

and Assertion 5.4.3 (a), along with the result of Problem 5.4.1 (a).

The ‘if” part is harder. (Being closed and orientable, see §§5.6, 5.7,
is also needed for this part, but is implied by the other hypothesis in
Theorem 5.3.3.) Denote by K the given triangulation of 2-manifold.
Denote by V, E, F,n the number of its vertices, edges, faces, and
boundary circles.

Take the union M of caps and ribbons corresponding to vertices and
edges of the triangulation. (See an informal explanation near Fig. 1.6.3
(left) and a rigorous definition below.) By Assertions 5.2.3.a,b any
patch, any ribbon, and any cap is homeomorphic to D?. Hence M is a
thickening of the union of edges. Clearly, M has F' + n boundary circles.
Since V — E + F' =2, by and connectivity and Assertions 1.6.4.c, 1.6.5
we have n = 0. Then by Proposition 2.7.7.c M is homeomorphic to the
disk with h —1 = F' — 1 holes. The thickening M is K with F' holes.
Hence by Assertion 5.5.1.d K = S2. ]

The barycentric subdivision G’ of a graph G is obtained by subdividing
all its edges. The barycentric subdivision of a face of a 2-hypergraph
is the result of the replacement of the face by six new faces that
are obtained by drawing the ‘medians’ in the triangle representing
the face (Figure 5.5.1). The barycentric subdivision K’ of a 2-
hypergraph K is the result of the barycentric subdivision of all its
faces.

Figure 5.5.1. Barycentric subdivision

Since the barycentric subdivision can be obtained via edge subdivisions,

K ~2K.
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Denote by K" the 2-hypergraph obtained from a 2-hypergraph K by
barycentrically subdividing it twice. We will use the following notation
(see Figure 1.6.3 on the left, where a triangulation of 2-manifold K is
shown):

e a cap is the union of the faces of the triangulation K" that contain
a certain vertex of the triangulation K;

e a ribbon is the union of the faces of the triangulation K" that
intersect a certain edge of the triangulation K but avoid the vertices of
the triangulation K;

e a patch is a connected component of the union of the remaining
faces of the triangulation K" i.e., the union of all faces of K” belonging
neither to caps nor to ribbons.

5.5.2. (a) There exists an algorithm that takes a 2-hypergraph
homeomorphic to S? and outputs a sequence of edge subdivisions and
inverse operations that transform the 2-hypergraph to S2.

(b) There exists an algorithm recognizing whether a 2-hypergraph
is homeomorphic to the book with 3 pages.

5.6. Classification of surfaces

Lemma 5.6.1 (homogeneity). Let p and q be any two faces of a
locally Euclidean 2-hypergraph K. If both p and q are disjoint from 0K,
then K — p and K — q are homeomorphic.

From a locally Euclidean 2-hypergraph one can obtain other locally
Euclidean 2-hypergraphs by

e cutting a hole (more precisely, removing a face disjoint from the
boundary; this is well-defined by Homogeneity Lemma 5.6.1),

e attaching a handle, see Figure 2.1.5 (more precisely, cutting two
holes and attaching to their boundary a certain triangulation of the
lateral surface of a cylinder), or

e attaching a Mobius band, or a cross-cap, see Figure 5.6.1.

Before we prove in Assertions 5.8.1, 5.8.2 that attaching a handle,
and a Mobius band operations are well-defined, we do not assume that.

Theorem 5.6.2 (Classification of surfaces). Every connected locally
Fuclidean 2-hypergraph is homeomorphic to a triangulation of either
a sphere with handles and holes, or a sphere with Mobius bands
(attached to the sphere) and holes. These triangulations are not homeomorphic
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Figure 5.6.1. Attaching a handle and a Md&bius band; cutting a hole

for different triples (g, g, h), set to (0, g, h) for a sphere with g handles
and h holes, and to (1,g,h) for a sphere with g Mdobius bands
and h holes.

A proof is sketched in 5.7. It gives an algorithm detecting homeomorphism
between a 2-hypergraph and the aforementioned classes (e, g, h) of
2-hypergraphs, as well as an algorithm detecting homeomorphism
between locally Euclidean 2-hypergraphs. Compare to Theorem 6.7.6.

A piecewise linear (PL) two-dimensional manifold is a homeomorphism
class of locally Euclidean 2-hypergraphs. If there is no ambiguity with
the notion of 2-manifolds from §4.5, we say ‘2-manifold’ as a shorthand
for ‘PL two-dimensional manifold’.

From now on, instead of the term ‘locally Euclidean 2-hypergraph’
we use a common term ‘triangulation of 2-manifold’. Earlier it would
not be convenient for a beginner, since in the study of 2-manifolds from
the piecewise linear viewpoint, the primary object is a 2-hypergraph,
and not a 2-manifold.

A locally Euclidean 2-hypergraph is called closed, if each its edge
belongs to two faces (as opposed to one; that is, for each vertex the
second option from the definition of being locally Euclidean takes place).
For instance, in Figure 2.1.1 only the four last ‘hypergraphs’ are closed.
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By ‘sealing’ (capping with a disk) each boundary circle of a disk with
ribbons one obtains a closed locally Euclidean 2-hypergraph.

5.7. Orientable triangulations of 2-manifolds

An orientation of a two-dimensional triangle is an ordering of its
vertices up to an even permutation. An orientation is conveniently
pictured by a closed curve with an arrow inside the triangle (or by
an ordered pair of non-collinear vectors).

010

Figure 5.7.1. Agreeing orientations

An orientation of a triangulation of 2-manifold is a choice of face
orientations agreeing with one another on each edge contained in two
faces, in the sense that the orientations of adjacent faces induce the
opposite directions on their common edge (Figure 5.7.1).

A triangulation of 2-manifold is called orientable if there exists an
orientation of it'®.

It is not difficult to see that a smooth 2-manifold is orientable in
the sense of §4.10 if and only if it has an orientable triangulation.

5.7.1. (a) Homeomorphic triangulations of 2-manifold are simultaneously
orientable or non-orientable.

(b) The sphere, the torus, a sphere with handles are orientable.

(¢) The Mobius band, the Klein bottle, the projective plane
(Figure 2.1.1) are non-orientable.

(d) The torus is not homeomorphic to the Klein bottle.

5.7.2. (a) The orientability is preserved when cutting a hole.

®The notion of orientability is ‘impossible’ to introduce for arbitrary 2-
hypergraphs (think why), but is could be introduced for 2-hypergraphs each of
whose edges is contained in at most two faces.
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(b) A disk with ribbons (see §1.5) is orientable if and only if no
ribbon is twisted.

5.7.3. (a) A triangulation of 2-manifold is orientable if and only
if no homeomorphic triangulation contains a triangulation of Mobius
band.

(b)* Does there exist a non-orientable triangulation of 2-manifold
that does not contain a triangulation of Mobius band?

(¢) A closed triangulation of 2-manifold is orientable if and only
if there exists a collection of faces of its barycentric subdivision such
that every edge of the subdivision is incident to exactly one face of the
collection.

The criterion from part (a) does not give an algorithm recognizing
orientability. Such an algorithm is obtained from the following strengthening
of the criterion: one needs to replace the words ‘no homeomorphic
triangulation contains’ with the words ‘its second barycentric subdivision
does not contain’. However, the corresponding algorithm is slow (has
‘exponential complexity’). A polynomial algorithm is presented in §6.1
(or can be obtained from part (c)).

Sketch of the proof of Surface Classification Theorem 5.6.2. The lack
of homeomorphism (i.e., the second assertion of the theorem) is proved
using orientability, the number of connected boundary components,
and the FEuler characteristic; that is, the lack of homeomorphism
follows from Assertions 5.7.1(a), 5.5.1(b), 5.4.3(a) and the results of
Problems 5.4.4 (e), 5.4.1 (g).

The proof of homeomorphism (i.e., the first assertion of the
theorem) is analogous to that of Theorem 5.3.3; that is, the proof
of homeomorphism follows from Assertions 2.7.9 (b), 2.8.11(b), and
Assertions 5.7.2 (a, b). [

In Theorem 5.6.2, the number g of handles is called the orientable
genus of a triangulation of 2-manifold. It can be found from the
equation 2 — 2g — h = x. The number m of Mobius bands is called the
non-orientable genus and can be found from the equation 2 —m — h = y.
See Problems 5.4.1 (g) and 5.4.4 (a).

By Theorem 5.6.2 (or by Assertion 6.7.3 (b)) the Euler characteristic
of a closed orientable triangulation of 2-manifold is even.
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5.8. Attaching a handle or a Mdbius band is well-defined

The 2-hypergraphs obtained from a given locally Euclidean one by
attaching a handle or a M6bius band, are unique up to a homeomorphism.
The fact that the result of attaching a handle or a Md&bius band does
not depend on the disks to which the handle is attached, also follows
from Homogeneity Lemma 5.6.1. However, the independence from the
attaching map is a priori not obvious (though it is usually not discussed
in textbooks). Indeed, the result of gluing two quadrilaterals ABC' D
and A'B'C'D’ to one another along the edges AB and A’B’, CD
and C’D’, depends on the choice of attaching map (i.e., on the choice of
directions along the edges used for gluing). Moreover, in the following
paragraph we define a analogous operation of ‘attaching a candle’, which
is not well-defined up to a homeomorphism.

A candle is the union of a quadrilateral ABC'D with segments
CC4, DDy, DD5. Given a surface M and an arc XY in its boundary,
attaching a candle is taking the union of M and the candle, and
identifying the arcs AB and XY'. This can be done in two ways: identify
A with X, and B with Y, or vice versa. The two thus obtained shapes
are homeomorphic when M is a disk, but any homeomorphism between
them reverses the orientation on the disk. The two thus obtained shapes
are not homeomorphic when M is a disk with candle.

For higher-dimensional manifolds, the result of the attaching an
analogue of a handle may depend on the choice of gluing (a remark for
experts: CP2#CP? and CP?#(—CP?) are not homeomorphic).

In order to have the independence of the way of gluing one needs
the object being attached to be ‘symmetric’. For attaching a handle,
the independence follows from Assertion 5.8.1 (b) (or 5.8.1 (¢, d)), while
for attaching a Mobius band this follows from Assertion 5.8.2 (b).

5.8.1. (a) The quadrilateral whose antipodal sides are endowed
with ‘agreeing’ directions is homeomorphic to the quadrilateral whose
antipodal sides are endowed with the opposite ‘agreeing’ directions.
Formally, there exists a refinement K of the 2-hypergraph with vertices 1,
2, 3, 4 and faces {1,2,3},{1, 3,4}, and an isomorphism K — K,
sending 1, 2, 3, 4 to 2, 1, 4, 3, respectively.
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(b) The annulus whose boundary circles are endowed with ‘agreeing’
directions is homeomorphic to the annulus whose boundary circles are
endowed with the opposite ‘agreeing’ directions.

(¢) The torus with a hole and with a choice of direction along the
boundary circle is homeomorphic to the torus with a hole and with the
opposite choice of direction along the boundary circle.

(d) The result of attaching a handle is homeomorphic to the result
of the operation in Figure 5.6.1, at the top, and is homeomorphic
to the result of cutting out square ABCD and gluing directed edges
AB and DC', AD and BC.

In order to prove Assertion 5.8.1(d), as well as the following claim,
you can exhibit a sequence of pictures, as in §2.7.

5.8.2. (a) The projective plane (see Example 4.5.3) with a hole is
homeomorphic to the Mobius band.

(b) The Mobius band with a hole and with a choice of direction
along its boundary circle is homeomorphic to the Mobius band with
a hole and with the opposite choice of direction along the boundary
circle.

(¢) The result of attaching a Mobius band is homeomorphic to
the result of cutting a hole and identifying the antipodal points of its
boundary circle.

(d) The Klein bottle is homeomorphic to the sphere with two Mdbius
bands attached.

(e) The torus with a Mobius band attached is homeomorphic to the
Klein bottle with a Mdbius band attached.

5.9. Regular neighborhoods and cellular subgraphs

The notion of a regular neighborhood is informally explained near
Fig. 1.6.3 (left). An example of a regular neighborhood of a subgraph
in a hypergraph one can take the union U of caps and ribbons
corresponding to the vertices and the edges of the subgraph; that is, the
union of those faces of the second barycentric subdivision that intersect
the subgraph. Let us give the general definition.

A hypergraph L is obtained from a complex K by an elementary
collapse it K = LU o and L No = 0o — Int 7 for some faces o, 7 of K
such that 7 C do. A hypergraph K collapses to L (notation: K \ L) if
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there exists a sequence of elementary collapses K = Ko \ K1 \(... \ K, = L.
A hypergraph K is collapsible if it collapses to a point.

A regular neighborhood of a subhypergraph A in a hypergraph
K is a subhypergraph of some subdivision of K which contains A and
collapses to A.

5.9.1. (a) The cone of any graph is collapsible.

(b) Construct three hypergraphs none of which collapses to a
hypergraph homeomorphic to any other.

(c¢) The Euler characteristic is preserved under collapses.

(d) The Euler characteristic of a subgraph and of its regular
neighborhood in a 2-hypergraph are equal.

(e) The union U is indeed a regular neighborhood.

The complement G — H in a graph G to a verter set H is formed
by the vertices of the graph G that do not lie in H, and the edges of
the graph G without endpoints in H.

Let G be a subgraph of a hypergraph K (i.e., a subgraph of the
graph formed by the vertices and the edges of the hypergraph K). The
complement K — G is formed by the faces of the hypergraph K that do
not intersect G.

The following definition formalize the construction of gluing a
hypergraph out of a square (Figure 2.1.1) or a polygon.

Denote by |K| the geometric realization of a graph K or a
hypergraph K.

A vertex set A in a graph K is called (topologically) cellular if
each connected component of | K| — | A| is homeomorphic (topologically)
to the open interval. We will be using the following (equivalent)
combinatorial definition. A vertex set H in a graph G is called
cellular if each connected component of the complement G” — H 1is
homeomorphic to a segment each of whose endpoints belongs to an
edge of the graph G” incident to a vertex from H.

A subgraph A in a hypergraph K is called (topologically) cellular if
each connected component of | K| — | A| is homeomorphic (topologically)
to the open disk. We will be using the following (equivalent) combinatorial
definition. A subgraph G in a hypergraph K is called cellular if each
connected component C of the complement K” — G” is homeomorphic
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to a disk'” each of whose boundary edges lies in a face of the
hypergraph K” intersecting G. For example,

e a point in the sphere is cellular whereas a point in the torus is
not;

e the union of the edges of a hypergraph is cellular.

5.9.2. The FEuler formula. If K is a 2-hypergraph, and G C K
is a connected cellular subgraph with V' vertices and E edges, then
V — E+ F = x(K), where F' is the number of connected components
of the complement K’ — G’.

Hint. The formula follows from the inclusion-exclusion principle
(Problem 5.4.2), since x(D?) = 1.

5.9.3. (a) If a connected graph can be embedded to the sphere
with ¢ handles, then it is homeomorphic to a cellular subgraph of a
sphere with at most g handles.

(b) The same for spheres with M6bius bands attached.

1"In many applications of the notion ‘cellular’, the condition ‘homeomorphic to a
disk’ could be replaced by a weaker condition x(C) = 1, which is easier to verify. If
the component C' is locally Euclidean, then the cellularity condition is equivalent to
this weaker condition as well as to the following one: the component C' is split by
any polygonal line with the endpoints on the boundary of C.
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And the leap is not — is not what I think
you sometimes see it as — as breaking, as
acting. It’s something much more like a quiet
transition after a lot of patience and — tension
of thought, yes — but with that [enlightenment]
as its discipline, its orientation, its truth. Not
confusion and chaos and immolation and pulling
the house down, not something experienced as a
great significant moment.

I. Murdoch, The Message to the Planet.

6.1. Orientability criterion

The definitions of a piecewise linear (PL) 2-manifold and its
triangulation are presented in §5.6. The definitions of a smooth
2-manifold and its triangulation are presented in §4.5. Either of these
two approaches can be used for this section. However, a careful
treatment is only presented in the PL language in some places.

The definition of orientability of a triangulation is given in §5.7.
There is a nice and simple criterion of orientability: ‘does not contain
a Mobius band’ (a precise formulation is given in Problem 5.7.3 (a)).
There is a simple algorithm recognizing orientability as follows. It
suffices to check the orientability of each connected component. First,
orient a face of the component arbitrarily. Then at each step orient a
face adjacent to any of the faces already oriented, until all faces are
oriented, or two adjacent faces with disagreeing orientations are found.

In this section we will give an algebraic criterion of orientability,
which, basically, is merely a reformulation of the definition of orientability
in algebraic language. However, this criterion is important not on its
own but rather as an illustration of obstruction theory. Moreover,
similar considerations lead to Assertion 6.1.2 (b), and are applied in
the classification of thickenings [Sk]. Cf. §6.8, §4.11.

Theorem 6.1.1 (Orientability). A 2-manifold N is orientable if
and only if its first Stiefel—Whitney class w1 (N) € H1(N, 9) is zero.
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The group Hi(N, d) and the class wi(IN) are defined later. They
arise naturally and can be defined rigorously in the process of inventing
the Orientability Theorem, which we will start in a moment. The
computation of the group H;(N) is given in §6.4.

In this section the word ‘group’ can be regarded synonymous with
the word ‘set’ (with the exception of Problems 6.2.5, 6.5.2, and §6.7).
The constructions will remain interesting.

6.1.2. (a) Draw a closed non-self-intersecting curve on the disk with
three Mobius bands, so that the complement to the curve is orientable.

(b) Any closed 2-manifold admits a closed non-self-intersecting
curve whose complement is orientable. (More formally: for any closed
triangulation of 2-manifold there is a subgraph of a homeomorphic
triangulation 7', such that the subgraph is homeomorphic to the circle,
and the complement to the image of this subgraph in the second
barycentric subdivision of T', see §5.9, is orientable.)

6.2. Cycles

The notion of a cellular decomposition of a hypergraph formalizes
the examples ‘glued of polygons’ from Example 5.1.1.c. A cellular
decomposition of a hypergraph K is a pair Ko C K1 C K of its
subhypergraphs in which K; is a cellular subgraph in K and Kj is a
cellular set of vertices in K7 (see §5.9 for definitions). The graph K is
called the one-dimensional skeleton of the cellular decomposition. Fdges
and faces of a cellular decomposition Ky C K; C K are the connected
components of the complement K{ — Ky and connected components of
the complement K" — K| respectively.

Many constructions are done more conveniently for cellular decompositions
rather than for hypergraphs, since many ‘interesting’ hypergraphs
have ‘many’ faces, but admit ‘economical’ cellular decompositions. For
computations, it is more convenient to draw cellular decompositions
rather than more cumbersome polygonal decompositions. Triangulations
are special cases of cellular decompositions. Other examples are shown
in Figure 2.1.1. In the following considerations, except the examples,
the reader may substitute cellular decompositions with triangulations.

In this section T is a cellular decomposition of a 2-manifold N,
while o is a choice of orientations on the faces of T
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O

Figure 6.2.1. Collection o of orientations, and the obstruction cycle w(o)

Color an edge of a cellular decomposition 7" in red if the orientations
of the incident faces do not agree along this edge, i.e., induce the same
direction on the edge. The collection of the red edges is called the
obstruction cycle w(o).

For instance, in Figure 6.2.1 the Klein bottle is represented as a
square with glued sides, i.e., it is decomposed into a single polygon. The
faces incident to the horizontal edge from the two sides, coincide. But
their (or rather its) orientations do not agree along the edge. Besides,
the orientation of the only face agrees with itself along the vertical
edge. Hence, in Figure 6.2.1 the obstruction cycle consists of a single
horizontal edge (shown in bold).

So, if a decomposition is not a triangulation, then the orientation of
a face incident to an edge from two sides does not have to agree with
itself along this edge. Moreover, a pair of faces (coinciding or not) might
have orientations that agree along one edge but disagree along another
edge.

6.2.1. (a) For each edge of the single-face cellular decomposition of
the M&bius band (i.e., of the representation of the M&bius band as a
square with glued sides, see the third column in Figure 2.1.1), find out
if the orientation of the only face agrees with itself along this edge.

(b) The same question for the projective plane (Figure 2.1.1).

6.2.2. (a) Draw the obstruction cycle for the single-face cellular
decomposition of the Mébius band.
(b) The same for the projective plane.

Many of the following facts (for example, Problems 6.2.3 (a, b)) can
be first proved for triangulations and then for cellular decompositions.

6.2.3. (a) A collection o of face orientations determines an orientation
of a cellular decomposition if and only if w(o) = @.



6.3. Homologous cycles 155

(b) If a 2-manifold is closed, then each vertex has an even number
of incident edges of the obstruction cycle (by convention, a loop counts
with multiplicity two).

(¢) The complement to the obstruction cycle w(o) (formally, the
union of the faces of the second barycentric subdivision that do not
intersect w(o)) is orientable.

(d) For any closed triangulation of 2-manifold, it is possible to orient
the (two-dimensional) faces of its barycentric subdivision so that the
orientations of any two adjacent faces do not agree.

A cycle (homological, one-dimensional, mod 2) in a graph (or in
a hypergraph) is an unordered collection of its edges such that any
vertex has an even number of incident edges from the collection. The
words ‘homological’, ‘one-dimensional’ and ‘mod 2’ will be omitted.
Cycles in the sense of graph theory will be called ‘closed curves’.

For instance, the graphs in Figure 1.2.1 have 2, 8, and 8 cycles,
respectively. The union of edges in the single-face cellular decomposition
of the Klein bottle (Figure 6.2.1) is the ‘figure eight’, so this graph has
four cycles.

6.2.4. How many cycles are there in a connected graph with V'
vertices and E edges?

On the set of all cycles in a given graph (or a hypergraph) consider
the operation of the (mod 2) sum (i.e., the symmetric difference).

6.2.5. The homology group Hy(G) of a graph G (one-dimensional,
with coefficients mod 2) is the group of all cycles in the graph G.

(a) The sum of cycles is a cycle.
(b) Homeomorphic graphs have isomorphic homology groups.
(¢) For a connected graph G with V vertices and E edges, one has
Hy(G) =z VT
(d) Non-self-intersecting closed curves in a graph G generate H1(G).

6.3. Homologous cycles

If w(o) # @, then o does not determine an orientation of a cellular
decomposition 7T'. All is not lost though: one can try to modify o in
order to make the obstruction cycle empty. For this, let us find out how
w(o) depends on o. The answer is formulated conveniently using the
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mod 2 sum (i.e., the symmetric difference) of edge sets in an arbitrary
graph.

The (homological) boundary da of a face a in a hypergraph is the
set of edges of the geometric boundary of this face.

Figure 6.3.1. Homological (algebraic) boundary of a complicated face

For a face of a cellular decomposition, the definition is more
involved. The (homological) boundary da of a face a is the set of
all those edges of the geometric boundary of the face that are adjacent
to the face just from one side (Figure 6.3.1).

As for cycles, the word ‘homological’ will be omitted. For the
single-face cellular decomposition of the Klein bottle (Figure 6.2.1) the
boundary of the only face is empty.

6.3.1. (a) What is the boundary of the only face in the single-face
cellular decomposition of the projective plane (see Figure 2.1.1)7

(b) The boundary of a face is a cycle.

(c) When the orientation of single face a is reverted, the cycle w(o)
changes to the sum with the boundary of that face: for the resulting
collection o’ of orientations one has w(o") — w(o) = da.

(d) When the orientations of several faces aq, ..., a; are reverted,
the cycle w(o) changes to the sum with the boundaries of these faces:
for the resulting collection o’ of orientations one has

w(o') —w(o) =0ay + ...+ day.

Two cycles are called homologous (or congruent modulo boundaries),
if their difference is the sum of the boundaries of several faces.
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6.3.2. (a) When the collection o of orientations is changed, the
obstruction cycle w(o) is replaced by a homologous cycle.

(b) If w(o) is a boundary, then it is possible to change o to o' so
that w(o') = .

Proposition 6.3.3. A closed triangulation of 2-manifold is orientable
if and only if some (or, equivalently, any) obstruction cycle is homologous
to the empty cycle.

Sketch of the proof. It is clear that this condition is necessary
for orientability. Conversely, suppose that some obstruction cycle is
homologous to the empty cycle. Then there exists a collection o of face
orientations of which w(o) is the boundary. Then by Assertion 6.3.2 (b)
it is possible to change o to o so that w(o’) = 0. Therefore, the
triangulation is orientable. L]

6.3.4. (a) Any two cycles in the single-face cellular decomposition
of the sphere (see Figure 2.1.1) are homologous.

(b) The boundary circles on the torus with two holes are homologous
(for any cellular decomposition).

(¢) The boundary circle of the Mébius band is homologous to the
empty cycle (for any cellular decomposition).

6.3.5. For the single-face cellular decomposition of the torus (Figure 2.1.1)
(a) the ‘meridian’ cycle is not homologous to the empty cycle;
(b) different cycles are not homologous.

6.3.6. (a) In the single-face cellular decomposition of the projective
plane (Figure 2.1.1) different cycles are not homologous.

(b) In the complete hypergraph on 9 vertices any two cycles are
homologous.

(¢) Any two cycles are homologous in the single-face cellular
decomposition of the Zeeman dunce hat.

(The Zeeman dunce hat is obtained from a triangle ABC' by gluing
all three its sides directed so that AB = AC' = BC.)

6.3.7. (a) Homology is an equivalence relation on the set of cycles.

(b) Any cycle in a connected triangulation 7' of 2-manifold is
homologous to a closed non-self-intersecting polygonal line in some
subdivision of 7T

(c) Is the same true for an arbitrary connected hypergraph T'7
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6.3.8. (a) The sum of the boundaries of all faces of a closed
triangulation of 2-manifold is empty.

(b) The sum of the boundaries of all faces of a triangulation of
2-manifold equals to the boundary.

(¢) The sum of the boundaries of any proper subset of faces of a
connected closed triangulation of 2-manifold is non-empty.

6.3.9. (a) Any cycle in a hypergraph is homologous to some cycle
in any cellular graph in this hypergraph.

(b) If two cycles in a cellular decomposition of a hypergraph are
homologous in the hypergraph, then they are homologous in the cellular
decomposition as well.

6.4. Homology and the first Stiefel—Whitney class

Recall the definitions, motivated and introduced in the previous
sections. A cycle in a hypergraph is an unordered collection of edges
such that every vertex is incident to an even number of them. The
boundary Ja of a face a in a hypergraph is the collection of all edges of
the geometric boundary of this face. Two cycles are called homologous
if their difference is the sum of several boundaries.

The homology group H;(K) (one-dimensional, with coefficients mod 2)
of a hypergraph K is the group of cycles up to homology.

The homology group appears in solutions of specific problems
(e.g. in checking orientability, see §6.2-§6.3). It is important that the
homology group is defined in a short way regardless of the problems,
and for arbitrary hypergraphs.

6.4.1. (a) On the set H;(K) the sum operation is well-defined by
the formula [o] + [5] = [ + S].

(b) The set Hy(K) with this operation is a group.

(¢) The homology groups of homeomorphic hypergraphs are isomorphic.
More precisely, if a hypergraph K is obtained from a hypergraph L by
edge subdivision, then the naturally defined homomorphism H; (L) — H;(K)
is an isomorphism.

The homology group H1(T') (one-dimensional, with coefficients mod 2)
of a cellular decomposition 7" of a hypergraph is defined analogously. By
definition, the boundary da of a face a of a cellular decomposition of
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a hypergraph is the collection of those edges of the geometric boundary
of a that are adjacent to a from an odd number of sides (Figure 6.3.1).

6.4.2. (a) For the aforementioned single-face cellular decompositions
of the sphere, the torus, the projective plane, the Klein bottle (Figures 2.1.1
and 6.2.1) the number of elements in Hi(7T) equals 1, 4, 2, 4,
respectively.

(b) For a cellular decomposition 7" of a hypergraph K the following
holds: H1(T) = H1(K).

The homology group H1(N) (one-dimensional, with coefficients mod 2)
of a 2-manifold N is the group H;(T) for any triangulation 7' of the
manifold (or even for any cellular decomposition 7" of a triangulation).
The homology group is well-defined by Assertion 6.4.1 (¢) (and 6.4.2 (b)).

The first Stiefel —Whitney class of a cellular decomposition T’
of a closed triangulation of 2-manifold is the homology class of an
obstruction cycle:

w1 (T) :=[w(o)] € H1(T).

This is well-defined by Assertion 6.3.2 (a).

The first Stiefel —Whitney class of a closed 2-manifold N is the
first Stiefel—Whitney class of any triangulation 7" of 2-manifold N (or
even of any cellular decomposition T of a triangulation): wy () := wq(T).
This is well-defined in the following sense (see also Assertion 6.4.2 (b)).

6.4.3. The map from Assertion 6.4.1 (c¢) sends wi (L) to wy(K).

Orientability Theorem 6.1.1 is a reformulation of Assertion 6.3.3.

6.5. Computations and properties of homology groups

In the arguments involving homology classes of cycles, it is convenient
first to work with representing cycles, and then prove that the actual
choice of the representatives does not play a role.

6.5.1. Find the homology group and draw the curves forming its
basis for your preferred cellular decomposition of

(a) the sphere with g handles;

(b) the sphere with g handles and A holes;

(¢) the sphere with m Md&bius bands;

(d) the sphere with m Mobius bands and h holes.
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6.5.2. If T is a cellular decomposition of a connected closed
2-manifold, then H;(T") = Zg_X(T).

6.5.3. (a) If M and N are closed 2-manifolds, then H;(M#N) =
>~ H{(M) & H{(N) (the operation # of connected sum is defined

analogously to Figure 5.6.1).
(b) Does that formula hold for non-closed 2-manifolds M and N?

6.5.4. (a) For any hypergraphs K and L sharing at most one point,
(b) Does that formula hold if there are two common points?

6.5.5. (a) For any connected graph K one has
H{(K xI)=2H\(K) and H (K x S') = H(K) ® Z,.

(Come up with your own definitions of the product of a graph with the
interval /the circle, or find the definitions in [Sk, Section 5.9.2 “Linear
realizability of products”|.)

(b) For a regular neighborhood U of a subgraph K in a hypergraph,
one has H1(U) = H,(K).

Let T be a cellular decomposition of a triangulation of 2-manifold N
(perhaps, with a non-empty boundary). A cycle relative to the boundary
(or a relative cycle, for brevity) in T is a collection of edges of T
such that every non-boundary vertex is incident to an even number
of the edges from the collection. Two relative cycles are said to be
homologous relative to the boundary, if their difference is a sum of the
boundaries of several faces and of some boundary edges. The homology
groups Hi(T,0), Hi(N, 0) relative to the boundary, and the classes
wy(T) € Hi (T, 0), wi(N) € Hi (N, 9) are defined analogously to above.

6.5.6. (a,b) Formulate and solve the analogues of Problems 6.5.1 (b, d)
for the homology groups relative to the boundary.

6.6. Intersection form: motivation

The intersection form is among the most important tools and
research objects in topology and its applications. See [DZ93]. The
intersection form arises naturally, for instance, when proving Assertions 6.6.1 (b)
and 6.6.2. See also the Mohar formulas 2.7.8 (¢) and 2.8.8 (¢).
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6.6.1. (a) Regular neighborhoods (see Figure 1.6.3, on the left,
and §5.9) of isomorphic graphs in the same surface are not necessarily
homeomorphic.

(b) Regular neighborhoods of the images of homotopic embeddings
of a given graph into a 2-manifold are homeomorphic. (The definitions
of homotopy are analogous to the ones given in §3.2, 3.4, 3.7.)

Two embeddings fq, fi: G — N are called isotopic if there exists a
family U;: N — N of homeomorphisms depending continuously on the
parameter ¢ € [0, 1], such that Uy =id and Uj o fo = fi. It is clear that
regular neighborhoods of the images of homotopic embeddings of a given
graph into a surface are homeomorphic. In contrast, Assertion 6.6.1 (b)
is not obvious.

6.6.2. On Topologist’s planet, shaped as a solid torus, there are
rivers Meridian and Parallel. The Little Prince and Topologist traveled
around the planet along two different closed routes. The prince crossed
the Meridian 9 times and the Parallel 6 times, while Topologist crossed
the rivers 8 and 7 times, respectively. Then their routes had to intersect.
(When crossing a river a character ends up on the other bank of the
river. More rigorously, the intersection of the river and character’s path
are transverse, see the definition below.)

An heuristic arqument, leading to the notion of the intersection
number. Let N be a 2-manifold and let a, b be closed curves on N.
Let us assume that a and b

e are subgraphs of a certain hypergraph representing N;

e are in general position; that is, they intersect transversely (Figure 6.6.1)
in finitely many points, none of which is a self-intersection point of
either a or b.

AQ B1 Bl AQ
XX
Al B2 Al BQ

Figure 6.6.1. A transverse intersection and a non-transverse intersection

An intersection point x of two curves on a 2-manifold is called
transverse if the curves are non-self-intersecting in a neighborhood of
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the point, and every sufficiently small closed curve S, winding around x
intersects the two curves in two pairs of points that alternate along S,
(that is, if Ay, By are the intersection points of the first curve with S,
and Ao, By are the intersection points of the second curve with S,., then
these points are situated along S, in the order A;A3B1Bs). In other
words, in order for the point = to be transverse, two short ‘segments’ of
the first curve that are incident to x need to be on the different sides
of the second curve in a small neighborhood of z, see Figure 6.6.1.

In this situation |a N b] mod 2 does not change if a and b are
replaced by homologous curves satisfying the same condition (the
subgraphs, corresponding the curves, are homologous cycles; this is
what is meant by ‘homologous’ curves).

6.7. Intersection form: definition and properties

The argument presented in the preceding section can be reworked
in order to give a definition of the intersection form, based on
transversality. We will present a different definition. Instead of transversality
it will use the following more convenient notion of the dual cellular
decomposition. For the definition of a cellular decomposition and its
advantage over polygonal decompositions, see the beginning of §6.2.

The definition of the dual cellular decomposition of a cellular
decomposition U of a closed 2-manifold N. The definition is obtained
from the definition of the dual decomposition into polygons (see §4.8)
by requiring an additional condition: the edge a* intersects the union
of edges U; of a cellular subgraph U in a single point that belongs to
the edge a. The edge a* is called dual to a. The resulting graph U7 is
cellular for a certain triangulation of 2-manifold N. (This triangulation
might be different from the one that participates in the definition of
the cellular decomposition U. In the graph U there might be loops
and multiple edges, even if in U; there are such edges.) The resulting
cellular decomposition U™ is called dual to U.

The definition of the intersection of edge collections. Take a cellular
decomposition U of a 2-manifold N (to be precise, of a representing
hypergraph). Take the dual cellular decomposition U*. For edge
collections X in U, Y in U*, set X NY to be the number of their
intersection points mod 2.
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6.7.1. (a) The intersection of edge collections is bilinear:
anN(y+d)=any+andand (a+pF)Ny=any+ BNy,

(b) The intersection of a cycle and a boundary equals zero.

(c) The bilinear multiplication N: H{(U) x H{(U*) — Zgo is well-
defined via the formula [X] N [Y]:= X NY, for a cycle X in a
decomposition U and a cycle Y in the decomposition U*.

(d) Let T, T be closed triangulations of 2-manifold N, where T is
obtained from 7' by a single edge subdivision. Define ‘natural’ maps
f: Hi(T)— H(T) and f*: H{(T*) — H(T") (cf. Assertion 6.4.1(c)).
Prove that a N 5= f(a) N f*(5).

In view of Problems 6.7.1 (a, ¢, d) one obtains the symmetric bilinear
intersection form

M: Hl(N) X Hl(N) —>ZQ.

6.7.2. (a) Find the intersection form of the sphere with g handles
(that is, find the matrix of this form in some basis of the homology
group).

(b) Find the intersection form of the sphere with m Mobius bands.

(¢) The rank of the intersection form of a disk with ribbons is equal
to the rank defined in the Mohar formula 2.8.8 (c).

(d) The intersection form is symmetric: « NG = 5N a.

6.7.3. Let N be a closed 2-manifold. The definition of the first
Stiefel—Whitney class wy(N) € Hi(N) is presented in §6.4.

(a) For any a € H1(N), one has wi(N)Na=anNa.

(b) wi(N) Nwi(N) = pax(N).

6.7.4. Poincaré duality. The intersection form of any closed 2-manifold N

is non-degenerate; that is, for any a € H;(N) — {0} there exists
g€ Hi(N) such that anN g =1.

6.7.5. (a—d) Define the intersection form Hy(N) x H{(N) — Zs
for a 2-manifold N with non-empty boundary. Formulate and prove the
analogues of Assertions 6.7.1.

(e) The intersection form can be degenerate.

(f) Find the intersection form and its rank for the sphere with g
handles and & holes.

(g) Find the intersection form and its rank for the sphere with m
Mobius bands and A holes.
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On the path of this book to a reader

Here we give details to ‘publishing rights’ in p. 2 of this file. As of
May, 2022, no public reply from the Editorial Board or from Springer
are available. Updates (e.g. a public reply, if available) will be presented
here.

A. Skopenkov’s letter to the Editorial board of Springer book series
‘Moscow Lecture Notes” (Cc M. Peters). Dec 6, 2021.

Dear colleagues,

Hope you are fine and healthy.

Thank you for accepting for publication in ‘Moscow Lecture Notes’ series
of Springer the book Algebraic Topology From a Geometric Standpoint,
https://www.mccme.ru/circles/oim /obstructeng.pdf

I'm afraid Springer is disregarding this acceptance decision of the Editorial
Board. The Publishing Agreement proposed by Springer in April does not
make the Publisher committed to publishing the book. Martin Peters and
I found a compromise in May. But our compromise is not realized, and
the problem is still unresolved - in spite of my monthly reminders. Natalia
Tsilevich did excellent urgent translation work in July, but neither is paid by
Springer, nor has a legal document ensuring later payment.

Does Editorial Board have any means to ensure that its acceptance
decision is fulfilled by Springer? This information is vital for authors
submitting to ‘Moscow Lecture Notes’ series.

Best wishes, Arkadiy.

PS The translation went fast and was already completed as early as in
July (only the introduction and sections 3,4 remained). The translation was
stopped for reasons described above.

A. Skopenkov’s letter to A. Gorodentsev and V. Bogachev, Editors of
Springer book series ‘Moscow Lecture Notes’ (Cc M. Peters). Dec 15, 2021.

Dear Alexey and Vladimir Igorevich,

Upon request of Vladimir Igorevich I describe how Springer is disregarding
the acceptance decision of the Editorial Board of ‘Moscow Lecture Notes’
series. On compromises, see my letter of 6 Dec.

Could the Editorial Board make minimal efforts supporting its acceptance
decision? A possible way is to publicly support the authors’ amends to the
Agreement proposed by Springer (I am willing to send you the list of amends).
The information on whether the acceptance decision of the Editorial Board
is final, is vital for authors submitting to the ‘Moscow Lecture Notes’ series.
So the result of your efforts (if you choose to do some) should be widespread
throughout the scientific community.
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(1) The Agreement proposed by Springer contains the following clause
allowing the Publisher to terminate the Agreement without any losses. This
makes the publisher not committed to publishing the book, and so makes the
acceptance decision of the Editorial Board void.

sk kK ok Kk KoKk

11.2. If the Publisher, acting reasonably, decides that the Work is not
suitable for publication in the intended market place and/or community or that
there is no substantial market for the Work, or the economic circumstances
of publication have substantially changed (in each case other than due to the
Work not being of a suitable quality to justify publication) then the Publisher
may at any time terminate this Agreement by giving one month’s notice to
the Author in writing.

kKR Kok Kk K

(2) The Agreement proposed by Springer does not contain a deadline for
publication of the book (in terms of months after receipt of the translation).
This makes the publisher not committed to publishing the book, and so makes
the acceptance decision of the Editorial Board void.

(3) The Agreement proposed by Springer contains the following clause
which makes the acceptance decision of the Editorial Board void.

Kok kok Kok ok

18.1. This Agreement, and the documents referred to within it, constitute
the entire agreement between the Parties with respect to the subject matter
hereof and supersede any previous agreements, warranties, representations,
undertakings or understandings. Each Party acknowledges that it is not
relying on, and shall have no remedies in respect of, any undertakings,
representations, warranties, promises or assurances that are not set forth in
this Agreement.

ok ok Kok ok

(4) The Agreement proposed by Springer does not specify the amount
of, and the deadline for, Publisher’s payment for translation. For this, the
Agreement refers to the Translation Agreement, but gives no guarantee that
the terms of that Translation Agreement will be acceptable to the author and
other translator. Since the author should not sign such an Agreement, this
makes the acceptance decision of the Editorial Board void.

Best Regards, Arkadiy.

A. Skopenkov’s letter to V. Bogachev, Editor of Springer book series
‘Moscow Lecture Notes’ (Cc A. Gorodentsev and M. Peters). Dec 23, 2021.

Dear Vladimir Igorevich,

Thank you for your reply.
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Why do you write that my suggestions have been taken into account in
a modified contract? This is wrong as I explained in my letter of Dec 15: my
suggestions on items (1)-(4) are not taken into account. I forwarded you the
last, list of my suggestions sent to M. Peters on Nov 17 (analogous suggestions
to previous versions of the Publishing Agreement were sent earlier). I received
no reply either accepting these suggestions, or stating that Springer would not
change the contract, or proposing compromises.

Recall that

(*) Springer is disregarding the acceptance decision of the
Editorial Board because the Publishing Agreement proposed by
Springer does not make the Publisher committed to publishing the
book.

This is justified in my letter of Dec 15 by items (1)-(4). You do not consider
those items, so you could not refute the statement (*). You write that the
Publishing Agreement proposed by Springer is standard, but again this does
not refute the statement (*). If something bad is a standard practice, this
does not make it good.

My real experience with Springer is poor. I spent an enormous amount of
time correcting errors that appeared during typesetting of my paper in Arnold
J. Math. In May M. Peters agreed to take my suggestions into account. As
of December, neither this is done, nor he informed me that this would not
be done. So publication of the book is unduly postponed for an uncontrolled
amount of time. All positive parts of our collaboration with M. Peters are
explicitly made void by clause 13.1 of the Agreement:

ok ok Kok ok

13.1. This Agreement, and the documents referred to within it, constitute
the entire agreement between the Parties with respect to the subject matter
hereof and supersede any previous agreements, warranties, representations,
undertakings or understandings. Each Party acknowledges that it is not
relying on, and shall have no remedies in respect of, any undertakings,
representations, warranties, promises or assurances that are not set forth in
this Agreement.

kR KKk

For the moment, I will not comment on the other part of your letter for the
following reason. The above (and the rest of your letter) makes me suppose
that you confused a responsible business discussion with an irresponsible tea-
time talk. If I am wrong, then I am sorry, and I have the following suggestion.

We strongly need this discussion to be responsible. We do not have enough
time to discuss premature ideas, whose invalidity becomes clear when their
publication (or a mental experiment of publication) is suggested. So I inform
you that our correspondence with the Editorial Board on this subject is public.
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I will publish all my letters at https://www.mccme.ru/circles/oim /obstructeng.pdf
. If you would not send me a public reply to my Dec 15 letter, then the best
way is to treat the private reply as non-existent, and inform the community
that there is no public reply. If you send me a public reply to my Dec 15
letter (please feel free to edit your private reply), then I will publish it. My
reply, your further reply, etc will also be published; presumably the discussion
will soon converge by revealing important questions (like Q1, Q2, Q3 below)
and the Editors answering them. If T receive a letter not stated to be public,
then I will delete it unread (to avoid confusion). If a part of such a public
discussion would become obsolete, we could delete that part (only) by our
mutual consent.

Such a public discussion would be very useful for potential authors of this
book series. In particular, they would be grateful if the Editors could publicly
answer the following questions:

(Q1) Is Agreement with the properties (1)-(4) from my Dec 15
letter absolutely standard for this book series?

(Q2) Is Springer not obliged to accept all recommendations of
the Editorial Board for this book series?

(Q3) Do Editors advise the authors to sign the Agreement
without reading it?

If there is no public answer, a potential author could only assume that
the answer is ‘yes’.

Such a public discussion would require much effort. So let us find a way
to avoid it. E.g., discussion by skype / zoom / phone makes it easier to
understand each other and to find compromises.

Best wishes, Arkadiy.

A. Skopenkouv’s letter to M. Peters, A. Gorodentsev, V. Bogachev, and Yu.
S. Ilyashenko. Jan 30, 2022.

Dear Martin, Alexey, Vladimir Igorevich, and Yuliy Sergeevich,

Hope you are fine and healthy.

I am grateful to the Editorial Board of ‘Moscow Lecture Notes’ of Springer
for accepting in January, 2021 for publication the book ‘Algebraic Topology
From Geometric Standpoint’. (Please see the electronic version of a part at
https://www.mccme.ru/circles/oim /obstructeng.pdf.)

The translation was essentially rejected by Springer by sending an
unacceptable publishing agreement, promising to make amends suggested by
the author in May, 2021, and neither making amends nor informing the author
that the amends are not accepted, by January, 2022.

So, however reluctantly, I inform you that this book is no longer submitted
to Springer.
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We do not have enough time to discuss premature ideas, whose invalidity
becomes clear when their publication (or a mental experiment of publication)
is suggested. So I inform you that our correspondence on this subject is public.
My letters are published at https://www.mccme.ru/circles/oim /obstructeng.pdf.
If T receive a letter not stated to be public, then I will delete it unread (to
avoid confusion).

I am also open to private discussions by skype / zoom / phone.

Best wishes, Arkadiy.



