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Algebrai
 Topology From a Geometri
 Standpoint

A. Skopenkov

Abstra
t.

It is shown how main ideas, notions and methods of algebrai


topology naturally appear in a solution of geometri
 problems. The

main ideas are exposed in simple parti
ular 
ases free of te
hni
al

details. We keep algebrai
 language to a ne
essary minimum. So

most of the book is a

essible to beginners and non-spe
ialists,

although it 
ontains beautiful non-trivial results. Part of the

material is exposed as a sequen
e of problems, for whi
h hints

are provided. The book is intended for students, resear
hers, and

tea
hers, who wish to know

• why what I learn or tea
h is interesting and useful?

• how the main idea of a result / proof / theory is exposed in

simple terms?

• how is this idea elaborated to produ
e the result / proof /

theory?

Here students 
ould be undergraduate or postgraduate; with

majors in mathemati
s, 
omputer s
ien
e or physi
s. All this would

hopefully allow them to make their own useful dis
overies (not

ne
essarily in mathemati
s).

Thus the book is di�erent from other textbooks on algebrai


topology.

We start from important visual obje
ts of mathemati
s: graphs

and ve
tor �elds on surfa
es, 
ontinuous maps and their deformations.

In ��1,2,5 basi
 theory of graphs on surfa
es is exposed in a

simpli�ed way. In later se
tions I 
arry su
h a `non-spe
ialist', or

`user' or `
omputer s
ien
e' approa
h to topology pretty far. The

appearing instruments in
lude homology groups, obstru
tions and

invariants, 
hara
teristi
 
lasses.

The book is based on de
ades of tea
hing topology 
ourses in

leading mathemati
al 
enters of Mos
ow (Mos
ow State University,

Independent University of Mos
ow, Mos
ow Institute of Physi
s

and Te
hnology).
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General information.
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ly available
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ontents and most of se
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h (��1,2); translation is edited by the author.
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e 2008 at
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ir
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Publishing rights.

The publishing rights are with the author.

Our 
ontra
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for translations with the author.

The translation is a

epted for publi
ation by `Mos
ow Le
ture
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eptable publishing agreement,

promising to make amends suggested by the author in May, 2021, and

neither making amends nor informing the author that the amends

are not a
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� 1. Graphs in the Plane

Dass von diesem s
hwer lesbaren Bu
he no
h vor

Vollendung des ersten Jahrzehntes eine zweite

Au�age notwendig geworden ist, verdanke i
h

ni
ht dem Interesse der Fa
hkreise. . .

S. Freud. Die Traumdeutung, Vorwort zur zweiten Au�age

3

1.1. Introdu
tion and Main Results

In � 1.3 we prove basi
 results on graphs and map 
olorings in the

plane, Assertions 1.1.1 and 1.3.2.

1.1.1. (a) A triangle is divided into �nitely many 
onvex polygons.

They 
an be 
olored in six 
olors in su
h a way that any two polygons

sharing a 
ommon boundary segment re
eive di�erent 
olors.

(b)* The same for �ve 
olors.

(The famous Four Color Conje
ture 
laims that four 
olors are

enough, but its proof is mu
h more involved.)

A graph is said to be planar (or embeddable in the plane) if it 
an be

drawn in the plane without edges 
rossing. The basi
 notions of graph

theory are re
alled in � 1.2; a more rigorous de�nition of planarity is

given in � 1.3.

Embeddability of graphs (or graphs with an additional stru
ture)

in the plane, torus, M�obius strip, and other surfa
es (see � 2) is one of

the main problems in topologi
al graph theory [MT01℄.

Proposition 1.1.2. There is an algorithm for de
iding whether

a graph is planar. (See [Sk, footnote 4℄, [Sk18, footnote 7℄.)

One of the simplest (but slow) algorithms is 
onstru
ted in �� 1.5

and 1.6 (Assertion 1.1.2 follows from Assertions 1.6.1 (f) and 1.6.3 (a)).

It is based on an important 
onstru
tion of thi
kening, whi
h arises in

many problems of topology and its appli
ations (synonyms: graph with

3

If within ten years of the publi
ation of this book (whi
h is very far from being

an easy one to read) a se
ond edition is 
alled for, this is not due to the interest

taken in it by the professional 
ir
les. . . (S. Freud. The Interpretation of Dreams.

Prefa
e to the se
ond edition.)
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rotations, dessin [Ha, LZ, MT01℄). The algorithm uses no nontrivial

results (su
h as Kuratowski's theorem or F�ary's theorem; for the

statements, as well as for a polynomial-time algorithm, see [Sk, � 1.2

`Algorithmi
 results on graph planarity'℄).

The proofs of these results illustrate appli
ations of Euler's Formula 1.3.3 (
).

(So, they are better postponed until the reader be
omes familiar with

it.) This formula is proved in � 1.4, where we also explain, in the

language of algorithms, the nontriviality of this result ignored in some

expositions.

1.2. Glossary of Graph Theory

The reader is probably familiar with the notions introdu
ed below,

but we give 
lear-
ut de�nitions in order to �x the terminology (whi
h


an be di�erent in other books).

A graph G = (V, E) is a �nite set V = V (G) together with a set

E = E(G) of two-element subsets (i.e., unordered pairs of distin
t

elements). (A more pre
ise term for the notion we have introdu
ed

is graph without loops or multiple edges, or simple graph.) Elements

of the set V are 
alled verti
es, elements of the set E are 
alled

edges. Although edges are unordered pairs, in graph theory they are

traditionally denoted by parentheses. Given an edge (a, b), the verti
es
a and b are 
alled its endpoints, or verti
es.

When working with graphs, it is 
onvenient to use their drawings,

e.g., in the plane or in the spa
e (or, in more te
hni
al terms, maps

of their geometri
 realizations to the plane or to the spa
e, 
f. �5.1).

See Figs. 1.3.1, 1.3.2, 1.7.2 below. Verti
es are represented by points.

Every edge is represented by a polygonal line joining its endpoints. (But

only the endpoints of polygonal lines represent verti
es of the graph.)

The polygonal lines are allowed to interse
t, but their interse
tion

points (other than the 
ommon endpoints) are not verti
es. Importantly,

a graph and a drawing of this graph are not the same. For example,

Figs. 1.3.2 (middle and right), 1.3.1 show di�erent drawings of the same

graph (more exa
tly, of isomorphi
 graphs). Sometimes, not all verti
es

are shown in a drawing, see Figs. 1.2.1 and 1.6.2 (left).

The path Pn is the graph with verti
es 1, 2, . . . , n and edges

(i, i + 1), i = 1, 2, . . . , n − 1. The 
y
le Cn is the graph with verti
es
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Figure 1.2.1. A 
y
le, a wedge of 
y
les, and the graph K4

1, 2, . . . , n and edges (1, n) and (i, i + 1), i = 1, 2, . . . , n − 1. (Do not

onfuse these graphs with a path in a graph and a 
y
le in a graph,

whi
h are de�ned below.)

The graph with n verti
es any two of whi
h are joined by an edge is

alled a 
omplete graph and denoted by Kn. If the verti
es of a graph


an be partitioned into two sets so that no edge joins two verti
es from

the same set, then the graph is said to be bipartite, and the two sets of

verti
es are 
alled its parts. By Km,n one denotes the bipartite graph

with parts of sizem and n that 
ontains all themn edges joining verti
es
from di�erent parts. See Fig. 1.3.2.

Roughly speaking, a subgraph of a given graph is a part of this

graph. Formally, a graph G is 
alled a subgraph of a graph H if every

vertex of G is a vertex of H and every edge of G is an edge of H. Note

that two verti
es of G joined by an edge in H are not ne
essarily joined

by an edge in G.
A path

4

in a graph is a sequen
e v1e1v2e2 . . . en−1vn su
h that

for every i the edge ei joins the verti
es vi and vi+1. (The edges

e1, e2, . . . , en−1 are not ne
essarily pairwise distin
t.) A 
y
le is a sequen
e

v1e1v2e2 . . . en−1vnen su
h that for every i < n the edge ei joins the
verti
es vi and vi+1, while the edge en joins the verti
es vn and v1.

A graph is said to be 
onne
ted if every pair of its verti
es 
an be

joined by a path, and dis
onne
ted otherwise. A graph is 
alled a tree

if it is 
onne
ted and 
ontains no simple 
y
les (i.e., 
y
les that do not

pass twi
e through the same vertex). A spanning tree of a graph G is

any subgraph of G that is a tree and 
ontains all verti
es of G. Clearly,
every 
onne
ted graph 
ontains su
h a subgraph.

The de�nition of the operations of deleting an edge and deleting

a vertex is 
lear from Fig. 1.2.2. The operation of 
ontra
ting an edge

(Fig. 1.2.2) deletes this edge from the graph, repla
es its endpoints

A and B with a vertex D, and repla
es ea
h edge from A or B to

4

In graph theory, as opposed to topology, the term `walk' is used.
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a vertex C with an edge from D to C. (In 
ontrast to the 
ase of


ontra
ting an edge in a multigraph, ea
h resulting edge of multipli
ity

greater than 1 is repla
ed with an edge of multipli
ity 1.) For example,
if the graph is a 
y
le with four verti
es, then 
ontra
ting any its edge

results in a 
y
le with three verti
es.

Figure 1.2.2. Deleting an edge G − e, 
ontra
ting an edge G/e,

and deleting a vertex G− x

In most of this book, one 
an use the notion of graph without loops

or multiple edges. However, everything we have said is valid for the

following generalization, whi
h is even indispensable in some 
ases.

A multigraph (or a graph with loops and multiple edges) is a square

array (matrix) of nonnegative integers symmetri
 with respe
t to the

main diagonal. The integer at the interse
tion of the ith row and jth

olumn is interpreted as the number of edges (or the multipli
ity of the

edge) between the verti
es i and j if i 6= j, and as the number of loops

at the vertex i if i= j. An edge is said to be multiple if its multipli
ity
is greater than 1.

1.3. Graphs and Map Colorings in the Plane

A plane graph is a �nite 
olle
tion of non-self-interse
ting polygonal

lines in the plane su
h that any two of them meet only at their 
ommon

endpoints (in parti
ular, those with no 
ommon endpoints are disjoint).
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The endpoints of the polygonal lines are 
alled the verti
es of the plane

graph, and the polygonal lines themselves are its edges. Thus, to a plane

graph there 
orresponds a graph (in the sense of � 1.2) for whi
h the

plane graph is a plane drawing. Sometimes, a plane graph is 
alled just

a graph, but this is not exa
tly 
orre
t, be
ause one and the same graph


an be drawn in the plane in di�erent ways (if it 
an be drawn at all),

see Fig. 1.3.1.

Figure 1.3.1. Di�erent plane drawings of a graph

A graph is said to be planar if it 
an be represented by a plane

graph.

1.3.1. The following graphs are planar:

(a) the graph K5 without one edge (Fig. 1.7.2); (b) any tree;

(
) the graph of any 
onvex polyhedron.

Figure 1.3.2. The nonplanar graphs K5 and K3,3

1.3.2. (a) The graph K5 is not planar. (b) The graph K3,3 is not

planar.

(
) For every plane 
onne
ted graph with V verti
es and E > 1
edges, E 6 3V − 6.

(d) Every plane graph 
ontains a vertex with at most 5 in
ident

edges.

A plane graph divides the plane into regions 
alled its fa
es. Here

is a rigorous de�nition.

A subset of the plane is said to be 
onne
ted if any two its

points 
an be joined by a polygonal line inside this set. (Caution:

for subsets more general than those we 
onsider here, the de�nition

of 
onne
tedness is di�erent!)
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A fa
e of a plane graph G is any of the 
onne
ted parts into

whi
h the plane R2
is divided by the 
uts along all the polygonal lines

(= edges) of G, i.e., any maximal 
onne
ted subset of R2 − G. Note
that one of these parts is `in�nite'.

1.3.3. (a) Draw a plane graph G that has a fa
e whose boundary


ontains three pairwise disjoint 
y
les.

(b) For every plane graph with E > 1 edges and F fa
es, 3F 6 2E.
(
)* Euler's Formula. For every 
onne
ted plane graph with

V verti
es, E edges, and F fa
es, V − E + F = 2.
(d) Find a version of Euler's Formula for a plane graph with

s 
onne
ted 
omponents.

As to part (b), think about how many fa
es an edge belongs to and

what is the smallest number of edges bounding a fa
e.

The proof of Euler's Formula is given below. First, using this formula

without proof, solve Problems 1.1.1 and 1.3.2.

1.4. Rigorous Proof of Euler's Formula

1.4.1. (a) We are given a non-
losed non-self-interse
ting polygonal

line L in the plane and two points outside it. There is an algorithm

for 
onstru
ting a polygonal line that joins these points and does not

interse
t L.
(b) The same for a tree L in the plane whose edges are segments.

(
) If two segments are disjoint, then the distan
e between them is

positive.

Hint. To 
onstru
t the algorithms, use indu
tion (or re
ursion).

The indu
tion step is based on deleting a pendant vertex. Cf. the


onstru
tion of the regular neighborhood of a tree, see Fig. 1.6.3 (left)

and the de�nition near this �gure, [BE82, � 6℄, [CR, pp. 293�294℄. Part

(
) 
an be proved by looking at the possible relative positions of the

segments.

The nontriviality of the algorithms from Problems 1.4.1 illustrates

the nontriviality of the following assertions. (A similar remark applies

to Assertion 1.4.3 (a) and Jordan's Theorem 1.4.3 (b).)

1.4.2. (a) Any non-
losed non-self-interse
ting polygonal line L in

the plane R2
does not separate the plane, i.e., R2 − L is 
onne
ted.
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(b) No tree in the plane separates the plane.

(
) Deleting an edge in a plane graph de
reases the number of fa
es

at most by 1.
(d) For any 
onne
ted plane graph with V verti
es, E edges, and

F fa
es, V − E + F 6 2.
Hint. Use the ideas from the solution of Problem 1.4.1.

1.4.3. (a) There is an algorithm that, given a 
losed non-self-

interse
ting polygonal line L in the plane and two points outside L,
de
ides whether these points 
an be joined by a polygonal line that

does not interse
t L.
(The same is true even if a part of the given polygonal line outside

some square 
ontaining the given points is deleted.)

(b) Jordan's Theorem. Any 
losed non-self-interse
ting polygonal

line L in the plane R2
divides the plane into exa
tly two 
onne
ted parts,

i.e., R2 − L is dis
onne
ted and is a union of two 
onne
ted sets.

Usually, by Jordan's Theorem one means a version of Theorem 1.4.3 (b)

for 
ontinuous 
urves L, whose proof is mu
h more involved [An03,

Ch99℄. While Theorem 1.4.3 (b) is sometimes 
alled the Pie
ewise

Linear Jordan Theorem.

A simple proof of Jordan's Theorem 1.4.3 (b) is given in [CR,

pp. 292�295℄, see Remark 1.4.8. We present a similar, but slightly more


ompli
ated, proof. In return, it involves an interesting Interse
tion

Lemma 1.4.4 and demonstrates the parity and general position te
hniques

(Lemmas 1.4.5 and 1.4.6) useful for what follows.

Sket
h of the proof of Jordan's Theorem 1.4.3 (b). The 
laim

that the number of parts is at most 2 is simpler; it follows from

Assertions 1.4.2 (b, 
). Cf. [BE82, � 6℄, [CR, pp. 293�294℄.

The 
laim that the number of parts is greater than 1 is more di�
ult.
To prove it, pi
k two points that are su�
iently 
lose to a segment of

the polygonal line L and symmetri
 with respe
t to this segment. Then

(∗) it is these points that 
annot be joined by a polygonal line that

does not interse
t L.
This is implied by the following Interse
tion Lemma 1.4.4.

Lemma 1.4.4 (interse
tion). Any two polygonal lines in a square

joining di�erent pairs of opposite verti
es must interse
t.
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The Interse
tion Lemma 
an be dedu
ed from the following Parity

Lemma 1.4.5 and Approximation Lemma 1.4.6 (a, b).

Several points in the plane are said to be in general position if

no three of them lie on the same line and no three segments between

them share a 
ommon interior point.

Lemma 1.4.5 (parity). If the verti
es of two 
losed plane polygonal

lines are in general position, then the polygonal lines meet in an even

number of points.

Cf. the 
omments and proof in [Sk, � 1.3 `The interse
tion number

for polygonal lines in the plane'℄.

A polygonal line A0 . . . An is said to be vertex-wise ε-
lose to

a polygonal line B0 . . . Bm if m = n and |Ai − Bi| < ε for every

i= 0, 1, . . . , n.

Lemma 1.4.6 (approximation). (a) For every ε > 0 and any

polygonal lines L1, L2 in a square joining di�erent pairs of opposite

verti
es there exist polygonal lines L′
1, L

′
2 in the square joining di�erent

pairs of opposite verti
es su
h that L′
1, L

′
2 are vertex-wise ε-
lose

to L1, L2 and the verti
es of L′
1, L

′
2 are in general position.

(b') For every pair of disjoint segments XY and ZT there is α > 0
su
h that for any points X ′, Y ′, Z ′, T ′

in the plane, the inequalities

|X − X ′|, |Y − Y ′|, |Z − Z ′|, |T − T ′| < α imply that the segments

X ′Y ′
and Z ′T ′

are disjoint.

(b) If two polygonal lines L1, L2 do not interse
t, then there exists

ε > 0 su
h that any polygonal lines L′
1, L

′
2 that are vertex-wise ε-
lose

to L1, L2 do not interse
t either.

Sket
h of the proof of Euler's Formula 1.3.3 (
). Indu
tion on

the number of edges outside a spanning tree. The indu
tion base is

Assertion 1.4.2 (b). The indu
tion step follows from the fa
t that

(∗∗) if deleting an edge from a plane graph results in a 
onne
ted

graph, then the number of fa
es de
reases at least by 1.
This 
an be proved analogously to the di�
ult part of Jordan's

Theorem 1.4.3 (b) using the Interse
tion Lemma 1.4.4.

The Interse
tion Lemma 1.4.4 is also useful for other results. It is

often (e.g. in the following problem) more 
onvenient to apply it instead

of Jordan's Theorem 1.4.3 (b).
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1.4.7. (a) Two bikers start at the same point moving northward

and eastward, respe
tively. Both return (for the �rst time) to the initial

point from south and west, respe
tively.

(b) Three bikers start at the same point moving westward, northward,

and eastward, respe
tively. All of them arrive at another point from

west, north, and east, respe
tively.

(a, b) Show that one of the bikers has 
rossed the tra
k of another

one. (See the middle pi
tures at Figs. 1.5.2 and 1.6.2 (left); the starting

point is not 
ounted as an interse
tion point of tra
ks; you may assume

that the paths of the bikers are polygonal lines.)

Remark 1.4.8. (a) (on the proof of Jordan's Theorem 1.4.3 (b))

Jordan's Theorem is the spe
ial 
ase of Euler's Formula 1.3.3 (
) for

a graph that is a 
y
le. So dedu
ing Jordan's Theorem from Euler's

Formula would 
reate a vi
ious 
ir
le.

The idea of the proof of 
laim (∗) is given in [CR, pp. 293�294℄,

though the 
laim itself (i.e., the fa
t that B 6= ∅) is neither stated

nor proved there. The argument uses simpli�ed versions of the Parity

Lemma (in the �fth paragraph at p. 293). At the beginning of the

argument, one must pi
k a dire
tion that is not parallel to any line

passing through two verti
es of the polygon (in
luding nonadja
ent

ones); otherwise, in the �fth paragraph at p. 293, there arise more than

two 
ases, 
ontrary to what is stated.

The proof of 
laim (∗) given in [BE82, � 6℄ uses the Parity

Lemma 1.4.5.

The proof of Jordan's Theorem in [Pr14

′
, pp. 19�20℄ is in
omplete,

be
ause it uses without proof nontrivial fa
ts similar to the Parity

Lemma. More spe
i�
ally, for the reader not familiar with Jordan's

Theorem, the 
laim (given without proof) from the se
ond proposition

at p. 20 (as well as the fa
t from the �rst proposition at p. 20 that

the parity 
hanges 
ontinuously) seems to be more 
ompli
ated than

Jordan's Theorem itself, whose proof uses this 
laim.

(b) (on the proof of Euler's Formula 1.3.3 (
)) In a beginners'


ourse, it is reasonable not to prove the above assertion (∗∗), whi
h
is geometri
ally obvious. One should only draw the reader's attention

to the fa
t that this assertion is not proved, to algorithmi
 problems

illustrating its nontriviality (
f. Problems 1.4.1 and 1.4.3 (a)), and to the
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remark about `vi
ious 
ir
le' given in the solution of Problem 1.3.2 (a).

Unfortunately, this assertion is not proved, and even not 
ommented

upon, in some expositions whi
h 
laim to be rigorous

5

. This might

give the wrong idea that the proof of Euler's Theorem does not use

results 
lose to Jordan's Theorem, and hen
e does not involve the


orresponding di�
ulties.

1.5. Planarity of Disks with Ribbons

Consider a word of length 2n in whi
h ea
h of n letters o

urs

exa
tly twi
e. Take a 
onvex polygon in the plane. Choose an orientation

of the 
losed polygonal line that bounds it. Take 2n disjoint segments on
this polygonal line 
orresponding to the letters of the word in the order

they o

ur in it. For ea
h letter, join (not ne
essarily in the plane) the

two 
orresponding segments by a ribbon (i.e., a `stret
hed' and `
reased'

re
tangle) so that di�erent ribbons do not interse
t ea
h other. The

disk with ribbons 
orresponding to the given word is the union of

the 
onstru
ted (two-dimensional) 
onvex polygon and the ribbons

6

.

A ribbon is said to be twisted if the arrows on the boundary of the

polygon have the same dire
tion `when translated' along the ribbon,

and untwisted if they have opposite dire
tions (Fig. 1.5.1).

For example, the annulus and the 
ylinder (Fig. 2.1.2 and the text

before it) are disks with one untwisted ribbon, while the disk with

5

Here are two examples. In [Pr14

′
, proof of Theorem 1.6℄, it is not explained why

�deleting one boundary edge de
reases the number of fa
es by 1�; this fa
t is not
simpler than Jordan's Theorem 1.4.3 (b), whose proof [Pr14

′
, p. 19�20℄ is nontrivial

for a beginner and 
ontains the gap des
ribed at the end of Remark 1.4.8. The proof

of Euler's Formula in [Om18, Chapter 7, � 2℄ also in
ludes neither explanations of

a similar fa
t, no referen
es to Jordan's Theorem (though the nontriviality of this

theorem is dis
ussed earlier).

6

More pre
isely, a disk with ribbons is any shape obtained by this 
onstru
tion;


f. the remark before Problem 2.2.2. Still more pre
isely, it is the pair 
onsisting of

this union and the union of loops 
orresponding to the ribbons. This terminologi
al

distin
tion is not relevant for the realizability we study here, but it is important for


al
ulating the number of disks with ribbons, see � 1.7 and [Sk, `Orientability and


lassi�
ation of thi
kenings'℄.

This informal de�nition 
an be formalized using the notions of homeomorphism and

gluing (� 2.7 and Example 5.1.1.
); 
f. � 1.7.
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Figure 1.5.1. Left: arrows that have opposite dire
tions `when

translated' along the ribbon. Right: a disk with a twisted ribbon

(the M�obius strip)

n holes (Fig. 3.9.2) is a disk with n untwisted ribbons. For other

examples of disks with untwisted ribbons, see Figs. 1.5.2 and 1.5.3.

a ab

b

c

c

c

c

b

b

a
a

Figure 1.5.2. Left: the top pi
ture shows a multigraph with

one vertex and two loops, the middle one is a drawing of this

multigraph in the plane, and the bottom one is the 
orresponding

disk with untwisted ribbons; it 
orresponds to the word (abab).

Middle and right: the disks with three untwisted ribbons


orresponding to the words (abacbc) and (abcabc).

Ribbons a and b in a disk with untwisted ribbons are said to

interla
e if the segments along whi
h they are glued to the polygon

alternate along its boundary, i.e., o

ur in the 
y
li
 order (abab), and
not (aabb).
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Figure 1.5.3. Disks with four untwisted ribbons (whi
h 
annot

be realized on the torus)

Lemma 1.5.1. A disk with untwisted ribbons 
an be 
ut out of the

plane if and only if it has no interla
ing ribbons.

A boundary 
ir
le of a disk with ribbons is a 
onne
ted part of

the set of its points that it approa
hes `from one side'. This informal

de�nition is formalized in � 5.5. In Fig. 1.5.2 (middle and right), the

boundary 
ir
les are shown in bold. For example, the disks with

untwisted ribbons in Fig. 1.5.2 have one, two, and two boundary 
ir
les,

respe
tively.

1.5.2. (a) How many boundary 
ir
les 
an a disk with two untwisted

ribbons have (more pre
isely, �nd all F for whi
h there exists a disk

with two untwisted ribbons that has F boundary 
ir
les)?

(b) How many boundary 
ir
les do the disks with untwisted ribbons

in Fig. 1.5.3 have?

(
) How many boundary 
ir
les 
an a disk with �ve untwisted

ribbons have?

(d) Adding a non-twisted ribbon 
hanges the number of boundary


ir
les by ±1.
1.5.3. (a) The number of boundary 
ir
les of a disk with n untwisted

ribbons does not ex
eed n+ 1.
(a') The number of boundary 
ir
les of a disk with n ribbons, of

whi
h at least one is twisted, does not ex
eed n.
(b) Lemma. For a disk with n untwisted ribbons, ea
h of the

assumptions of Lemma 1.5.1 is equivalent to the number of boundary


ir
les being equal to n+ 1.
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(
) Given a word of length 2n in whi
h ea
h of n letters o

urs

exa
tly twi
e, 
onstru
t a graph with the number of 
onne
ted 
omponents

equal to the number of boundary 
ir
les of the disk with untwisted

ribbons 
orresponding to this word. (Thus, this number 
an be found

by 
omputer without drawing a �gure.)

1.6. Planarity of Thi
kenings

Given a graph with n verti
es, 
onsider the union of n pairwise

disjoint 
onvex polygons in the plane. On ea
h of the 
losed polygonal

lines bounding the polygons take disjoint segments 
orresponding to the

edges in
ident to the 
orresponding vertex. For ea
h edge of the graph,

join (not ne
essarily in the plane) the 
orresponding two segments by a

ribbon so that the ribbons do not interse
t ea
h other (Fig. 1.6.1).

A thi
kening of the graph is the union of the 
onstru
ted 
onvex

polygons and ribbons. The graph is 
alled the spine, or the thinning, of

this union. A remark similar to that in footnote 6 at the beginning of

� 1.5 applies to this 
ase as well.

Figure 1.6.1. Joining disks with a ribbon

A thi
kening is said to be orientable if the boundary 
ir
les

of the polygons 
an be endowed with orientations so that every

ribbon be
omes untwisted, i.e., the arrows on the boundaries of the

polygons have the opposite dire
tion `when translated' along the ribbon

(Fig. 1.5.1, left). Note that ea
h of the pi
tures in Fig. 1.6.1 
an


orrespond to su
h a way of joining disks with ribbons. A thi
kening is

said to be non-orientable if there are no su
h orientations.

For example, orientable thi
kenings of the graphs K3,2 and K3,3 are

shown in Fig. 1.6.2.

A disk with ribbons (� 1.5) is a thi
kening of a multigraph 
onsisting

of one vertex with several loops.

The regular neighborhood of a graph drawn in the plane (or

on a surfa
e, see � 2.1) without edges 
rossing is the union of 
aps

and ribbons 
onstru
ted as shown in Fig. 1.6.3 (left). For a rigorous
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Figure 1.6.2. Left: the top pi
ture shows the graph K3,2, the

middle one is a drawing of this graph in the plane, and the

bottom one is the 
orresponding thi
kening.

Right: an oriented thi
kening of the graph K3,3

Figure 1.6.3. Left: the 
aps and ribbons (
alled 
lusters and

pipes in [MT01℄) form the regular neighborhood (thi
kening) of

a graph on a surfa
e.

Right: drawings of the graph K4 in the plane

de�nition, see � 5.9. The regular neighborhood of a graph G is an

oriented thi
kening of G (Fig. 1.6.3 (left)). More generally, if we have

a general position map of a graph G to the plane (or to a surfa
e, see

� 2.1), then we 
an 
onstru
t an oriented thi
kening ofG `
orresponding'

to this map (Figs. 1.5.2 and 1.6.2 (left), Fig. 1.6.3 (right)).

An oriented thi
kening is said to be planar if it 
an be 
ut out of

the plane.
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1.6.1. (a) Every thi
kening of a tree is planar.

(b) Every orientable thi
kening of a 
y
le is planar.

(
) Every orientable thi
kening of a uni
y
li
 graph is planar. (A

graph is said to be uni
y
li
 if it be
omes a tree after deleting an edge.)

(d) Is the orientable thi
kening of the graph K3,2 shown in

Fig. 1.6.2 (left) planar?

(e) Whi
h of the orientable thi
kenings of the graphK4 (Fig. 1.6.3 (right))

are planar?

(f) A graph is planar if and only if it has a planar orientable

thi
kening.

(g) A rotation system of a graph is an assignment to ea
h vertex of an

oriented 
y
li
 order on the edges in
ident to this vertex. Every graph

has �nitely many rotation systems (moreover, there is an algorithm

sear
hing through those rotation systems).

De
iding the planarity of graphs redu
es to de
iding the planarity

of orientable thi
kenings, see Assertion 1.6.1 (f, g).

1.6.2. (a) De�ne the operation of 
ontra
ting an edge of a thi
kening

so that it would give the operation of 
ontra
ting an edge of a graph

and preserve planarity.

(b) Draw the thi
kenings obtained from the thi
kenings of the

graph K4 (Fig. 1.6.3 (right)) by 
ontra
ting the `top horizontal' edge.

1

2

3

6

5

4

Figure 1.6.4. Walking around a spanning tree

Theorem 1.6.3. (a) There is an algorithm for de
iding the planarity

of thi
kenings.

(b) Ea
h of the following 
onditions on an orientable thi
kening of

a 
onne
ted graph G is equivalent to the planarity of this thi
kening.
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(I) For every spanning tree T , going along the boundary of the

thi
kening of T (Fig. 1.6.4) we obtain a 
y
li
 sequen
e of edges not

from T , in whi
h every edge o

urs twi
e; then any two edges in this

sequen
e do not alternate, i.e., o

ur in the 
y
li
 order (aabb), and
not (abab).

(E) The number of boundary 
ir
les of the thi
kening is E − V + 2,
where V and E are the numbers of verti
es and edges.

(Boundary 
ir
les of a thi
kening are de�ned analogously to boundary


ir
les of a disk with ribbons.)

(S) The thi
kening `does not 
ontain' the `�gure eight' and `letter

theta' subthi
kenings shown in Figs. 1.5.2 and 1.6.2 (left). (More

pre
isely, the graph does not 
ontain a subgraph homeomorphi
 to one

of the graphs shown in the top pi
tures of these �gures su
h that the

restri
tion of the thi
kening to this subgraph is homeomorphi
 to one

of the thi
kenings shown in the bottom pi
tures of these �gures.)

1.6.4. Every orientable thi
kening

(a) of a tree has one boundary 
ir
le;

(b) of a 
y
le has two boundary 
ir
les.

(
) of a 
onne
ted graph with V verti
es and E edges has at most

E − V + 2 boundary 
ir
les.

1.6.5. Every non-orientable thi
kening of a 
onne
ted graph with

V verti
es and E edges has at most E − V + 1 boundary 
ir
les.

Hint: Assertions 1.6.4.
 and 1.6.5 follow from Assertions 1.5.3.a,a'.

1.7. Hieroglyphs and Orientable Thi
kenings*

In this subse
tion we give an interpretation of the 
onstru
tions

from �� 1.5 and 1.6. A representation of a hieroglyph is a word of

length 2n in whi
h ea
h of n letters o

urs exa
tly twi
e. A hieroglyph

is an equivalen
e 
lass of su
h words up to renaming of letters and


y
li
 shift. Other names: 
hord diagram, one-vertex multigraph with

rotations.

Hieroglyphs are drawn as shown in Figs. 1.5.2 (left) and 1.7.1, i.e.,

as families of loops in the plane with a 
ommon vertex. A 
y
li
 order

is determined by enumerating the segments in
ident to the vertex in

the 
ounter
lo
kwise dire
tion.
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Wissen war ein biss
hen S
haum, der �uber eine

Woge tanzt. Jeder Wind konnte ihn wegblasen,

aber die Woge blieb.

E.M.Remarque. Die Na
ht von Lissabon

7

In � 2.1 we re
all the de�nitions of basi
 surfa
es. The reader may

omit this subse
tion and return to it when ne
essary. Subse
tion 2.2


ontains intuitive problems about 
utting surfa
es and 
utting out of

surfa
es. Here we state Riemann's and Betti's Theorems 2.3.5, whi
h

are used to prove than a surfa
e 
annot be 
ut out of another surfa
e.

Subse
tion 2.4 
ontains basi
 results about graphs and map 
olorings

on surfa
es (Theorems 2.4.4, 2.4.5 (b), 2.4.7). They are similar to the

results from �� 1.1 and 1.3 about graphs and map 
olorings in the

plane. The proofs involve an analog of Euler's Formula, namely, Euler's

Inequality 2.5.3 (a). This inequality is proved in � 2.5 together with

Riemann's Theorem 2.3.5 (a). In � 2.6, an algorithm is 
onstru
ted for

de
iding whether a graph 
an be realized on a given surfa
e (i.e.,

Theorem 2.4.5 (b) is proved). In � 2.7 we informally introdu
e and

study the notion of topologi
al equivalen
e of surfa
es. In parti
ular,

Assertions 2.7.8 (b) and 2.7.9 (b) demonstrate one of the main ideas of

the proof of Theorem 5.6.2 on 
lassi�
ation of surfa
es. Subse
tion 2.8


ontains versions of the previous examples and results for non-orientable

surfa
es.

2.1. Examples of Surfa
es

If you are not familiar with Cartesian 
oordinates in the spa
e, then

at the beginning of the book you may omit 
oordinate de�nitions and

work with intuitive des
riptions and drawings (given after 
oordinate

de�nitions).

7

Knowledge was a spe
k of foam dan
ing on top of a wave. Every gust of wind


ould blow it away; but the wave remained. (E.M. Remarque. The Night in Lisbon)
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The sphere S2
is the set of points (x, y, z) ∈ R3

su
h that

x2 + y2 + z2 = 1:

S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}.

This is the same thing as the set of all points (x, y, z) of the form

(cos ϕ cos ψ, sin ϕ cos ψ, sin ψ).

диск цилиндр
лента
Мёбиуса

сфера S2 тор T 2 проективная

плоскость RP 2
бутылка

Клейна K2

Figure 2.1.1. The surfa
es obtained by gluing together sides of a re
tangle

In what follows, by a re
tangle we mean a two-dimensional part of

the plane (and not its boundary), and `gluing' in
ludes a `
ontinuous

deformation' that drags the points to be glued to ea
h other.

The sphere is obtained from a re
tangle ABCD by `gluing together'

the pairs of adja
ent sides

−−→
AB and

−−→
AD,

−−→
CB and

−−→
CD with the dire
tions

indi
ated in the pi
ture (the fourth 
olumn in Fig. 2.1.1).

The annulus is the set {(x, y) ∈ R2 : 16 x2 + y2 6 2} (Fig. 6.3.1).
The lateral surfa
e of a 
ylinder (Fig. 2.1.2 (right)) is the set

{(x, y, z) ∈ R3 : x2 + y2 = 1, 06 z 6 1}.

Ea
h of these shapes is obtained from a re
tangle ABCD by `gluing

together' the pair of opposite sides

−−→
AB and

−−→
DC `with the same

dire
tion' (the se
ond 
olumn in Fig. 2.1.1).
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Figure 2.1.2. The torus, M�obius strip, and lateral surfa
e of a 
ylinder

The torus T 2
is the shape obtained by rotating the 
ir
le (x− 2)2 + y2 = 1

about the Oy axis (Fig. 2.1.2 (left)).
The torus is the `surfa
e of a doughnut'. It is obtained from

a re
tangle ABCD by `gluing together' the pairs of opposite sides−−→
AB and

−−→
DC,

−−→
BC and

−−→
AD `with the same dire
tion' (the �fth 
olumn

in Fig. 2.1.1).

The M�obius strip is the set of points in R3
swept by a bar

of length 1 rotating uniformly about its 
enter as this 
enter moves

uniformly along a 
ir
le of radius 9 when the bar makes half a turn

(Fig. 2.1.2 (middle)).

The M�obius strip is obtained from a re
tangle ABCD by `gluing

together' two opposite sides

−−→
AB and

−−→
CD `with opposite dire
tions' (the

third 
olumn in Fig. 2.1.1).

Figure 2.1.3. The spheres with two and three handles
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The sphere with g handles Sg, where g > 1, is the set of points
(x, y, z) ∈R3

su
h that

x2 +

g∏

k=1

((z − 4k)2 + y2 − 4)2 = 1.

The sphere with 0 handles is the sphere S2
. The sphere with one handle

is the torus. The spheres with two and three handles are shown in

Fig. 2.1.3.

Figure 2.1.4. A `
hain of 
ir
les' in the plane

The equation

g∏
k=1

((z − 4k)2 + y2 − 4) = 0 de�nes a `
hain of 
ir
les'

in the plane Oyz (Fig. 2.1.4). The sphere with g handles is the boundary
of the `tubular neighborhood' of this 
hain in the spa
e. Hen
e, the

sphere with g handles is obtained from the sphere by `
utting out'

2g disks and then atta
hing g 
urvilinear lateral surfa
es of 
ylinders

to g pairs of boundary 
ir
les of these disks (Fig. 2.1.5).

Figure 2.1.5. Atta
hing a handle

The sphere with g handles and a hole Sg,0 is the part of the
sphere with g handles that lies below or on the plane situated slightly

below the tangent plane at the top point (i.e., the part of Sg that lies
in the domain z 6 4g + 2). This shape is obtained from the sphere with

handles by `
utting out a hole'.
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(a) (b)

Figure 2.1.6. The Klein bottle: (a) gluing; (b) a drawing in R3

Informally, the Klein bottle is obtained from a re
tangle ABCD by

`gluing together' the pairs of opposite sides, the pair

−−→
AB,

−−→
DC `with the

same dire
tion', and the other pair

−−→
BC,

−−→
DA `with opposite dire
tions'

(Fig. 2.1.6 (a)).

Consider in R4
the 
ir
le x2 + y2 = 1, z = t = 0 and the family

of three-dimensional normal planes to this 
ir
le. Stri
tly speaking, the

Klein bottleK is the set of points in R4
swept by a 
ir
le ω as its 
enter

moves uniformly along the 
ir
le under 
onsideration, while the 
ir
le ω
itself rotates uniformly by angle π (in the moving three-dimensional

normal plane, about its own diameter moving together with this plane).

The proje
tion of the Klein bottle to R3
is shown in Fig. 2.1.6 (b).

In what follows, `surfa
e' is a 
olle
tive term for the shapes de�ned

above, and not a mathemati
al term (
f. the de�nition of a 2-manifold
in � 4.5).

2.2. Cutting Surfa
es and Cutting out of Surfa
es

In the problems of this subse
tion, you are asked to give not rigorous

proofs, but large, 
omprehensible, and preferably beautiful pi
tures.

2.2.1. (a) For every n there exist n points in R3
su
h that the

segments between them have no 
ommon interior points (i.e., every

graph 
an be drawn in R3
without edges 
rossing).

(b) Every graph 
an be drawn without edges 
rossing on a book with

a 
ertain number of sheets (Fig. 2.2.1; the de�nition is given after the

�gure) depending on the graph. More pre
isely, for every n there exists

an integer k, as well as n points and n(n − 1)/2 non-self-interse
ting

polygonal lines on a book with k sheets su
h that every pair of points is
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joined by a polygonal line and no polygonal line interse
ts the interior

of another polygonal line.

(
) The same as in part (b) with 3 sheets instead of k.

Figure 2.2.1. A book with three sheets

In R3

onsider n re
tangles XY BkAk, k = 1, 2, . . . , n, any two of

whi
h have only the segment XY in 
ommon. The book with n sheets

is the union of these re
tangles; see Fig. 2.2.1 for the 
ase n= 3.

(a) (b)

Figure 2.2.2. Nonstandard (a) annuli; (b) M�obius strips

A nonstandard annulus is any shape obtained from a re
tangle by

gluing a pair of opposite sides `with the same dire
tion' (Fig. 2.2.2 (a)).

This informal de�nition 
an be formalized using the notions of homeo-

morphism and gluing (� 2.7 and Example 5.1.1.
). In a similar way

one de�nes a nonstandard M�obius strip (Fig. 2.2.2 (b)), torus with a

hole, Klein bottle with a hole, et
. They will be used only in this

subse
tion (one 
uts nonstandard shapes out of standard ones); the

word `nonstandard' will be omitted.

2.2.2. Cut the M�obius strip so as to obtain
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(a) an annulus; (b) an annulus and a M�obius strip.

2.2.3. Cut the Klein bottle (Fig. 2.1.6) so as to obtain

(a) two M�obius strips; (b) one M�obius strip.

2.2.4. Cut out the following shapes from the book with three sheets

(Fig. 2.2.1):

(a) a M�obius strip; (b) a torus with a hole;

(
) a sphere with two handles and a hole;

(d) a Klein bottle with a hole.

2.2.5. Let A, B, C, D be points on the boundary 
ir
le of a torus

with a hole (in this order along the 
ir
le). A re
tangle A′B′D′C ′
is

atta
hed to the torus with a hole by gluing AB to A′B′
and CD to C ′D′

.

From the resulting shape (i.e., from a torus with a hole and a M�obius

strip), 
ut out three pairwise disjoint M�obius strips.

2.3. Impossibility of Cutting and Separating Curves

2.3.1. (a) A torus with a hole 
annot be 
ut out of the plane.

(b) For k < n, a sphere with n handles and a hole 
annot be 
ut out
of the sphere with k handles.

(
) Two disjoint M�obius strips 
annot be 
ut out of the M�obius strip.

(d) Find all g, m, g′, m′
for whi
h g′ tori with a hole and m′

M�obius

strips (all g′ +m′
shapes pairwise disjoint) 
an be 
ut out of a disk with

g handles and m M�obius strips (see the de�nitions before Figs. 2.1.5

and 2.8.1).

Proof of (a). Part (a) follows from the Interse
tion Lemma 1.4.4

or from the (essentially equivalent) nonplanarity of the graph K5

(Assertion 1.3.2 (a)), be
ause the analogues of these results for the torus

are false (
f. Assertion 2.4.1 (a)).

Alternatively, assume to the 
ontrary that a torus with a hole is


ut out of the plane. Take a 
losed non-self-interse
ting 
urve γ on this
torus with a hole su
h that γ does not separate it (Assertion 2.3.2.a).

In the next paragraph we prove that γ does not separate the sphere,


ontradi
ting Jordan's Theorem 1.4.3 (b) (the details are ne
essary

be
ause e.g. the boundary 
ir
le of the disk does not separate the disk,

but does separate the plane 
ontaining the disk).
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Pi
k any two points in the plane that do not lie on γ. Join them

with a polygonal line α `in general position' with respe
t to γ. This
polygonal line meets γ in a �nite number of points. For ea
h su
h

point A, take a small segment αA of α that 
ontains A in its interior.

The endpoints of αA lie on the torus with a hole. Hen
e, they 
an be

joined by a polygonal line α′
A that does not interse
t γ. Repla
e ea
h

segment αA with α′
A. We obtain a polygonal line that joins the given

points and does not interse
t γ.

Comments on the proof of (b,
,d). Part (b) follows from Theorem 2.3.5 (
)

and Assertion 2.3.3.
. Part (b) 
an also be dedu
ed from Assertion 2.4.4 (
),

or from Theorem 2.3.5 (a) and Assertion 2.3.3.a (observe that both

Assertion 2.4.4 (
) and Theorem 2.3.5 (a) use Euler's Inequality 2.5.3 (a)).

The details of dedu
tion from Theorems 2.3.5 (
) or 2.3.5 (a) have to be


he
ked, 
f. (a).

Analogously, parts (
) 
an be dedu
ed from either of Assertions 2.8.2 (a),

2.8.2 (
) or 2.8.3 (b).

To solve part (d), it is helpful to use Assertion 2.8.5 (
), see also

Assertion 2.6.6 and Problem 6.7.7.

2.3.2. (a) Draw a 
losed 
urve on the torus su
h that 
utting along

this 
urve does not separate the torus.

(b) The same for the M�obius strip.

(
) Draw two 
losed 
urves on the torus su
h that 
utting along

their union does not separate the torus.

(d) Draw two 
losed disjoint 
urves on the Klein bottle su
h that


utting along their union does not separate the Klein bottle.

Curves and graphs on the torus 
an be easily de�ned by regarding

the torus as obtained from a re
tangle by gluing. A (pie
ewise linear)


urve on the torus is then a family of polygonal lines in the re
tangle

satisfying 
ertain 
onditions (work out these 
onditions!). In a similar

way, other surfa
es 
an be obtained from plane polygons by gluing (for

spheres with handles, see Problem 2.3.4). This allows one to de�ne


urves and graphs on other surfa
es. Another formalization is given in

� 5, see also � 4.

2.3.3. On the sphere with g handles Sg there are
(a) g 
losed pairwise disjoint 
urves, whose union does not separate

Sg.
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(b) 2g 
losed 
urves, of whi
h any two interse
t by a �nite number

of points, and whose union does not separate Sg.
(
) a non-separating wedge of 2g 
y
les.

2.3.4. For every g > 0, obtain Sg by gluing together sides of

a 4g-gon. (See visualization in https://www.youtube.
om/wat
h?v=

G1yyfPShgqw and in https://www.youtube.
om/wat
h?v=U5N5mg3MePM.)

It turns out that 
utting the torus along the union of any two disjoint


losed 
urves inevitably separates the torus. This is a spe
ial 
ase of the

following generalizations of Jordan's Theorem 1.4.3 (b).

Theorem 2.3.5. (a) (Riemann) The union of any g + 1 pairwise

disjoint 
losed 
urves on Sg separates Sg.
(b) (Betti) Suppose that on Sg there are 2g + 1 
losed 
urves, of

whi
h any two interse
t by a �nite number of points. Then the union of

the 
urves separates the sphere with g handles.
(
) Any wedge of 2g + 1 
y
les drawn without self-interse
tions on

Sg separates Sg.

Here the 
urves are allowed to be self-interse
ting; however, the 
ase

of non-self-interse
ting 
urves is the most interesting, and the general


ase 
an be easily redu
ed to it.)

These results (stri
tly speaking, for the pie
ewise linear 
ase) follow

from Euler's Inequality 2.5.3 (a). For part (
) the dedu
tion is 
lear, for

parts (a,b) see � 2.5.

2.4. Graphs on Surfa
es and Map Colorings

The de�nition and dis
ussion of a drawing of a graph on a surfa
e

without edges 
rossing is analogous to the 
ase of the plane, see � 1.3.

The formalization is outlined after Problem 2.3.2 and des
ribed in � 5.2,

but 
an be omitted on �rst a
quaintan
e.

The torus, M�obius strip, and other shapes are assumed to be

transparent, i.e., a point (or a subset) that `lies on one side of a surfa
e'

`lies on the other side as well'. In a similar way, in geometry we speak

about a triangle in the plane, rather than a triangle on the upper (or

lower) side of the plane.

2.4.1. Draw the following graphs on the torus without edges


rossing:
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(a) K5; (b) K3,3; (
) K6; (d) K7; (e)* K4,4; (f)* K6,3.

The de�nition of a graph realizable on the torus or on a sphere

with handles is analogous to that of a planar graph.

Proposition 2.4.2. Any graph 
an be realized on a sphere with

a 
ertain number (depending on the graph) of handles.

2.4.3. (a) The graphK8; (b) the graphK5,4; (
)* the graphK5 ⊔K5

are not realizable on the torus.

To prove Assertions 2.4.3 and 2.4.4, we need Euler's Inequality 2.5.3 (a).

Here is a version of Assertion 2.4.3 for spheres with handles.

Proposition 2.4.4. (a) The graph Kn is not realizable on a sphere

with less than (n − 3)(n − 4)/12 handles.

(b) The graph Km,n is not realizable on a sphere with less than

(m− 2)(n − 2)/4 handles.

(
)* The disjoint union of g + 1 
opies of the graph K5 is not

realizable on the sphere with g handles Sg.

In view of Assertions 2.4.4 (a, 
), for every g there is a graph (for

example, Kg+15 or the disjoint union of g + 1 
opies of K5) that is not

realizable on Sg (the se
ond of these graphs is realizable on Sg+1). The

estimations in Assertion 2.4.4 are sharp [Pr14, 13.1℄.

Theorem 2.4.5. For every g there is an algorithm for de
iding

whether a graph is realizable on Sg.

This result is dedu
ed from Theorem 2.6.8 (a).

2.4.6. A map on the torus is a partition of the torus into (
urved)

polygons. A 
oloring of a map on the torus is said to be proper if

di�erent polygons sharing a 
ommon boundary 
urve have di�erent


olors. Is it true that any map on the torus has a proper 
oloring with

(a) 5 
olors; (b) 6 
olors?

It turns out that any map on the torus has a proper 
oloring

with 7 
olors. This is a spe
ial 
ase of the following result. A map on

Sg handles and a proper 
oloring of su
h a map are de�ned analogously
to the 
ase of the torus.

Theorem 2.4.7 (Heawood). If 0 < g < (n − 2)(n − 3)/12, then
every map on Sg has a proper 
oloring with n 
olors.
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The version of this theorem for g = 0 is true: this is the Four Color
Conje
ture. In view of Ringel's results on embeddings ofKn [Pr14, 13.1℄

n− 1 
olors are not su�
ient for g > (n− 2)(n − 3)/12.
Heawood's Theorem 2.4.7 is implied by the following result, whose

proof relies on Euler's Inequality 2.5.3 (a).

2.4.8. (a) Any graph drawn on the torus without edges 
rossing has

a vertex with at most 6 in
ident edges.
(b) If 0 < g < (k − 1)(k − 2)/12, then any graph drawn on Sg

without edges 
rossing has a vertex with at most k in
ident edges.

2.5. Euler's Inequality for Spheres with Handles

Given a graph drawn on a surfa
e without edges 
rossing, a fa
e

is any of the 
onne
ted parts into whi
h 
utting along all edges of the

graph divides the surfa
e.

On the torus there are two 
losed 
urves su
h that 
utting along

them divides the torus into di�erent numbers of parts (Problem 2.3.2 (a)).

So, the number of fa
es depends on the way the graph is drawn on the

given surfa
e. However, we still have a version of Euler's Formula for

surfa
es. These are the following inequalities 2.5.1 (d) and 2.5.3 (a).

2.5.1. (a, b, 
, d) The same as in Assertions 1.4.2, with the plane

repla
ed by a sphere with handles and a planar graph repla
ed by

a graph drawn on the sphere with handles without edges 
rossing.

(d

′
) In a parliament 
onsisting of n members there are several

(pairwise distin
t) 3-person 
ommissions. It is known that if two

persons x, y belong to a 
ommission, then the set {x, y} is 
ontained in
exa
tly two 
ommissions. Su
h two 
ommissions are said to be adja
ent.

It is also known that for any two persons A, B there is a sequen
e of


ommissions su
h that A is in the �rst 
ommission, B is in the last


ommission, and any two 
onse
utive 
ommissions are adja
ent. Show

that the number of 
ommissions is not less than 2n− 4.
(e) If G is a subgraph of a 
onne
ted graph H on a sphere with

handles, then VG − EG + FG > VH −EH + FH .
Hint. Part (e) follows from part (
). Use the operations of deleting

an edge, or deleting a hanging vertex.
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Warning. Part (e) is not true for a dis
onne
ted graph H, but is

true for a dis
onne
ted graph H if every 
onne
ted 
omponent 
ontains

a vertex of G.

2.5.2. Given a 
onne
ted graph with V verti
es and E edges drawn

on the torus without edges 
rossing, denote by F the number of fa
es.

(a) If the graph (more exa
tly, its drawing) 
ontains a parallel, then

F = E − V .
Hint. Cut the torus along the parallel. The result is a plane graph

lying between two its 
y
les. Apply Euler's Formula to this graph.

(b) F > E − V .
Clari�
ation. Prove the assertion under the following assumption:

the graph meets a parallel in a �nite number of points, and 
utting the

graph along the parallel with subsequently unfolding it into the plane

results in a union of polygonal lines (a more learned way of saying this

is that the given embedding of the graph into the torus is pie
ewise

linear and in general position with respe
t to the parallel).

Hint. Use part (a) and Assertion 2.5.1 (e).

2.5.3. (a) Euler's Inequality

8

. Given a 
onne
ted graph with

V verti
es and E edges drawn on Sg without edges 
rossing, denote

by F the number of fa
es. Then

V − E + F > 2− 2g.

(b) Given a graph with V verti
es, E edges, and s 
onne
ted


omponents drawn on Sg without edges 
rossing, denote by F the

number of fa
es. Then V − E + F > 1 + s− 2g.

Euler's Inequality 2.5.3 (a) 
an be proved analogously to the 
ase of

the torus 2.5.2 (b) using Assertion 2.3.4.

Sket
h of proof of Riemann's Theorem 2.3.5 (a). Consider the 
ase

of the torus (the general 
ase is proved analogously). Suppose that the

union of two disjoint 
losed 
urves does not separate the torus. We may

assume that the 
urves are simple. Similarly to the proof of Jordan's

Theorem 1.4.3 (b), we use the orientability of the torus to 
on
lude

8

Usually, instead of Euler's Inequality, whi
h is su�
ient for solving many

interesting problems, one 
onsiders the more 
ompli
ated Euler's Formula 5.9.2 (
f.

Assertion 2.5.2 (a)), whose statement involves the notion of a 
ellular subgraph.
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that there are a `�gure eight' and a 
ir
le that are non-self-interse
ting,

disjoint, and whose union does not separate the torus. Joining the �gure

eight and the 
ir
le by an ar
 on the torus, we obtain a graph with

V − E = −2 that does not separate the torus, 
ontradi
ting Euler's

Inequality.

Betti's Theorem 2.3.5 (b) follows from Euler's Inequality 2.5.3 (b)

(or from Euler's Inequality 2.5.3 (a) and Riemann's Theorem 2.3.5 (a);

the details are similar to the arguments in [Bi20, bottom of p. 6℄).

2.6. Realizability of Hieroglyphs and Orientable Thi
kenings

Disks with untwisted ribbons are de�ned in � 1.5. We will 
all them

hieroglyphs, 
f. � 1.7. A hieroglyph is said to be realizable on a given

surfa
e if it 
an be 
ut out of this surfa
e.

2.6.1. (a, b, 
) The hieroglyphs 
orresponding to the words (abab),
(abcabc), and (abacbc) (Fig. 1.5.2) are realizable on the torus.

A solution of (b, 
) is presented in Fig. 2.6.1.

2.6.2. The hieroglyphs shown in Fig. 1.5.3

(a

′
, b

′
, 


′
, d

′
) are realizable on the sphere with two handles.

(a, b, 
, d) are not realizable on the torus.

For a proof of (a

′
, b

′
, 


′
, d

′
) pi
k two interla
ing ribbons and show

that the disk with the two remaining ribbons is realizable on the torus

(a proof via atta
hing ribbons one by one also works, but is more


ompli
ated). Parts (a,b,
,d) are proved analogously to Assertion 2.3.1 (b)

(in fa
t, every hieroglyph with 4 ribbons that has one boundary 
ir
le

annot be realized on the torus).

Denote by h(M) the number of boundary 
ir
les of a hieroglyph or

a thi
kening M .

2.6.3. (a) If a hieroglyph M is 
ut out of the sphere with g handles
Sg, then the number of obtained 
onne
ted 
omponents of Sg −M does

not ex
eed h(M).
(a') If a hieroglyph M with n ribbons is 
ut out of Sg, then

h(M)> n+ 1− 2g.
(b) For every g there exists a hieroglyph not realizable on Sg.
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(
) If a hieroglyph M is realizable on Sg and removing any of

its ribbons results in a hieroglyph non-realizable on Sg, then M has

2g + 2 ribbons.

Here part (a') follows from part (a) and Euler's Inequality 2.5.3 (a)

(
f. Assertion 2.3.1 (b)). Part (b) follows by part (a') (take e.g.

hieroglyph (a1b1a1b1 . . . ag+1bg+1ag+1bg+1)).

2.6.4. (a) Every hieroglyph with 3 ribbons is realizable on the torus.
(b) Does there exist a hieroglyph with 4 ribbons that has two

boundary 
ir
les?

(
) Every hieroglyph with 4 ribbons that has three boundary 
ir
les
is realizable on the torus.

(d) Every hieroglyph with n ribbons that has at least n− 1 boundary

ir
les is realizable on the torus.

The proof is analogous to that of Assertions 2.6.2(a

′
, b

′
, 


′
, d

′
), 
f.

Assertions 1.5.3 (a, b).

Theorem 2.6.5. (a) For every g there is an algorithm for de
iding

whether a hieroglyph is realizable on Sg.
(b) Ea
h of the following 
onditions on a hieroglyph M with

n ribbons is equivalent to its realizability on Sg.
(E) The inequality h(M)> n+ 1− 2g holds.
(I) Among any 2g + 1 rows of the interla
ement matrix (see

the de�nition below) there are several (> 1) rows whose sum is zero

modulo 2. (In other words, the rank of the interla
ement matrix over Z2

does not ex
eed 2g.)

The interla
ement matrix of a hieroglyph with n ribbons is the n× n
matrix whose a × b 
ell 
ontains 1 if a 6= b and the letters a and b do
not interla
e, and 0 otherwise. Cf. � 6.7.

Here part (a) follows from (b). The 
ondition (E) is ne
essary for

the realizability by Assertion 2.6.3.a'. The su�
ien
y of (E) is proved

analogously to Assertion 2.6.4, 
f. Assertion 2.7.8 (b) and its proof.

Criterion (I) 
an be proved analogously to Assertion 2.7.8 (
).

The rank rkM of a hieroglyph M is the rank of its interla
ement

matrix over Z2. The rank measures the `
omplexity of interse
tions' on

the hieroglyph.
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2.6.6. A hieroglyph M 
an be 
ut out of a hieroglyph M ′
if and

only if rkM 6 rkM ′
.

Orientable thi
kenings are de�ned in �� 1.6 and 1.7. A thi
kening

is said to be realizable on a given surfa
e if it 
an be 
ut out of this

surfa
e.

2.6.7. Does there exist an orientable thi
kening of

(a) the graph K4; (b) the graph K5

that is not realizable on the torus?

Theorem 2.6.8. (a) For every g there is an algorithm for de
iding

whether a thi
kening is realizable on Sg.
(b) Ea
h of the following 
onditions on an orientable thi
kening M

of a 
onne
ted graph is equivalent to its realizability on Sg.
(E) The inequality 2g > 2− V + E − h(M) holds, where V and E

are the numbers of verti
es and edges of the graph.

(I) =2.6.5.b(I).

Given an orientable thi
kening of a 
onne
ted graph G and a

spanning tree, we 
onstru
t a hieroglyph 
orresponding to the edges

not in the tree (Fig. 1.6.4). The interla
ement matrix, 
orresponding to

the tree, of the orientable thi
kening is the interla
ement matrix of the

resulting hieroglyph. The rank of an orientable thi
kening is the rank of

its interla
ement matrix (
orresponding to an arbitrary tree) over Z2.

Theorem 2.6.8 is redu
ed to Theorem 2.6.5 by 
ontra
ting an edge

or 
onsidering a spanning tree.

c

a b

b

a c

Figure 2.6.1. The disks with ribbons 
orresponding to the words

(abcabc) and (abacbc) on the torus

2.7. Topologi
al Equivalen
e (Homeomorphism)

2.7.1. Can the graph K5 be drawn without edges 
rossing
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(a) on the sphere; (b) on the lateral surfa
e of a 
ylinder (Fig. 2.1.2)?

In this se
tion, we do not give a rigorous de�nition of the notion

of homeomorphism (topologi
al equivalen
e); for a rigorous de�nition,

see � 5.2. To `prove' that shapes are homeomorphi
, in this se
tion you

must draw a 
hain of pi
tures similar to Fig. 2.7.1.

Here it is allowed to temporarily 
ut a shape, and then glue together

the `edges' of the 
ut. For example,

• the sphere with a point removed is homeomorphi
 to the plane,

and the lateral surfa
e of a 
ylinder is homeomorphi
 to the annulus on

the plane (here a 
hain of pi
tures 
an be obtained from the solution

of Problem 2.7.1);

• the sphere with one handle (Fig. 2.1.5) is homeomorphi
 to the

torus (Fig. 2.1.2);

• the disk with two ribbons (Fig. 2.7.1 (right)) is homeomorphi
 to
the torus with a hole (Fig. 2.7.1 (left));

Figure 2.7.1. The torus with a hole is homeomorphi
 to the disk

with two ribbons

• the three ribbons in Fig. 2.2.2 (b) are homeomorphi
 (here we 
an
no longer do without 
utting);

• the two ribbons in Fig. 2.2.2 (a) are homeomorphi
 (here again we

annot do without 
utting).

The ribbons in Fig. 2.2.2 (a) and in Fig. 2.2.2 (b) are not homeomorphi
.

We will deal with nonhomeomorphi
 shapes in � 5, after introdu
ing

a rigorous de�nition and other notions, whi
h allow one to turn the

informal arguments of this se
tion into rigorous proofs.

One should not 
onfuse the notion of homeomorphism with that of

isotopy, see Problem 6.6.1 (b) and � 15.5.

2.7.2. (a, b) The shapes in Fig. 1.5.2 (middle and right) are

homeomorphi
 to the torus with two holes.
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Figure 2.7.2. Are these shapes homeomorphi
?

(
) The shape in Fig. 2.7.2 (left) is homeomorphi
 to the torus with

a hole.

(d) Is the shape in Fig. 1.6.2 (right) homeomorphi
 to a sphere with

handles and holes? If yes, with how many handles and holes?

2.7.3. (a, b, 
, d) The shapes in Fig. 1.5.3 are homeomorphi
 to the

sphere with two handles and a hole.

2.7.4. Cutting the torus

(a) along any non-separating 
y
le results in a shape homeomorphi


to the annulus;

(b) along any non-separating `�gure eight' results in a shape

homeomorphi
 to the disk (i.e., to a 
onvex polygon).

2.7.5. The regular neighborhoods of di�erent drawings of a graph

in the plane without edges 
rossing (i.e., of isomorphi
 plane graphs,

see Fig. 1.3.1) are homeomorphi
.

Con
erning hieroglyphs and thi
kenings, see �� 2.6 and 1.5�1.7.

2.7.6. (a) Every hieroglyph with two ribbons is homeomorphi


either to the disk with two holes or to the disk with one hole.

(b) (Riddle) To what surfa
es 
an an orientable thi
kening of the

graph K4 be homeomorphi
?

Proposition 2.7.7. (a) Any thi
kening of a tree is homeomorphi


to the disk D2
.

(b) Any disk with non-twisted ribbons, for whi
h no two ribbons

interla
e, is homeomorphi
 to the disk with holes.

(
) Let M be a thi
kening of a 
onne
ted graph with V verti
es and

E edges. If V − E + h(M) = 2, then M is homeomorphi
 to the sphere

with h(M) holes.
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Proposition 2.7.7.
 is proved using Proposition 2.7.7.ab (together

with Assertions 1.5.3.a,b and 1.6.4.
; 
f. Euler formulas 2.7.9 (b)

and 2.8.11 (b)).

Proposition 2.7.8. (a) Two hieroglyphs with the same number of

ribbons are homeomorphi
 if and only if they have the same number of

boundary 
ir
les.

(b) Euler's Formula. Let M be a hieroglyph with n ribbons. Then

h(M)− n is odd, h(M)6 n+ 1, and M is homeomorphi
 to the sphere

with (n+ 1− h(M))/2 handles and h(M) holes.
(
)* Mohar's Formula. Let M be a hieroglyph of rank r with

n ribbons. Then r is even and M is homeomorphi
 to the sphere with

r/2 handles and n+ 1− r holes.
The names `Euler's Formula' and `Mohar's Formula' for Assertions 2.7.8,

2.7.9, and 2.8.8 (see below) are not widely used. Cf. Problems 5.9.2

and 6.7.5 (f, g).

Proposition 2.7.9. (a) Two orientable thi
kenings of a 
onne
ted

graph are homeomorphi
 if and only if they have the same number of

boundary 
ir
les.

(b) Euler's Formula. Assume that M is an orientable thi
kening of

a 
onne
ted graph with V verti
es and E edges. Then V − E + h(M) is
even, V − E + h(M) 6 2, and M is homeomorphi
 to the sphere with

(2− V + E − h(M))/2 handles and F holes.

(
)* Mohar's Formula. Assume thatM is an orientable thi
kening of

rank r of a 
onne
ted graph with V verti
es and E edges. Then r is even,
V − E + r 6 1, and M is homeomorphi
 to the sphere with r/2 handles
and 2− V + E − r holes.

2.8. Non-Orientable Surfa
es*

Graphs and Map Colorings on a Disk with M�obius strips

2.8.1. Draw the following graphs on the M�obius strip without edges


rossing:

(a) K3,3; (b) K3,4; (
) K5; (d) K6.

2.8.2. (a) Euler's Inequality. Assume that a 
onne
ted graph with

V verti
es and E edges is drawn on the M�obius strip without edges
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rossing so that it does not interse
t the boundary 
ir
le. Denote by F
the number of fa
es. Then V − E + F > 1.

(b) The graph K7 
annot be realized on the M�obius strip.

(
) The graph K5 ⊔K5 
annot be realized on the M�obius strip.

(d) Any map on the M�obius strip has a proper 
oloring with 6 
olors.

Figure 2.8.1. The disk with M�obius strips

The disk with m M�obius strips (Fig. 2.8.1) is the union of the

disk and m ribbons su
h that

• ea
h ribbon is glued along a pair of opposite sides to the boundary

ir
le S of the disk, and the dire
tions on these sides determined by an

arbitrary dire
tion on S `
oin
ide along the ribbon',

• the ribbons are `separated', i.e., there are m pairwise disjoint ar
s

on S su
h that the endpoints of the ith ribbon are glued to two disjoint
subar
s 
ontained in the ith ar
 for every i= 1, 2, . . . , m.

2.8.3. (a) Draw m 
losed non-self-interse
ting pairwise disjoint


urves on the disk with m M�obius strips su
h that their union does

not separate the disk with m M�obius strips.

(b) The union of any m + 1 pairwise disjoint 
losed 
urves on the

disk with m M�obius strips separates it.

(
) Any graph 
an be drawn without edges 
rossing on a disk with

a 
ertain number (depending on the graph) of M�obius strips.

(d) For every m> 0, obtain the disk with mM�obius strips by gluing

from a regular 4m-gon.

2.8.4. (a) Euler's Inequality. Assume that a 
onne
ted graph with

V verti
es and E edges is drawn without edges 
rossing on the disk with
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m M�obius strips, so that the graph does not interse
t the boundary


ir
le. Denote by F the number of fa
es. Then V − E + F > 2−m.
(b) State and prove versions of Theorem 2.4.4 for the disk with

m M�obius strips, where m 6= 2.
(
) State a prove a version of Heawood's Theorem 2.4.7 for the disk

with m M�obius strips, where m 6= 2.

It turns out that the graphK7 
annot be realized on the Klein bottle

(i.e., on the disk with 2 M�obius strips), and that any map on the Klein

bottle has a proper 
oloring with 6 
olors [Fr34, SK86℄.

Homeomorphi
 Non-Orientable Surfa
es

2.8.5. (a) The M�obius strip with a handle is homeomorphi
 to the

M�obius strip with an inverted handle, see Fig. 2.1.5, 2.8.2 (a).

(b) The shape in Fig. 2.8.2 (b) (i.e., the disk with two `twisted'

`separated' ribbons) is homeomorphi
 to the Klein bottle with a hole

(Fig. 2.1.6).

(a) (b) (
)

Figure 2.8.2. (a) Atta
hing an inverted handle (
f. Fig. 2.1.5).

(b) The disk with two `twisted' `separated' ribbons (
) The disk

with ribbons 
orresponding to the word (aabcbc) with w(a) = 1

and w(b) = w(c) = 0.

(
) The shape in Fig. 2.8.2 (
) is homeomorphi
 to the disk with

three M�obius strips.

(d) The shapes in Fig. 2.8.3 (a) are homeomorphi
.

(e) The shapes in Fig. 2.8.3 (b) (i.e., an annulus with two `twisted'

`separated' ribbons glued to the same boundary 
ir
le and an annulus
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∼=
? ∼=

?

(a) (b)

Figure 2.8.3. (a) Are the boundary 
ir
les of the M�obius strip

with a hole equivalent? (b) Are these annuli with two M�obius

strips homeomorphi
?

with two `twisted' ribbons glued to di�erent boundary 
ir
les) are

homeomorphi
.

Beautiful examples from Problems 2.8.5 (d, e) are of importan
e

sin
e they show that dissimilar shapes 
an still be homeomorphi
.

Disks with Twisted Ribbons

Given a disk with ribbons and a ribbon k in it, set w(k) = 1 if the
ribbon is twisted, and w(k) = 0 otherwise.

Figures 2.8.2 (b, 
) and 1.5.1 (right), 2.8.1 show, respe
tively,

• the disk with ribbons 
orresponding to the word (aabb) for whi
h
w(a) = w(b) = 1;
• the disk with ribbons 
orresponding to the word (aabcbc) for whi
h

w(a) = 1 and w(b) = w(c) = 0;
• the disk with n M�obius strips, i.e., the disk with ribbons 
orre-

sponding to the word (1122 . . . nn) for whi
h w(1) = w(2) = . . .= w(n) = 1.

2.8.6. (a) How many boundary 
ir
les 
an a disk with two ribbons

have?

(b) To what surfa
es 
an a disk with two ribbons be homeomorphi
?

(
) To one of the boundary 
ir
les of the disk with n M�obius strips

and k > 0 holes, a twisted (with respe
t to this boundary 
ir
le) ribbon

is atta
hed. The resulting shape is homeomorphi
 to the disk with

n+ 1 M�obius strips and k holes.
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2.8.7. State and prove versions of Theorems 2.6.5 (a, b) for the

realizability of disks with ribbons on the disk with m M�obius strips.

Proposition 2.8.8. (a) Two disks with the same number of ribbons

are homeomorphi
 if and only if they have the same number of boundary


ir
les and either both have a twisted ribbon or neither has one.

(b) Euler's Formula. Assume that M is a disk with n ribbons among

whi
h there is a twisted one, andM has h boundary 
ir
les. Then h6 n,
and M is homeomorphi
 to the disk with n + 1 − h M�obius strips and

h− 1 holes.

(
)* Mohar's Formula. The interla
ement matrix of a hieroglyph

with ribbons 1, 2, . . . , n and nonzero map w : {1, 2, . . . , n} → {0, 1} is
de�ned analogously to the interla
ement matrix of a hieroglyph, with

the di�eren
e that the diagonal 
ell a × a 
ontains the number w(a).
Denote by r the rank of the interla
ement matrix over Z2. Then

the 
orresponding disk with ribbons is homeomorphi
 to the disk with

r M�obius strips and n− r holes.

Thi
kenings of Graphs

2.8.9. (a) The thi
kening in Fig. 2.8.4 
annot be realized on the

M�obius strip.

(b) Every thi
kening of a uni
y
li
 graph 
an be realized on the

M�obius strip.

(
) Whi
h thi
kenings of the graphK4 
an be realized on the M�obius

strip?

Figure 2.8.4. Thi
kenings that 
annot be realized on the M�obius strip
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I should say it meant something simple and ob-

vious, but then I am no philosopher!

I.Murdo
h. The Sea, the Sea.

5.1. Hypergraphs and their geometri
 realizations

Let us give a 
ombinatorial de�nition of two-dimensional surfa
es

(and somewhat more general obje
ts). This de�nition is 
onvenient for

theoreti
al purposes as well as for storing in 
omputer memory; 
f. �1.2.

A two-dimensional hypergraph

13

(or 2-hypergraph, for short)

(V, F ) is a 
olle
tion F of three-element subsets of a �nite set V . The
elements of V and F are 
alled verti
es and fa
es (or hyperedges) of

the 2-hypergraph. An edge of a 2-hypergraph is a two-element subset

of the vertex set that is 
ontained in a fa
e.

склейка

Figure 5.1.1. Building (the geometri
 realization of) a 
omplete

2-hypergraph with 4 verti
es

Example 5.1.1. (a) A 
omplete 2-hypergraph with n verti
es (or

the two-dimensional skeleton of an (n− 1)-dimensional simplex ) is the

olle
tion of all three-element subsets of an n-element set. See Figure 5.1.1
for n = 4 and Figure 5.1.2 for n = 5. In this se
tion the 
omplete 2-

hypergraph on 4 verti
es is 
alled the sphere S2
.

13

Sometimes 
alled a 3-uniform hypergraph, or a dimensionally homogeneous

(pure) two-dimensional simpli
ial 
omplex, see [Sk, � 5℄
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Figure 5.1.2. A 
omplete 2-hypergraph with 5 verti
es

(b) The book with n pages is the 2-hypergraph with verti
es

a, b, 1, 2, . . . , n and fa
es {a, b, j}, j = 1, 2, . . . , n. See Figure 2.2.1 for
n= 3.

(
) Suppose one has a 2-hypergraph, and a gluing diagram showing

whi
h pairs of edges should be identi�ed, so that no two verti
es

of interse
ting fa
es get identi�ed. Then one 
an obtain a new 2-

hypergraph by gluing the edges a

ording to the diagram. For instan
e,

Figure 2.1.1 shows the 2-hypergraphs obtained by gluing the sides of

a square (triangulations are not shown there; see �5.9 and �6.2 for the

formalization).

(d) A triangulation of 2-manifold (see �4.6) 
an be naturally viewed
as a 2-hypergraph, whi
h is also 
alled a triangulation.

For 16 i6 n, denote by en,i ∈ Rn the point whose i-th 
oordinate

is 1 whereas the others are 0. The 
onvex hull ∆n of the points

en+1,1, . . . , en+1,n+1 ∈Rn+1
is 
alled

14

the n-dimensional simplex. It is
a 
onvex polyhedron with n+ 1 verti
es; the union of its edges `forms'

the 
omplete graph Kn+1. The geometri
 realization (or body) of a

2-hypergraph (V, F ) is the union of those two-dimensional fa
es of the

simplex with vertex set V that 
orrespond to the fa
es from F .
Main results stated in this se
tion (but not used later) are Theorems

5.2.4, 5.3.1, 5.3.3, and 5.6.2.

14

One 
ould de�ne the n-dimensional simplex as the 
onvex hull

of (0, . . . , 0), en,1, . . . , en,n ∈ Rn
. This might be more visually intuitive but

this is less 
onvenient for us.
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Remark 5.1.2 (on geometri
 realization of hypergraphs). Similarly

to the 
ase of graphs, one builds a geometri
 shape from a 2-hypergraph,

and 
alls it the geometri
 realization (
f. the above rigorous de�nition).

Informally speaking, the shape is obtained by gluing several triangles


orresponding to the fa
es. The gluing pro
edure does not have to

happen in three-dimensional spa
e; the pro
edure is either done in

higher dimensions, or even abstra
tly, without any referen
e to an

ambient spa
e.

For example, Figure 5.1.1 shows how to build the geometri


realization of the 
omplete 2-hypergraph with 4 verti
es. The geometri

realization of the 2-hypergraph that is obtained as a surfa
e triangulation

is homeomorphi
 to that surfa
e. More generally, 2-hypergraphs, just

like graphs, 
an be spe
i�ed by geometri
 shapes, in
luding `smooth' or

self-interse
ting ones. See the last two rows of Figure 2.1.1. One shape

spe
i�es multiple 2-hypergraphs.

Usually all these 2-hypergraphs are homeomorphi
 (see �5.2, Theorem 5.2.4

and the example before Problem 10.3.3). Then a 2-hypergraph bears

the name of the shape. In this 
ase non-isomorphi
 but homeomorphi


2-hypergraphs have the same name.

Despite having a geometri
 realization, a 2-hypergraph is a 
ombinatorial

obje
t. It is impossible, say, to take a point on its fa
e. However, `taking

a point on a fa
e of the geometri
 realization of a 2-hypergraph' 
an be

formalized as `taking the newly added vertex of the new 2-hypergraph

obtained by the subdivision of that fa
e'; see Figure 5.2.2 on the right.

We will not follow su
h a level of formality.

The de�nition of a 2-hypergraph isomorphism is analogous to

the one for graphs. 2-Hypergraphs (V, F ) and (V ′, F ′) are 
alled

isomorphi
 if there is a 1�1 
orresponden
e f : V → V ′
satisfying the

following property: verti
es A, B, C ∈ V lie in the same fa
e if and only

if the verti
es f(A), f(B), f(C) ∈ V ′
lie in the same fa
e.

5.2. Homeomorphi
 2-hypergraphs

Remark 5.2.1 (homeomorphism of graphs). (a) The operation

of edge subdivision is shown in Figure 5.2.1. Two graphs are 
alled

homeomorphi
 if one of them 
an be obtained from the other using

edge subdivisions and the inverse operations. Equivalently, two graphs
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are homeomorphi
 if there is a graph that 
an be obtained from either

of the two using edge subdivisions.

Figure 5.2.1. Edge subdivision

(b) The de�nition of a homeomorphism for subsets of Eu
lidean

spa
e is given in �3.1. It turns out that graphs G1 and G2 are

homeomorphi
 if and only if the realizations |G1| and |G2| are homeomorphi
.
This 
riterion motivates the de�nition of a graph homeomorphism,

whi
h allows us to study 
ertain shapes using 
ombinatorial language.

(
) A one-dimensional polyhedron is a homeomorphism 
lass of

graphs. A topologist is usually interested in polyhedra even if 
alling

them graphs. On the other hand, graphs and their realizations are


onvenient tools for studying polyhedra and storing them in 
omputer

memory. A 
ombinatorialist or dis
rete geometer are mostly interested

in graphs, though they might �nd polyhedra useful as well.

The de�nition of homeomorphi
 (
ombinatorial topology equivalent)

2-hypergraphs is analogous to the one for graphs.

The operation of an edge subdivision of a 2-hypergraph is shown

in Figure 5.2.2, on the left.

5.2.2. The operation of a fa
e subdivision in Figure 5.2.2, on the right,


an be expressed using edge subdivision and its inverse.

Two 2-hypergraphs are said to be homeomorphi
, if one of them


an be obtained from the other (to be pre
ise, from a 2-hypergraph

isomorphi
 to the latter, see the end of �5.1) using the operations of edge

subdivision and its inverse.

5.2.3. (a) The 2-hypergraph with verti
es 0, 1, . . . , n and fa
es

{0, 1, 2}, {0, 2, 3}, . . . , {0, n − 1, n} is homeomorphi
 to 
omplete 2-

hypergraph with three verti
es.

(b) The same for the set of fa
es {0, 1, 2}, {0, 2, 3}, . . . , {0, n− 1, n}, {0, n, 1}.
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Figure 5.2.2. Subdivision of an edge and a fa
e

(
) The 2-hypergraphs in ea
h separate 
olumn of Figure 2.1.1 are

homeomorphi
 to ea
h other (for some triangulation of square), while

the 2-hypergraphs from di�erent 
olumns are not.

Hint : the material of the following se
tions 
an be used in order to

prove that 
ertain 2-hypergraphs are not homeomorphi
.

(d)* Any two triangulations of triangle are homeomorphi
.

Theorem 5.2.4. (a) Two-dimensional hypergraphs are homeomorphi


if and only if their geometri
 realizations are homeomorphi
.

(b) The 2-hypergraphs 
orresponding to di�erent triangulations of

the same 2-manifold in Rm (see �4.5) are homeomorphi
.

This is an important statement (`Hauptvermutung'). It illustrates

the 
onne
tion between the notions of `
ombinatorial' homeomorphism

of 2-hypergraphs and `topologi
al' homeomorphism of their geometri


realizations.

Theorem 5.2.4 is neither proved nor used in this book. This

result is nontrivial even when one of the 2-hypergraphs is a triangle

(Assertion 5.2.3 (d)) or a sphere with handles (�2.1).

15

15

Be 
areful: visually intuitive explanations of this and analogous results might

not be proofs! For example, in [Pr14, proof of Theorem 11.5℄ the following things are

not de�ned: `surfa
e edges', `pie
ewise linear graph on the surfa
e', and `transverse

interse
tion of edges'. To over
ome this, one needs a version of Triangulation

Theorem 4.6.4. An easier way is to prove the equality of the Euler 
hara
teristi
s

not for arbitrary 
losed two-dimensional surfa
es, but for the examples in question,
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A two-dimensional polyhedron is a homeomorphism 
lass of 2-

hypergraphs. An analogue of Remark 5.2.1.
 is valid for 2-hypergraphs.

A graph is said to be embeddable (or realizable) in a 2-hypergraph

if a 
ertain 2-hypergraph homeomorphi
 to the given one 
ontains a

graph homeomorphi
 to the given one.

5.3. Re
ognition of 2-hypergraphs being homeomorphi


Theorem 5.3.1. There exists an algorithm de
iding whether

(a) a 2-hypergraph is homeomorphi
 to the sphere S2
;

(b) two arbitrary 2-hypergraphs are homeomorphi
.

Theorem 5.3.1 is neither proved nor used in this book. Theorem 5.3.1 (a)

follows from Theorem 5.3.3 on sphere re
ognition. The latter and

Theorem 5.6.2 on 
lassi�
ation of surfa
es 
an be regarded as important

spe
ial 
ases of Theorem 5.3.1 (b), whi
h suggest how to prove the

general 
ase (see Problem 5.5.2 (b) and the notion of atta
hing word

before Problem 10.5.4). Let us introdu
e the notions required to state

these spe
ial 
ases.

A 2-hypergraph is 
alled 
onne
ted, if any two verti
es 
an be

joined by a path along the edges.

A 2-hypergraph is 
alled lo
ally Eu
lidean, if for every its vertex v,
the fa
es 
ontaining v form a 
hain

{v, a1, a2}, {v, a2, a3}, . . . , {v, an−1, an} or

{v, a1, a2}, {v, a2, a3}, . . . , {v, an−1, an}, {v, an, a1}
for some pairwise distin
t verti
es a1, . . . , an.

E.g. 2-hypergraphs that are triangulations of surfa
es in Figure 2.1.1,

or of a disk with ribbons (� 1.5), are lo
ally Eu
lidean.

5.3.2. (a) For whi
h n is the 
omplete 2-hypergraph on n verti
es

lo
ally Eu
lidean?

(b) There is a 2-hypergraph that is not lo
ally Eu
lidean but with

ea
h edge in
ident to two fa
es.

(
) A 2-hypergraph homeomorphi
 to a lo
ally Eu
lidean one is

lo
ally Eu
lidean itself.

and take in pla
e of G2 the spe
i�
 triangulation that we 
onstru
ted (this su�
es

for Theorem 11.5). Even after this, the phrase `Graph G1 
an be modi�ed in order

to...' in not obvious; it seems that this fa
t is as di�
ult as Theorem 5.2.4.b.
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The Euler 
hara
teristi
 of a 2-hypergraph K with V verti
es,

E edges and F fa
es is the number

χ(K) := V − E + F.

The methods for 
omputing the Euler 
hara
teristi
s are presented

in �5.4.

Theorem 5.3.3 (Sphere re
ognition). A 2-hypergraph is homeomorphi


to the sphere S2
if and only if it is 
onne
ted, lo
ally Eu
lidean, and

its Euler 
hara
teristi
 equals 2.

A sket
h of the proof is presented in �5.5. For higher dimensional

analogues see �10.1.

5.4. Euler 
hara
teristi
 of a 2-hypergraph

5.4.1. (a�i) Find the Euler 
hara
teristi
 of the triangulations


onstru
ted in your solution of Problem 4.6.3.

The Euler 
hara
teristi
 
an be 
omputed easier (for example, in

Problem 5.4.1) not by de�nition but using its properties. They are

presented below.

5.4.2. (a) (Riddle) Guess and prove the formula for the Euler


hara
teristi
 of a union.

(b) Cutting a hole de
reases the Euler 
hara
teristi
 by 1.

5.4.3. (a) The Euler 
hara
teristi
s of homeomorphi
 2-hypergraphs

are equal.

(b) The triangulations of spheres with distin
t numbers of handles,

whi
h you 
onstru
ted in Problem 4.6.3 (e), are not homeomorphi
.

(This fa
t is not obvious sin
e seemingly di�erent shapes might happen

to be homeomorphi
, see �2.7 and espe
ially �2.8.)

5.4.4. Find the Euler 
hara
teristi
 of

(a) the disk with m M�obius bands (see Figure 2.8.1 and de�nition

thereafter);

(b) the Klein bottle with g handles;
(
) the proje
tive plane with g handles;
(d) the sphere with m M�obius bands atta
hed;

(e) the sphere with m M�obius bands atta
hed, and h holes 
ut.
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5.4.5. Whi
h 2-hypergraphs from Problem 5.4.4 (b, 
, d) are homeomorphi
?

5.4.6. Denote by K a triangulation of 2-manifold.
(a) The Riemann Theorem. Suppose g +m pairwise disjoint loops

are 
hosen inK so that 
utting along any of the �rst g of them gives two

boundary 
ir
les, and 
utting along any of the last m of them gives one

boundary 
ir
le. If 2g +m > 2 − χ(K) then the union of these loops

splits the triangulation.

(b) The Euler inequality. A 
onne
ted subgraph G of K with

V verti
es and E edges splits the triangulation into at leastE − V + χ(K)
parts. In other words, χ(G)> χ(K).

(
)* What is the minimum number of parts in a splitting of K by a

subgraph with V verti
es, E edges and s 
onne
ted 
omponents?

The Riemann Theorem 5.4.6 (b) generalizes the Riemann Theorem 2.3.5 (a)

and is implied by the following assertion (
f. [Pr14, � 11.4℄).

5.4.7. Cut a triangulation of 2-manifold along a non-splitting 
urve
that is built from some edges of the triangulation. The resulting

triangulation of 2-manifold has the same Euler 
hara
teristi
 as the

original one.

Answers to 5.4.1. (a, b) 0; (
, h) 2; (d, i) 1; (e, f, g) 2g.

5.5. Proof of Sphere Re
ognition Theorem 5.3.3

Theorem 5.3.3 is redu
ed to its version for thi
kenings (Proposition

2.7.7.
) using Assertion 5.5.1.d.

The boundary ∂N of a lo
ally Eu
lidean 2-hypergraph N is the

union of all its edges ea
h of whi
h is 
ontained in a single fa
e.

5.5.1. (a) The boundary is a disjoint union of 
y
les, i.e., graphs

homeomorphi
 to a triangle.

(b) The number of boundary 
ir
les is the same for homeomorphi


lo
ally Eu
lidean 2-hypergraphs.

(
) 2-Hypergraphs `representing' annulus and M�obius band are not

homeomorphi
.

(d) Let K ∼= L be triangulations of 2-manifolds. Let SK and

SL be 
onne
ted 
omponents of ∂K and ∂L, respe
tively. Then

K ∪SK
con SK ∼= L ∪SL

con SL.
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Proof of Theorem 5.3.3. The `only if' part follows from Assertion 5.3.2 (
)

and Assertion 5.4.3 (a), along with the result of Problem 5.4.1 (a).

The `if' part is harder. (Being 
losed and orientable, see ��5.6, 5.7,

is also needed for this part, but is implied by the other hypothesis in

Theorem 5.3.3.) Denote by K the given triangulation of 2-manifold.
Denote by V, E, F, n the number of its verti
es, edges, fa
es, and

boundary 
ir
les.

Take the unionM of 
aps and ribbons 
orresponding to verti
es and

edges of the triangulation. (See an informal explanation near Fig. 1.6.3

(left) and a rigorous de�nition below.) By Assertions 5.2.3.a,b any

pat
h, any ribbon, and any 
ap is homeomorphi
 to D2
. Hen
e M is a

thi
kening of the union of edges. Clearly,M has F + n boundary 
ir
les.
Sin
e V − E + F = 2, by and 
onne
tivity and Assertions 1.6.4.
, 1.6.5
we have n= 0. Then by Proposition 2.7.7.
 M is homeomorphi
 to the

disk with h − 1 = F − 1 holes. The thi
kening M is K with F holes.

Hen
e by Assertion 5.5.1.d K ∼= S2
.

The bary
entri
 subdivision G′
of a graph G is obtained by subdividing

all its edges. The bary
entri
 subdivision of a fa
e of a 2-hypergraph

is the result of the repla
ement of the fa
e by six new fa
es that

are obtained by drawing the `medians' in the triangle representing

the fa
e (Figure 5.5.1). The bary
entri
 subdivision K ′
of a 2-

hypergraph K is the result of the bary
entri
 subdivision of all its

fa
es.

Figure 5.5.1. Bary
entri
 subdivision

Sin
e the bary
entri
 subdivision 
an be obtained via edge subdivisions,

K ′ ∼=K.
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Denote byK ′′
the 2-hypergraph obtained from a 2-hypergraph K by

bary
entri
ally subdividing it twi
e. We will use the following notation

(see Figure 1.6.3 on the left, where a triangulation of 2-manifold K is

shown):

• a 
ap is the union of the fa
es of the triangulation K ′′
that 
ontain

a 
ertain vertex of the triangulation K;

• a ribbon is the union of the fa
es of the triangulation K ′′
that

interse
t a 
ertain edge of the triangulation K but avoid the verti
es of

the triangulation K;

• a pat
h is a 
onne
ted 
omponent of the union of the remaining

fa
es of the triangulation K ′′
, i.e., the union of all fa
es of K ′′

belonging

neither to 
aps nor to ribbons.

5.5.2. (a) There exists an algorithm that takes a 2-hypergraph

homeomorphi
 to S2
and outputs a sequen
e of edge subdivisions and

inverse operations that transform the 2-hypergraph to S2
.

(b) There exists an algorithm re
ognizing whether a 2-hypergraph

is homeomorphi
 to the book with 3 pages.

5.6. Classi�
ation of surfa
es

Lemma 5.6.1 (homogeneity). Let p and q be any two fa
es of a

lo
ally Eu
lidean 2-hypergraph K. If both p and q are disjoint from ∂K,

then K − p and K − q are homeomorphi
.
From a lo
ally Eu
lidean 2-hypergraph one 
an obtain other lo
ally

Eu
lidean 2-hypergraphs by

• 
utting a hole (more pre
isely, removing a fa
e disjoint from the

boundary; this is well-de�ned by Homogeneity Lemma 5.6.1),

• atta
hing a handle, see Figure 2.1.5 (more pre
isely, 
utting two

holes and atta
hing to their boundary a 
ertain triangulation of the

lateral surfa
e of a 
ylinder), or

• atta
hing a M�obius band, or a 
ross-
ap, see Figure 5.6.1.

Before we prove in Assertions 5.8.1, 5.8.2 that atta
hing a handle,

and a M�obius band operations are well-de�ned, we do not assume that.

Theorem 5.6.2 (Classi�
ation of surfa
es). Every 
onne
ted lo
ally

Eu
lidean 2-hypergraph is homeomorphi
 to a triangulation of either

a sphere with handles and holes, or a sphere with M�obius bands

(atta
hed to the sphere) and holes. These triangulations are not homeomorphi
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Figure 5.6.1. Atta
hing a handle and a M�obius band; 
utting a hole

for di�erent triples (ε, g, h), set to (0, g, h) for a sphere with g handles
and h holes, and to (1, g, h) for a sphere with g M�obius bands

and h holes.

A proof is sket
hed in 5.7. It gives an algorithm dete
ting homeomorphism

between a 2-hypergraph and the aforementioned 
lasses (ε, g, h) of

2-hypergraphs, as well as an algorithm dete
ting homeomorphism

between lo
ally Eu
lidean 2-hypergraphs. Compare to Theorem 6.7.6.

A pie
ewise linear (PL) two-dimensional manifold is a homeomorphism


lass of lo
ally Eu
lidean 2-hypergraphs. If there is no ambiguity with

the notion of 2-manifolds from �4.5, we say `2-manifold' as a shorthand
for `PL two-dimensional manifold'.

From now on, instead of the term `lo
ally Eu
lidean 2-hypergraph'

we use a 
ommon term `triangulation of 2-manifold'. Earlier it would
not be 
onvenient for a beginner, sin
e in the study of 2-manifolds from
the pie
ewise linear viewpoint, the primary obje
t is a 2-hypergraph,

and not a 2-manifold.
A lo
ally Eu
lidean 2-hypergraph is 
alled 
losed, if ea
h its edge

belongs to two fa
es (as opposed to one; that is, for ea
h vertex the

se
ond option from the de�nition of being lo
ally Eu
lidean takes pla
e).

For instan
e, in Figure 2.1.1 only the four last `hypergraphs' are 
losed.
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By `sealing' (
apping with a disk) ea
h boundary 
ir
le of a disk with

ribbons one obtains a 
losed lo
ally Eu
lidean 2-hypergraph.

5.7. Orientable triangulations of 2-manifolds

An orientation of a two-dimensional triangle is an ordering of its

verti
es up to an even permutation. An orientation is 
onveniently

pi
tured by a 
losed 
urve with an arrow inside the triangle (or by

an ordered pair of non-
ollinear ve
tors).

Figure 5.7.1. Agreeing orientations

An orientation of a triangulation of 2-manifold is a 
hoi
e of fa
e

orientations agreeing with one another on ea
h edge 
ontained in two

fa
es, in the sense that the orientations of adja
ent fa
es indu
e the

opposite dire
tions on their 
ommon edge (Figure 5.7.1).

A triangulation of 2-manifold is 
alled orientable if there exists an

orientation of it

16

.

It is not di�
ult to see that a smooth 2-manifold is orientable in

the sense of �4.10 if and only if it has an orientable triangulation.

5.7.1. (a) Homeomorphi
 triangulations of 2-manifold are simultaneously
orientable or non-orientable.

(b) The sphere, the torus, a sphere with handles are orientable.

(
) The M�obius band, the Klein bottle, the proje
tive plane

(Figure 2.1.1) are non-orientable.

(d) The torus is not homeomorphi
 to the Klein bottle.

5.7.2. (a) The orientability is preserved when 
utting a hole.

16

The notion of orientability is `impossible' to introdu
e for arbitrary 2-

hypergraphs (think why), but is 
ould be introdu
ed for 2-hypergraphs ea
h of

whose edges is 
ontained in at most two fa
es.
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(b) A disk with ribbons (see �1.5) is orientable if and only if no

ribbon is twisted.

5.7.3. (a) A triangulation of 2-manifold is orientable if and only

if no homeomorphi
 triangulation 
ontains a triangulation of M�obius

band.

(b)* Does there exist a non-orientable triangulation of 2-manifold
that does not 
ontain a triangulation of M�obius band?

(
) A 
losed triangulation of 2-manifold is orientable if and only

if there exists a 
olle
tion of fa
es of its bary
entri
 subdivision su
h

that every edge of the subdivision is in
ident to exa
tly one fa
e of the


olle
tion.

The 
riterion from part (a) does not give an algorithm re
ognizing

orientability. Su
h an algorithm is obtained from the following strengthening

of the 
riterion: one needs to repla
e the words `no homeomorphi


triangulation 
ontains' with the words `its se
ond bary
entri
 subdivision

does not 
ontain'. However, the 
orresponding algorithm is slow (has

`exponential 
omplexity'). A polynomial algorithm is presented in �6.1

(or 
an be obtained from part (
)).

Sket
h of the proof of Surfa
e Classi�
ation Theorem 5.6.2. The la
k

of homeomorphism (i.e., the se
ond assertion of the theorem) is proved

using orientability, the number of 
onne
ted boundary 
omponents,

and the Euler 
hara
teristi
; that is, the la
k of homeomorphism

follows from Assertions 5.7.1 (a), 5.5.1 (b), 5.4.3 (a) and the results of

Problems 5.4.4 (e), 5.4.1 (g).

The proof of homeomorphism (i.e., the �rst assertion of the

theorem) is analogous to that of Theorem 5.3.3; that is, the proof

of homeomorphism follows from Assertions 2.7.9 (b), 2.8.11 (b), and

Assertions 5.7.2 (a, b).

In Theorem 5.6.2, the number g of handles is 
alled the orientable

genus of a triangulation of 2-manifold. It 
an be found from the

equation 2− 2g − h= χ. The number m of M�obius bands is 
alled the

non-orientable genus and 
an be found from the equation 2−m− h= χ.
See Problems 5.4.1 (g) and 5.4.4 (a).

By Theorem 5.6.2 (or by Assertion 6.7.3 (b)) the Euler 
hara
teristi


of a 
losed orientable triangulation of 2-manifold is even.
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5.8. Atta
hing a handle or a M�obius band is well-de�ned

The 2-hypergraphs obtained from a given lo
ally Eu
lidean one by

atta
hing a handle or a M�obius band, are unique up to a homeomorphism.

The fa
t that the result of atta
hing a handle or a M�obius band does

not depend on the disks to whi
h the handle is atta
hed, also follows

from Homogeneity Lemma 5.6.1. However, the independen
e from the

atta
hing map is a priori not obvious (though it is usually not dis
ussed

in textbooks). Indeed, the result of gluing two quadrilaterals ABCD
and A′B′C ′D′

to one another along the edges AB and A′B′
, CD

and C ′D′
, depends on the 
hoi
e of atta
hing map (i.e., on the 
hoi
e of

dire
tions along the edges used for gluing). Moreover, in the following

paragraph we de�ne a analogous operation of `atta
hing a 
andle', whi
h

is not well-de�ned up to a homeomorphism.

A 
andle is the union of a quadrilateral ABCD with segments

CC1, DD1, DD2. Given a surfa
e M and an ar
 XY in its boundary,

atta
hing a 
andle is taking the union of M and the 
andle, and

identifying the ar
s AB and XY . This 
an be done in two ways: identify
A with X, and B with Y , or vi
e versa. The two thus obtained shapes

are homeomorphi
 whenM is a disk, but any homeomorphism between

them reverses the orientation on the disk. The two thus obtained shapes

are not homeomorphi
 when M is a disk with 
andle.

For higher-dimensional manifolds, the result of the atta
hing an

analogue of a handle may depend on the 
hoi
e of gluing (a remark for

experts: CP 2#CP 2
and CP 2#(−CP 2) are not homeomorphi
).

In order to have the independen
e of the way of gluing one needs

the obje
t being atta
hed to be `symmetri
'. For atta
hing a handle,

the independen
e follows from Assertion 5.8.1 (b) (or 5.8.1 (
, d)), while

for atta
hing a M�obius band this follows from Assertion 5.8.2 (b).

5.8.1. (a) The quadrilateral whose antipodal sides are endowed

with `agreeing' dire
tions is homeomorphi
 to the quadrilateral whose

antipodal sides are endowed with the opposite `agreeing' dire
tions.

Formally, there exists a re�nementK of the 2-hypergraph with verti
es 1,
2, 3, 4 and fa
es {1, 2, 3}, {1, 3, 4}, and an isomorphism K → K,

sending 1, 2, 3, 4 to 2, 1, 4, 3, respe
tively.
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(b) The annulus whose boundary 
ir
les are endowed with `agreeing'

dire
tions is homeomorphi
 to the annulus whose boundary 
ir
les are

endowed with the opposite `agreeing' dire
tions.

(
) The torus with a hole and with a 
hoi
e of dire
tion along the

boundary 
ir
le is homeomorphi
 to the torus with a hole and with the

opposite 
hoi
e of dire
tion along the boundary 
ir
le.

(d) The result of atta
hing a handle is homeomorphi
 to the result

of the operation in Figure 5.6.1, at the top, and is homeomorphi


to the result of 
utting out square ABCD and gluing dire
ted edges

AB and DC, AD and BC.

In order to prove Assertion 5.8.1 (d), as well as the following 
laim,

you 
an exhibit a sequen
e of pi
tures, as in �2.7.

5.8.2. (a) The proje
tive plane (see Example 4.5.3) with a hole is

homeomorphi
 to the M�obius band.

(b) The M�obius band with a hole and with a 
hoi
e of dire
tion

along its boundary 
ir
le is homeomorphi
 to the M�obius band with

a hole and with the opposite 
hoi
e of dire
tion along the boundary


ir
le.

(
) The result of atta
hing a M�obius band is homeomorphi
 to

the result of 
utting a hole and identifying the antipodal points of its

boundary 
ir
le.

(d) The Klein bottle is homeomorphi
 to the sphere with two M�obius

bands atta
hed.

(e) The torus with a M�obius band atta
hed is homeomorphi
 to the

Klein bottle with a M�obius band atta
hed.

5.9. Regular neighborhoods and 
ellular subgraphs

The notion of a regular neighborhood is informally explained near

Fig. 1.6.3 (left). An example of a regular neighborhood of a subgraph

in a hypergraph one 
an take the union U of 
aps and ribbons


orresponding to the verti
es and the edges of the subgraph; that is, the

union of those fa
es of the se
ond bary
entri
 subdivision that interse
t

the subgraph. Let us give the general de�nition.

A hypergraph L is obtained from a 
omplex K by an elementary


ollapse if K = L ∪ σ and L ∩ σ = ∂σ − Int τ for some fa
es σ, τ of K
su
h that τ ⊂ ∂σ. A hypergraph K 
ollapses to L (notation: Kց L) if
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there exists a sequen
e of elementary 
ollapsesK =K0ցK1ց . . .ցKn = L.
A hypergraph K is 
ollapsible if it 
ollapses to a point.

A regular neighborhood of a subhypergraph A in a hypergraph

K is a subhypergraph of some subdivision of K whi
h 
ontains A and


ollapses to A.

5.9.1. (a) The 
one of any graph is 
ollapsible.

(b) Constru
t three hypergraphs none of whi
h 
ollapses to a

hypergraph homeomorphi
 to any other.

(
) The Euler 
hara
teristi
 is preserved under 
ollapses.

(d) The Euler 
hara
teristi
 of a subgraph and of its regular

neighborhood in a 2-hypergraph are equal.

(e) The union U is indeed a regular neighborhood.

The 
omplement G −H in a graph G to a vertex set H is formed

by the verti
es of the graph G that do not lie in H, and the edges of

the graph G without endpoints in H.

Let G be a subgraph of a hypergraph K (i.e., a subgraph of the

graph formed by the verti
es and the edges of the hypergraph K). The


omplement K −G is formed by the fa
es of the hypergraph K that do

not interse
t G.
The following de�nition formalize the 
onstru
tion of gluing a

hypergraph out of a square (Figure 2.1.1) or a polygon.

Denote by |K| the geometri
 realization of a graph K or a

hypergraph K.

A vertex set A in a graph K is 
alled (topologi
ally) 
ellular if

ea
h 
onne
ted 
omponent of |K| − |A| is homeomorphi
 (topologi
ally)
to the open interval. We will be using the following (equivalent)


ombinatorial de�nition. A vertex set H in a graph G is 
alled


ellular if ea
h 
onne
ted 
omponent of the 
omplement G′′ − H is

homeomorphi
 to a segment ea
h of whose endpoints belongs to an

edge of the graph G′′
in
ident to a vertex from H.

A subgraph A in a hypergraph K is 
alled (topologi
ally) 
ellular if

ea
h 
onne
ted 
omponent of |K| − |A| is homeomorphi
 (topologi
ally)
to the open disk. We will be using the following (equivalent) 
ombinatorial

de�nition. A subgraph G in a hypergraph K is 
alled 
ellular if ea
h


onne
ted 
omponent C of the 
omplement K ′′ −G′′
is homeomorphi
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to a disk

17

ea
h of whose boundary edges lies in a fa
e of the

hypergraph K ′′
interse
ting G. For example,

• a point in the sphere is 
ellular whereas a point in the torus is

not;

• the union of the edges of a hypergraph is 
ellular.

5.9.2. The Euler formula. If K is a 2-hypergraph, and G ⊂ K
is a 
onne
ted 
ellular subgraph with V verti
es and E edges, then

V − E + F = χ(K), where F is the number of 
onne
ted 
omponents

of the 
omplement K ′ −G′
.

Hint. The formula follows from the in
lusion-ex
lusion prin
iple

(Problem 5.4.2), sin
e χ(D2) = 1.

5.9.3. (a) If a 
onne
ted graph 
an be embedded to the sphere

with g handles, then it is homeomorphi
 to a 
ellular subgraph of a

sphere with at most g handles.
(b) The same for spheres with M�obius bands atta
hed.

17

In many appli
ations of the notion `
ellular', the 
ondition `homeomorphi
 to a

disk' 
ould be repla
ed by a weaker 
ondition χ(C) = 1, whi
h is easier to verify. If

the 
omponent C is lo
ally Eu
lidean, then the 
ellularity 
ondition is equivalent to

this weaker 
ondition as well as to the following one: the 
omponent C is split by

any polygonal line with the endpoints on the boundary of C.
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And the leap is not � is not what I think

you sometimes see it as � as breaking, as

a
ting. It's something mu
h more like a quiet

transition after a lot of patien
e and � tension

of thought, yes � but with that [enlightenment℄

as its dis
ipline, its orientation, its truth. Not


onfusion and 
haos and immolation and pulling

the house down, not something experien
ed as a

great signi�
ant moment.

I. Murdo
h, The Message to the Planet.

6.1. Orientability 
riterion

The de�nitions of a pie
ewise linear (PL) 2-manifold and its

triangulation are presented in �5.6. The de�nitions of a smooth

2-manifold and its triangulation are presented in �4.5. Either of these

two approa
hes 
an be used for this se
tion. However, a 
areful

treatment is only presented in the PL language in some pla
es.

The de�nition of orientability of a triangulation is given in �5.7.

There is a ni
e and simple 
riterion of orientability: `does not 
ontain

a M�obius band' (a pre
ise formulation is given in Problem 5.7.3 (a)).

There is a simple algorithm re
ognizing orientability as follows. It

su�
es to 
he
k the orientability of ea
h 
onne
ted 
omponent. First,

orient a fa
e of the 
omponent arbitrarily. Then at ea
h step orient a

fa
e adja
ent to any of the fa
es already oriented, until all fa
es are

oriented, or two adja
ent fa
es with disagreeing orientations are found.

In this se
tion we will give an algebrai
 
riterion of orientability,

whi
h, basi
ally, is merely a reformulation of the de�nition of orientability

in algebrai
 language. However, this 
riterion is important not on its

own but rather as an illustration of obstru
tion theory. Moreover,

similar 
onsiderations lead to Assertion 6.1.2 (b), and are applied in

the 
lassi�
ation of thi
kenings [Sk℄. Cf. �6.8, �4.11.

Theorem 6.1.1 (Orientability). A 2-manifold N is orientable if

and only if its �rst Stiefel�Whitney 
lass w1(N) ∈H1(N, ∂) is zero.
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The group H1(N, ∂) and the 
lass w1(N) are de�ned later. They

arise naturally and 
an be de�ned rigorously in the pro
ess of inventing

the Orientability Theorem, whi
h we will start in a moment. The


omputation of the group H1(N) is given in �6.4.

In this se
tion the word `group' 
an be regarded synonymous with

the word `set' (with the ex
eption of Problems 6.2.5, 6.5.2, and �6.7).

The 
onstru
tions will remain interesting.

6.1.2. (a) Draw a 
losed non-self-interse
ting 
urve on the disk with

three M�obius bands, so that the 
omplement to the 
urve is orientable.

(b) Any 
losed 2-manifold admits a 
losed non-self-interse
ting


urve whose 
omplement is orientable. (More formally: for any 
losed

triangulation of 2-manifold there is a subgraph of a homeomorphi


triangulation T , su
h that the subgraph is homeomorphi
 to the 
ir
le,
and the 
omplement to the image of this subgraph in the se
ond

bary
entri
 subdivision of T , see �5.9, is orientable.)

6.2. Cy
les

The notion of a 
ellular de
omposition of a hypergraph formalizes

the examples `glued of polygons' from Example 5.1.1.
. A 
ellular

de
omposition of a hypergraph K is a pair K0 ⊂ K1 ⊂ K of its

subhypergraphs in whi
h K1 is a 
ellular subgraph in K and K0 is a


ellular set of verti
es in K1 (see �5.9 for de�nitions). The graph K1 is


alled the one-dimensional skeleton of the 
ellular de
omposition. Edges

and fa
es of a 
ellular de
omposition K0 ⊂K1 ⊂K are the 
onne
ted


omponents of the 
omplement K ′′
1 −K0 and 
onne
ted 
omponents of

the 
omplement K ′′ −K ′′
1 , respe
tively.

Many 
onstru
tions are done more 
onveniently for 
ellular de
ompositions

rather than for hypergraphs, sin
e many `interesting' hypergraphs

have `many' fa
es, but admit `e
onomi
al' 
ellular de
ompositions. For


omputations, it is more 
onvenient to draw 
ellular de
ompositions

rather than more 
umbersome polygonal de
ompositions. Triangulations

are spe
ial 
ases of 
ellular de
ompositions. Other examples are shown

in Figure 2.1.1. In the following 
onsiderations, ex
ept the examples,

the reader may substitute 
ellular de
ompositions with triangulations.

In this se
tion T is a 
ellular de
omposition of a 2-manifold N ,

while o is a 
hoi
e of orientations on the fa
es of T .
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Figure 6.2.1. Colle
tion o of orientations, and the obstru
tion 
y
le ω(o)

Color an edge of a 
ellular de
omposition T in red if the orientations

of the in
ident fa
es do not agree along this edge, i.e., indu
e the same

dire
tion on the edge. The 
olle
tion of the red edges is 
alled the

obstru
tion 
y
le ω(o).
For instan
e, in Figure 6.2.1 the Klein bottle is represented as a

square with glued sides, i.e., it is de
omposed into a single polygon. The

fa
es in
ident to the horizontal edge from the two sides, 
oin
ide. But

their (or rather its) orientations do not agree along the edge. Besides,

the orientation of the only fa
e agrees with itself along the verti
al

edge. Hen
e, in Figure 6.2.1 the obstru
tion 
y
le 
onsists of a single

horizontal edge (shown in bold).

So, if a de
omposition is not a triangulation, then the orientation of

a fa
e in
ident to an edge from two sides does not have to agree with

itself along this edge. Moreover, a pair of fa
es (
oin
iding or not) might

have orientations that agree along one edge but disagree along another

edge.

6.2.1. (a) For ea
h edge of the single-fa
e 
ellular de
omposition of

the M�obius band (i.e., of the representation of the M�obius band as a

square with glued sides, see the third 
olumn in Figure 2.1.1), �nd out

if the orientation of the only fa
e agrees with itself along this edge.

(b) The same question for the proje
tive plane (Figure 2.1.1).

6.2.2. (a) Draw the obstru
tion 
y
le for the single-fa
e 
ellular

de
omposition of the M�obius band.

(b) The same for the proje
tive plane.

Many of the following fa
ts (for example, Problems 6.2.3 (a, b)) 
an

be �rst proved for triangulations and then for 
ellular de
ompositions.

6.2.3. (a) A 
olle
tion o of fa
e orientations determines an orientation
of a 
ellular de
omposition if and only if ω(o) =∅.
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(b) If a 2-manifold is 
losed, then ea
h vertex has an even number

of in
ident edges of the obstru
tion 
y
le (by 
onvention, a loop 
ounts

with multipli
ity two).

(
) The 
omplement to the obstru
tion 
y
le ω(o) (formally, the
union of the fa
es of the se
ond bary
entri
 subdivision that do not

interse
t ω(o)) is orientable.
(d) For any 
losed triangulation of 2-manifold, it is possible to orient

the (two-dimensional) fa
es of its bary
entri
 subdivision so that the

orientations of any two adja
ent fa
es do not agree.

A 
y
le (homologi
al, one-dimensional, mod 2) in a graph (or in

a hypergraph) is an unordered 
olle
tion of its edges su
h that any

vertex has an even number of in
ident edges from the 
olle
tion. The

words `homologi
al', `one-dimensional' and `mod 2' will be omitted.

Cy
les in the sense of graph theory will be 
alled `
losed 
urves'.

For instan
e, the graphs in Figure 1.2.1 have 2, 8, and 8 
y
les,

respe
tively. The union of edges in the single-fa
e 
ellular de
omposition

of the Klein bottle (Figure 6.2.1) is the `�gure eight', so this graph has

four 
y
les.

6.2.4. How many 
y
les are there in a 
onne
ted graph with V
verti
es and E edges?

On the set of all 
y
les in a given graph (or a hypergraph) 
onsider

the operation of the (mod 2) sum (i.e., the symmetri
 di�eren
e).

6.2.5. The homology group H1(G) of a graph G (one-dimensional,

with 
oe�
ients mod 2) is the group of all 
y
les in the graph G.
(a) The sum of 
y
les is a 
y
le.

(b) Homeomorphi
 graphs have isomorphi
 homology groups.

(
) For a 
onne
ted graph G with V verti
es and E edges, one has

H1(G)∼= ZE−V+1
2 .

(d) Non-self-interse
ting 
losed 
urves in a graph G generate H1(G).

6.3. Homologous 
y
les

If ω(o) 6= ∅, then o does not determine an orientation of a 
ellular

de
omposition T . All is not lost though: one 
an try to modify o in

order to make the obstru
tion 
y
le empty. For this, let us �nd out how

ω(o) depends on o. The answer is formulated 
onveniently using the
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mod 2 sum (i.e., the symmetri
 di�eren
e) of edge sets in an arbitrary

graph.

The (homologi
al) boundary ∂a of a fa
e a in a hypergraph is the
set of edges of the geometri
 boundary of this fa
e.

a

∂a

Figure 6.3.1. Homologi
al (algebrai
) boundary of a 
ompli
ated fa
e

For a fa
e of a 
ellular de
omposition, the de�nition is more

involved. The (homologi
al) boundary ∂a of a fa
e a is the set of

all those edges of the geometri
 boundary of the fa
e that are adja
ent

to the fa
e just from one side (Figure 6.3.1).

As for 
y
les, the word `homologi
al' will be omitted. For the

single-fa
e 
ellular de
omposition of the Klein bottle (Figure 6.2.1) the

boundary of the only fa
e is empty.

6.3.1. (a) What is the boundary of the only fa
e in the single-fa
e


ellular de
omposition of the proje
tive plane (see Figure 2.1.1)?

(b) The boundary of a fa
e is a 
y
le.

(
) When the orientation of single fa
e a is reverted, the 
y
le ω(o)

hanges to the sum with the boundary of that fa
e: for the resulting


olle
tion o′ of orientations one has ω(o′)− ω(o) = ∂a.
(d) When the orientations of several fa
es a1, . . . , ak are reverted,

the 
y
le ω(o) 
hanges to the sum with the boundaries of these fa
es:

for the resulting 
olle
tion o′ of orientations one has

ω(o′)− ω(o) = ∂a1 + . . .+ ∂ak.

Two 
y
les are 
alled homologous (or 
ongruent modulo boundaries),

if their di�eren
e is the sum of the boundaries of several fa
es.
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6.3.2. (a) When the 
olle
tion o of orientations is 
hanged, the

obstru
tion 
y
le ω(o) is repla
ed by a homologous 
y
le.

(b) If ω(o) is a boundary, then it is possible to 
hange o to o′ so
that ω(o′) =∅.

Proposition 6.3.3. A 
losed triangulation of 2-manifold is orientable
if and only if some (or, equivalently, any) obstru
tion 
y
le is homologous

to the empty 
y
le.

Sket
h of the proof. It is 
lear that this 
ondition is ne
essary

for orientability. Conversely, suppose that some obstru
tion 
y
le is

homologous to the empty 
y
le. Then there exists a 
olle
tion o of fa
e
orientations of whi
h ω(o) is the boundary. Then by Assertion 6.3.2 (b)
it is possible to 
hange o to o′ so that ω(o′) = 0. Therefore, the
triangulation is orientable.

6.3.4. (a) Any two 
y
les in the single-fa
e 
ellular de
omposition

of the sphere (see Figure 2.1.1) are homologous.

(b) The boundary 
ir
les on the torus with two holes are homologous

(for any 
ellular de
omposition).

(
) The boundary 
ir
le of the M�obius band is homologous to the

empty 
y
le (for any 
ellular de
omposition).

6.3.5. For the single-fa
e 
ellular de
omposition of the torus (Figure 2.1.1)

(a) the `meridian' 
y
le is not homologous to the empty 
y
le;

(b) di�erent 
y
les are not homologous.

6.3.6. (a) In the single-fa
e 
ellular de
omposition of the proje
tive

plane (Figure 2.1.1) di�erent 
y
les are not homologous.

(b) In the 
omplete hypergraph on 9 verti
es any two 
y
les are

homologous.

(
) Any two 
y
les are homologous in the single-fa
e 
ellular

de
omposition of the Zeeman dun
e hat.

(The Zeeman dun
e hat is obtained from a triangle ABC by gluing

all three its sides dire
ted so that

#    –

AB =
#    –

AC =
#    –

BC.)

6.3.7. (a) Homology is an equivalen
e relation on the set of 
y
les.

(b) Any 
y
le in a 
onne
ted triangulation T of 2-manifold is

homologous to a 
losed non-self-interse
ting polygonal line in some

subdivision of T .
(
) Is the same true for an arbitrary 
onne
ted hypergraph T ?
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6.3.8. (a) The sum of the boundaries of all fa
es of a 
losed

triangulation of 2-manifold is empty.

(b) The sum of the boundaries of all fa
es of a triangulation of

2-manifold equals to the boundary.

(
) The sum of the boundaries of any proper subset of fa
es of a


onne
ted 
losed triangulation of 2-manifold is non-empty.

6.3.9. (a) Any 
y
le in a hypergraph is homologous to some 
y
le

in any 
ellular graph in this hypergraph.

(b) If two 
y
les in a 
ellular de
omposition of a hypergraph are

homologous in the hypergraph, then they are homologous in the 
ellular

de
omposition as well.

6.4. Homology and the �rst Stiefel�Whitney 
lass

Re
all the de�nitions, motivated and introdu
ed in the previous

se
tions. A 
y
le in a hypergraph is an unordered 
olle
tion of edges

su
h that every vertex is in
ident to an even number of them. The

boundary ∂a of a fa
e a in a hypergraph is the 
olle
tion of all edges of
the geometri
 boundary of this fa
e. Two 
y
les are 
alled homologous

if their di�eren
e is the sum of several boundaries.

The homology groupH1(K) (one-dimensional, with 
oe�
ients mod 2)
of a hypergraph K is the group of 
y
les up to homology.

The homology group appears in solutions of spe
i�
 problems

(e.g. in 
he
king orientability, see �6.2-�6.3). It is important that the

homology group is de�ned in a short way regardless of the problems,

and for arbitrary hypergraphs.

6.4.1. (a) On the set H1(K) the sum operation is well-de�ned by

the formula [α] + [β] = [α+ β].
(b) The set H1(K) with this operation is a group.

(
) The homology groups of homeomorphi
 hypergraphs are isomorphi
.

More pre
isely, if a hypergraph K is obtained from a hypergraph L by

edge subdivision, then the naturally de�ned homomorphismH1(L)→H1(K)
is an isomorphism.

The homology group H1(T ) (one-dimensional, with 
oe�
ients mod 2)
of a 
ellular de
omposition T of a hypergraph is de�ned analogously. By

de�nition, the boundary ∂a of a fa
e a of a 
ellular de
omposition of
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a hypergraph is the 
olle
tion of those edges of the geometri
 boundary

of a that are adja
ent to a from an odd number of sides (Figure 6.3.1).

6.4.2. (a) For the aforementioned single-fa
e 
ellular de
ompositions

of the sphere, the torus, the proje
tive plane, the Klein bottle (Figures 2.1.1

and 6.2.1) the number of elements in H1(T ) equals 1, 4, 2, 4,
respe
tively.

(b) For a 
ellular de
omposition T of a hypergraph K the following

holds: H1(T )∼=H1(K).

The homology group H1(N) (one-dimensional, with 
oe�
ients mod 2)
of a 2-manifold N is the group H1(T ) for any triangulation T of the

manifold (or even for any 
ellular de
omposition T of a triangulation).

The homology group is well-de�ned by Assertion 6.4.1 (
) (and 6.4.2 (b)).

The �rst Stiefel�Whitney 
lass of a 
ellular de
omposition T
of a 
losed triangulation of 2-manifold is the homology 
lass of an

obstru
tion 
y
le:

w1(T ) := [ω(o)] ∈H1(T ).

This is well-de�ned by Assertion 6.3.2 (a).

The �rst Stiefel�Whitney 
lass of a 
losed 2-manifold N is the

�rst Stiefel�Whitney 
lass of any triangulation T of 2-manifold N (or

even of any 
ellular de
omposition T of a triangulation): w1(N) := w1(T ).
This is well-de�ned in the following sense (see also Assertion 6.4.2 (b)).

6.4.3. The map from Assertion 6.4.1 (
) sends w1(L) to w1(K).

Orientability Theorem 6.1.1 is a reformulation of Assertion 6.3.3.

6.5. Computations and properties of homology groups

In the arguments involving homology 
lasses of 
y
les, it is 
onvenient

�rst to work with representing 
y
les, and then prove that the a
tual


hoi
e of the representatives does not play a role.

6.5.1. Find the homology group and draw the 
urves forming its

basis for your preferred 
ellular de
omposition of

(a) the sphere with g handles;
(b) the sphere with g handles and h holes;

(
) the sphere with m M�obius bands;

(d) the sphere with m M�obius bands and h holes.
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6.5.2. If T is a 
ellular de
omposition of a 
onne
ted 
losed

2-manifold, then H1(T )∼= Z2−χ(T )
2 .

6.5.3. (a) If M and N are 
losed 2-manifolds, then H1(M#N) ∼=
∼= H1(M) ⊕ H1(N) (the operation # of 
onne
ted sum is de�ned

analogously to Figure 5.6.1).

(b) Does that formula hold for non-
losed 2-manifolds M and N?

6.5.4. (a) For any hypergraphs K and L sharing at most one point,

H1(K ∪ L)∼=H1(K)⊕H1(L).
(b) Does that formula hold if there are two 
ommon points?

6.5.5. (a) For any 
onne
ted graph K one has

H1(K × I)∼=H1(K) and H1(K × S1)∼=H1(K)⊕ Z2.

(Come up with your own de�nitions of the produ
t of a graph with the

interval/the 
ir
le, or �nd the de�nitions in [Sk, Se
tion 5.9.2 �Linear

realizability of produ
ts�℄.)

(b) For a regular neighborhood U of a subgraph K in a hypergraph,

one has H1(U)∼=H1(K).

Let T be a 
ellular de
omposition of a triangulation of 2-manifold N
(perhaps, with a non-empty boundary). A 
y
le relative to the boundary

(or a relative 
y
le, for brevity) in T is a 
olle
tion of edges of T
su
h that every non-boundary vertex is in
ident to an even number

of the edges from the 
olle
tion. Two relative 
y
les are said to be

homologous relative to the boundary, if their di�eren
e is a sum of the

boundaries of several fa
es and of some boundary edges. The homology

groups H1(T, ∂), H1(N, ∂) relative to the boundary, and the 
lasses

w1(T ) ∈H1(T, ∂), w1(N) ∈H1(N, ∂) are de�ned analogously to above.

6.5.6. (a, b) Formulate and solve the analogues of Problems 6.5.1 (b, d)

for the homology groups relative to the boundary.

6.6. Interse
tion form: motivation

The interse
tion form is among the most important tools and

resear
h obje
ts in topology and its appli
ations. See [DZ93℄. The

interse
tion form arises naturally, for instan
e, when proving Assertions 6.6.1 (b)

and 6.6.2. See also the Mohar formulas 2.7.8 (
) and 2.8.8 (
).
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6.6.1. (a) Regular neighborhoods (see Figure 1.6.3, on the left,

and �5.9) of isomorphi
 graphs in the same surfa
e are not ne
essarily

homeomorphi
.

(b) Regular neighborhoods of the images of homotopi
 embeddings

of a given graph into a 2-manifold are homeomorphi
. (The de�nitions
of homotopy are analogous to the ones given in �3.2, 3.4, 3.7.)

Two embeddings f0, f1 : G→N are 
alled isotopi
 if there exists a

family Ut : N →N of homeomorphisms depending 
ontinuously on the

parameter t ∈ [0, 1], su
h that U0 = id and U1 ◦ f0 = f1. It is 
lear that
regular neighborhoods of the images of homotopi
 embeddings of a given

graph into a surfa
e are homeomorphi
. In 
ontrast, Assertion 6.6.1 (b)

is not obvious.

6.6.2. On Topologist's planet, shaped as a solid torus, there are

rivers Meridian and Parallel. The Little Prin
e and Topologist traveled

around the planet along two di�erent 
losed routes. The prin
e 
rossed

the Meridian 9 times and the Parallel 6 times, while Topologist 
rossed
the rivers 8 and 7 times, respe
tively. Then their routes had to interse
t.
(When 
rossing a river a 
hara
ter ends up on the other bank of the

river. More rigorously, the interse
tion of the river and 
hara
ter's path

are transverse, see the de�nition below.)

An heuristi
 argument, leading to the notion of the interse
tion

number. Let N be a 2-manifold and let a, b be 
losed 
urves on N .

Let us assume that a and b
• are subgraphs of a 
ertain hypergraph representing N ;

• are in general position; that is, they interse
t transversely (Figure 6.6.1)
in �nitely many points, none of whi
h is a self-interse
tion point of

either a or b.

x

A2 B1

B2A1

x

B1 A2

B2A1

Figure 6.6.1. A transverse interse
tion and a non-transverse interse
tion

An interse
tion point x of two 
urves on a 2-manifold is 
alled

transverse if the 
urves are non-self-interse
ting in a neighborhood of
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the point, and every su�
iently small 
losed 
urve Sx winding around x
interse
ts the two 
urves in two pairs of points that alternate along Sx
(that is, if A1, B1 are the interse
tion points of the �rst 
urve with Sx,
and A2, B2 are the interse
tion points of the se
ond 
urve with Sx, then
these points are situated along Sx in the order A1A2B1B2). In other

words, in order for the point x to be transverse, two short `segments' of
the �rst 
urve that are in
ident to x need to be on the di�erent sides

of the se
ond 
urve in a small neighborhood of x, see Figure 6.6.1.
In this situation |a ∩ b| mod 2 does not 
hange if a and b are

repla
ed by homologous 
urves satisfying the same 
ondition (the

subgraphs, 
orresponding the 
urves, are homologous 
y
les; this is

what is meant by `homologous' 
urves).

6.7. Interse
tion form: de�nition and properties

The argument presented in the pre
eding se
tion 
an be reworked

in order to give a de�nition of the interse
tion form, based on

transversality. We will present a di�erent de�nition. Instead of transversality

it will use the following more 
onvenient notion of the dual 
ellular

de
omposition. For the de�nition of a 
ellular de
omposition and its

advantage over polygonal de
ompositions, see the beginning of �6.2.

The de�nition of the dual 
ellular de
omposition of a 
ellular

de
omposition U of a 
losed 2-manifold N . The de�nition is obtained

from the de�nition of the dual de
omposition into polygons (see �4.8)

by requiring an additional 
ondition: the edge a∗ interse
ts the union
of edges U1 of a 
ellular subgraph U in a single point that belongs to

the edge a. The edge a∗ is 
alled dual to a. The resulting graph U∗
1 is


ellular for a 
ertain triangulation of 2-manifold N . (This triangulation

might be di�erent from the one that parti
ipates in the de�nition of

the 
ellular de
omposition U . In the graph U∗
1 there might be loops

and multiple edges, even if in U1 there are su
h edges.) The resulting


ellular de
omposition U∗
is 
alled dual to U .

The de�nition of the interse
tion of edge 
olle
tions. Take a 
ellular

de
omposition U of a 2-manifold N (to be pre
ise, of a representing

hypergraph). Take the dual 
ellular de
omposition U∗
. For edge


olle
tions X in U , Y in U∗
, set X ∩ Y to be the number of their

interse
tion points mod 2.
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6.7.1. (a) The interse
tion of edge 
olle
tions is bilinear:

α ∩ (γ + δ) = α ∩ γ + α ∩ δ and (α+ β) ∩ γ = α ∩ γ + β ∩ γ.
(b) The interse
tion of a 
y
le and a boundary equals zero.

(
) The bilinear multipli
ation ∩ : H1(U) × H1(U
∗)→ Z2 is well-

de�ned via the formula [X] ∩ [Y ] := X ∩ Y , for a 
y
le X in a

de
omposition U and a 
y
le Y in the de
omposition U∗
.

(d) Let T, T be 
losed triangulations of 2-manifold N , where T is

obtained from T by a single edge subdivision. De�ne `natural' maps

f : H1(T )→H1(T ) and f
∗ : H1(T

∗)→H1(T
∗
) (
f. Assertion 6.4.1 (
)).

Prove that α ∩ β = f(α) ∩ f∗(β).
In view of Problems 6.7.1 (a, 
, d) one obtains the symmetri
 bilinear

interse
tion form

∩ : H1(N)×H1(N)→ Z2.

6.7.2. (a) Find the interse
tion form of the sphere with g handles
(that is, �nd the matrix of this form in some basis of the homology

group).

(b) Find the interse
tion form of the sphere with m M�obius bands.

(
) The rank of the interse
tion form of a disk with ribbons is equal

to the rank de�ned in the Mohar formula 2.8.8 (
).

(d) The interse
tion form is symmetri
: α ∩ β = β ∩ α.
6.7.3. Let N be a 
losed 2-manifold. The de�nition of the �rst

Stiefel�Whitney 
lass w1(N) ∈H1(N) is presented in �6.4.

(a) For any a ∈H1(N), one has w1(N) ∩ a= a ∩ a.
(b) w1(N) ∩ w1(N) = ρ2χ(N).

6.7.4. Poin
ar�e duality. The interse
tion form of any 
losed 2-manifoldN
is non-degenerate; that is, for any α ∈ H1(N) − {0} there exists

β ∈H1(N) su
h that α ∩ β = 1.

6.7.5. (a�d) De�ne the interse
tion form H1(N) × H1(N)→ Z2

for a 2-manifold N with non-empty boundary. Formulate and prove the

analogues of Assertions 6.7.1.

(e) The interse
tion form 
an be degenerate.

(f) Find the interse
tion form and its rank for the sphere with g
handles and h holes.

(g) Find the interse
tion form and its rank for the sphere with m
M�obius bands and h holes.
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On the path of this book to a reader

Here we give details to `publishing rights' in p. 2 of this �le. As of

May, 2022, no publi
 reply from the Editorial Board or from Springer

are available. Updates (e.g. a publi
 reply, if available) will be presented

here.

A. Skopenkov's letter to the Editorial board of Springer book series

`Mos
ow Le
ture Notes' (C
 M. Peters). De
 6, 2021.

Dear 
olleagues,

Hope you are �ne and healthy.

Thank you for a

epting for publi
ation in `Mos
ow Le
ture Notes' series

of Springer the book Algebrai
 Topology From a Geometri
 Standpoint,

https://www.m

me.ru/
ir
les/oim/obstru
teng.pdf

I'm afraid Springer is disregarding this a

eptan
e de
ision of the Editorial

Board. The Publishing Agreement proposed by Springer in April does not

make the Publisher 
ommitted to publishing the book. Martin Peters and

I found a 
ompromise in May. But our 
ompromise is not realized, and

the problem is still unresolved - in spite of my monthly reminders. Natalia

Tsilevi
h did ex
ellent urgent translation work in July, but neither is paid by

Springer, nor has a legal do
ument ensuring later payment.

Does Editorial Board have any means to ensure that its a

eptan
e

de
ision is ful�lled by Springer? This information is vital for authors

submitting to `Mos
ow Le
ture Notes' series.

Best wishes, Arkadiy.

PS The translation went fast and was already 
ompleted as early as in

July (only the introdu
tion and se
tions 3,4 remained). The translation was

stopped for reasons des
ribed above.

A. Skopenkov's letter to A. Gorodentsev and V. Boga
hev, Editors of

Springer book series `Mos
ow Le
ture Notes' (C
 M. Peters). De
 15, 2021.

Dear Alexey and Vladimir Igorevi
h,

Upon request of Vladimir Igorevi
h I des
ribe how Springer is disregarding

the a

eptan
e de
ision of the Editorial Board of `Mos
ow Le
ture Notes'

series. On 
ompromises, see my letter of 6 De
.

Could the Editorial Board make minimal e�orts supporting its a

eptan
e

de
ision? A possible way is to publi
ly support the authors' amends to the

Agreement proposed by Springer (I am willing to send you the list of amends).

The information on whether the a

eptan
e de
ision of the Editorial Board

is �nal, is vital for authors submitting to the `Mos
ow Le
ture Notes' series.

So the result of your e�orts (if you 
hoose to do some) should be widespread

throughout the s
ienti�
 
ommunity.
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(1) The Agreement proposed by Springer 
ontains the following 
lause

allowing the Publisher to terminate the Agreement without any losses. This

makes the publisher not 
ommitted to publishing the book, and so makes the

a

eptan
e de
ision of the Editorial Board void.

************

11.2. If the Publisher, a
ting reasonably, de
ides that the Work is not

suitable for publi
ation in the intended market pla
e and/or 
ommunity or that

there is no substantial market for the Work, or the e
onomi
 
ir
umstan
es

of publi
ation have substantially 
hanged (in ea
h 
ase other than due to the

Work not being of a suitable quality to justify publi
ation) then the Publisher

may at any time terminate this Agreement by giving one month's noti
e to

the Author in writing.

**********

(2) The Agreement proposed by Springer does not 
ontain a deadline for

publi
ation of the book (in terms of months after re
eipt of the translation).

This makes the publisher not 
ommitted to publishing the book, and so makes

the a

eptan
e de
ision of the Editorial Board void.

(3) The Agreement proposed by Springer 
ontains the following 
lause

whi
h makes the a

eptan
e de
ision of the Editorial Board void.

*******

13.1. This Agreement, and the do
uments referred to within it, 
onstitute

the entire agreement between the Parties with respe
t to the subje
t matter

hereof and supersede any previous agreements, warranties, representations,

undertakings or understandings. Ea
h Party a
knowledges that it is not

relying on, and shall have no remedies in respe
t of, any undertakings,

representations, warranties, promises or assuran
es that are not set forth in

this Agreement.

*******

(4) The Agreement proposed by Springer does not spe
ify the amount

of, and the deadline for, Publisher's payment for translation. For this, the

Agreement refers to the Translation Agreement, but gives no guarantee that

the terms of that Translation Agreement will be a

eptable to the author and

other translator. Sin
e the author should not sign su
h an Agreement, this

makes the a

eptan
e de
ision of the Editorial Board void.

Best Regards, Arkadiy.

A. Skopenkov's letter to V. Boga
hev, Editor of Springer book series

`Mos
ow Le
ture Notes' (C
 A. Gorodentsev and M. Peters). De
 23, 2021.

Dear Vladimir Igorevi
h,

Thank you for your reply.
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Why do you write that my suggestions have been taken into a

ount in

a modi�ed 
ontra
t? This is wrong as I explained in my letter of De
 15: my

suggestions on items (1)-(4) are not taken into a

ount. I forwarded you the

last list of my suggestions sent to M. Peters on Nov 17 (analogous suggestions

to previous versions of the Publishing Agreement were sent earlier). I re
eived

no reply either a

epting these suggestions, or stating that Springer would not


hange the 
ontra
t, or proposing 
ompromises.

Re
all that

(*) Springer is disregarding the a

eptan
e de
ision of the

Editorial Board be
ause the Publishing Agreement proposed by

Springer does not make the Publisher 
ommitted to publishing the

book.

This is justi�ed in my letter of De
 15 by items (1)-(4). You do not 
onsider

those items, so you 
ould not refute the statement (*). You write that the

Publishing Agreement proposed by Springer is standard, but again this does

not refute the statement (*). If something bad is a standard pra
ti
e, this

does not make it good.

My real experien
e with Springer is poor. I spent an enormous amount of

time 
orre
ting errors that appeared during typesetting of my paper in Arnold

J. Math. In May M. Peters agreed to take my suggestions into a

ount. As

of De
ember, neither this is done, nor he informed me that this would not

be done. So publi
ation of the book is unduly postponed for an un
ontrolled

amount of time. All positive parts of our 
ollaboration with M. Peters are

expli
itly made void by 
lause 13.1 of the Agreement:

*******

13.1. This Agreement, and the do
uments referred to within it, 
onstitute

the entire agreement between the Parties with respe
t to the subje
t matter

hereof and supersede any previous agreements, warranties, representations,

undertakings or understandings. Ea
h Party a
knowledges that it is not

relying on, and shall have no remedies in respe
t of, any undertakings,

representations, warranties, promises or assuran
es that are not set forth in

this Agreement.

*******

For the moment, I will not 
omment on the other part of your letter for the

following reason. The above (and the rest of your letter) makes me suppose

that you 
onfused a responsible business dis
ussion with an irresponsible tea-

time talk. If I am wrong, then I am sorry, and I have the following suggestion.

We strongly need this dis
ussion to be responsible. We do not have enough

time to dis
uss premature ideas, whose invalidity be
omes 
lear when their

publi
ation (or a mental experiment of publi
ation) is suggested. So I inform

you that our 
orresponden
e with the Editorial Board on this subje
t is publi
.



Ëèòåðàòóðà 351

I will publish all my letters at https://www.m

me.ru/
ir
les/oim/obstru
teng.pdf

. If you would not send me a publi
 reply to my De
 15 letter, then the best

way is to treat the private reply as non-existent, and inform the 
ommunity

that there is no publi
 reply. If you send me a publi
 reply to my De
 15

letter (please feel free to edit your private reply), then I will publish it. My

reply, your further reply, et
 will also be published; presumably the dis
ussion

will soon 
onverge by revealing important questions (like Q1, Q2, Q3 below)

and the Editors answering them. If I re
eive a letter not stated to be publi
,

then I will delete it unread (to avoid 
onfusion). If a part of su
h a publi


dis
ussion would be
ome obsolete, we 
ould delete that part (only) by our

mutual 
onsent.

Su
h a publi
 dis
ussion would be very useful for potential authors of this

book series. In parti
ular, they would be grateful if the Editors 
ould publi
ly

answer the following questions:

(Q1) Is Agreement with the properties (1)-(4) from my De
 15

letter absolutely standard for this book series?

(Q2) Is Springer not obliged to a

ept all re
ommendations of

the Editorial Board for this book series?

(Q3) Do Editors advise the authors to sign the Agreement

without reading it?

If there is no publi
 answer, a potential author 
ould only assume that

the answer is `yes'.

Su
h a publi
 dis
ussion would require mu
h e�ort. So let us �nd a way

to avoid it. E.g., dis
ussion by skype / zoom / phone makes it easier to

understand ea
h other and to �nd 
ompromises.

Best wishes, Arkadiy.

A. Skopenkov's letter to M. Peters, A. Gorodentsev, V. Boga
hev, and Yu.

S. Ilyashenko. Jan 30, 2022.

Dear Martin, Alexey, Vladimir Igorevi
h, and Yuliy Sergeevi
h,

Hope you are �ne and healthy.

I am grateful to the Editorial Board of `Mos
ow Le
ture Notes' of Springer

for a

epting in January, 2021 for publi
ation the book `Algebrai
 Topology

From Geometri
 Standpoint'. (Please see the ele
troni
 version of a part at

https://www.m

me.ru/
ir
les/oim/obstru
teng.pdf.)

The translation was essentially reje
ted by Springer by sending an

una

eptable publishing agreement, promising to make amends suggested by

the author in May, 2021, and neither making amends nor informing the author

that the amends are not a

epted, by January, 2022.

So, however relu
tantly, I inform you that this book is no longer submitted

to Springer.
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We do not have enough time to dis
uss premature ideas, whose invalidity

be
omes 
lear when their publi
ation (or a mental experiment of publi
ation)

is suggested. So I inform you that our 
orresponden
e on this subje
t is publi
.

My letters are published at https://www.m

me.ru/
ir
les/oim/obstru
teng.pdf.

If I re
eive a letter not stated to be publi
, then I will delete it unread (to

avoid 
onfusion).

I am also open to private dis
ussions by skype / zoom / phone.

Best wishes, Arkadiy.


