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Optimal Stopping Problems

» (Xj)j>0 is a Markov chain

> on afiltered probability space (2, F, (Fj)j>0, Px)
> with values in (RY, B(R?))

> starting at x under P, for some x € RY

> Gj: RY - R,j=0,...,7,is a set of measurable functions that
fulfill
Ex | sup !G/(X/)|] < o0
0<j<Tg
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Optimal Stopping Problems

Consider the following discrete time optimal stopping problem:

Yg - sup Ex [GT(XT)] )
7€{0,,....T }

where
> 7 is a (Fj)-stopping time with values in {1,..., 7}, i.e. {T =/} € F;

Question

How to approximate Y in the case when the expectation E[G;(X;)]
cannot be computed in a closed form ?
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Dynamic Programming Principle

» Snell-Envelope Process

Yi(X)= sup E[G.(X)IX]
Te{j” 7j}

» Continuation values

C;(X) = E[ j11()(j+1)|)(jzx]a ,/2077&771

Observation

Y}(Xj) = GJ(XJ), a.s.
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Dynamic Programming Principle

It holds

C7(x) = 0,
Ci(x) = E[max(Git1(Xjt+1), Ciq(Xj1))| X = X]

forj=0,...,0 —1.
Observation

The use of the DPP is relatively straightforward in low dimensions.
However, many problems arising in practice are high-dimensional !
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Dynamic Programming Principle

The family of stopping rules T = ., J, defined via
T = J,
T = IXNen<ae0) T Tk X e 00>600))

forj=0,...,7 —1is optimal, i.e.,

=E[G.-(X)IX], j=0,.....
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Nested conditional expectations

» Problem: How to approximate the nested conditional expectations
in the backward dynamic programming algorithm?

» Naive approach: Average over simulated paths (plain Monte
Carlo) as suggested by the Law of Large Numbers.

Infeasible: Computational cost explodes rapidly with the number of
exercise dates.
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Nested conditional expectations

Denis Belomestny (Premolab, DUE) Advanced Monte Carlo Methods 18.09.2012 8/33



|
Regression Methods

@ Simulate M trajectories of the process X

@ Construct estimates Cy u, ..., C7 m recursively via backward
induction:

> Put Csu(x)=0

» If an estimate 6,-+1,M(x) is already constructed define @,M(x) as an
estimate of

E[max(Gi1(Xis1), Cet.m(Xia1))1X = X1,
based on the sample

X" Cram(X[)), m=1,... M.
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Global Regression

» Fix a vector of basis functions ¢ = (11, ..., vk)

» Let (aq,...,ak) be a solution of the least squares optimization
problem

2
arginf Z [ i1,m( /+1 - aﬂ/J'l()(j(m)) — = aKQ/)K()(j(m))}

a€RK m=1

with Vi, 1 m(x) = max { Gjy1(x), Gar () |
» Define the approximation

Cim(X) = ar(X) + ... + axk(x), x € R?
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Global Regression

» Define a design K x K matrix B with entries
1 & (m) (m)
m m
Boa =1 > (X )g(X(™)
m=1
» Define a K-dimensional vector b with entries

M
1 N
bo = 77 2 Up(X ™) Vit mn(X(Y)
m=1

Theorem

Cim(x) = (B~b)Ty(x)
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Local Regression

» Fix a number / € N and a point x € RY
» Fix a function (kernel) K > 0 on RY with supp K ¢ [—1,1]¢

> Let Oy u be a polynomial in RY of degree / which solves the
optimization problem

S (m) m_ 2 (XX
i V, (MY _ q(x(™ _ i

> Define Cju(x) = Qym(0)
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Local Regression

Introduce a vector S = (Sy)|y</ With

u
1 M R Xj(m)—X Xj(m)—X
Su= M,,,Z am ) | ) K| T

Let Z(z) = (2")y </ be the vector of all monomials of order less than or
equal to / and the matrix I' = (T'y, u,) |4, |,|u|</ D€ defined as

M (m) thtte (m)
rUU1Z<X/X) K<X/X)
12 T Mpd h h
m=1

Ciu(x)=ZT()r1's

It holds
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Value Function Estimates

There are two possibilities to estimate Y = Y;(x)

Q@ Put
Yo := max {Go(x)7 ao,M(x)} , xeRY.
@ Consider a suboptimal stopping rule
Ay =min {0 <j <7 Cu(X) < G(X)}
and define ?OM as a Monte Carlo estimate of
E[Gs, (Xa)1X0 = x], x €R?
based on a new independent set of trajectories.

Question
Which estimate is better ? J
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Lower Estimates

» Yo m is low biased estimate, i.e.,

E[Youl = E[Gs,(X5,)| X0 = X] < V5

» Both estimates converge to Y;, provided 6,-7M — Clas M — oo

Observation

As was observed by practitioners \707 v has rather stable behavior with

respect to 60(x), cee C 7—1(x), i.e., even rather poor estimates of
continuation values may lead to a good estimate Yy .
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Convergence of value function estimates

Question J

Are the convergence rates of \707 v faster than those of 707 Mm?

Answer

They are always faster and may even not depend on the convergence
rates of Cy p(x)

In fact

» The convergence rates of VO,M coincide with ones of 50,,\/,
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Stoppong Boundary Assumptions

Assume that there exist constants Ap x > 0, 6o > 0 and « > 0 such that

P (0 <1CI(X) ~ GI(X)| < 6) < Agyd®

forallé < dpandj=0,...,7 — 1.

Remark

This assumption provides a characterization of the behavior of the
process X near the exercise boundary 0, where

£ = {(j, X): Gi(x) > Cf(x)}.

v
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Convergence Rates (Upper Bounds)

Theorem

Suppose that there exist constants A1, A> and a positive sequence vy
such that for any § > jp > 0

P& <SU5 Cim(x) — Ci(x)| > 5“/,\_,,1/2> < Ay exp(—Agd),
xe
where the set X C RY fulfills P(X; € X)=1,j=0,...,J — 1. Ifthe

stopping boundary assumption (SBA) is fulfilled then

J—1

> Aoy

1=0

—(14a)/2

0< Y5 —Ex"[Yoml <A T

with some constant A depending only on «, Ay and A..

v
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Convergence Rates (Upper Bounds)
Theorem

Suppose that there exist constants Ay, A> and a positive sequence vy
such that forany § > 6g > 0

pEM <su}e 1Cim(x) — Ci(x)| > MM”Z) < A; exp(—And),
Xe
where the set X C RY fulfills P(X; € X)=1,j=0,...,J — 1. It holds

P%M (Wo,/v/ - Y3 > 57,\_41/2> < Ay exp(—Agf),
ie., - )
Yo — Y51 = Op(py /%)

v
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Convergence Rates (Low Bounds)

Theorem

Let 7 = 2. Fix a function G : RY — {0,1} and let P,, be a class of
measures such that the SBA is fulfi/led with some o > 0. For any

positive sequence )y satisfying ’yM = 0(1), M~y = O(1) there exist

Pa,y C Pa such that for any stopping rule 7y and any estimators
{Cj.m} measurable w.rt. FoM

sup P®M (sup 1Cim(x) — Ci(x)| > (57,\_,,1/2> >0

PePa Xx€ERY

and

SUIO{ sup EP[G(XT)]—Ep@M[EpG(X?M)]}>A —(1+a)/2,
PePa,y | 7€{0,....T}
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Convergence Rates (o = o)

If a = o0, i.e.,
P (0 <IGi(X) — Gj(X))| < do) =
forsome o >0andj=0,...,7 — 1, then
0< Yy — Eng[?o,M] < Agexp(—Asdoym)
with some constant A4 and As.

Remark

The convergence rates are exponential in vy. So, even the use of
inaccurate estimates { Cx} would not have dramatic impact on the
quality of Yy u in this case.
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Convergence Rates (o = o)

» Consider a two-period stopping problem with
Co(x) = E[G1(X1)[Xo = x],
where G is positive and monotone increasing function.
» Define

Go(x) = Ci(X0) + o, X < Xo,
0 B CS(Xo)—éo, X > Xp.

with some xp and dp < Cp(Xp).
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Convergence Rates (o = o)
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Convergence Rates (o = o)

It is easy to see that

P(0 < [Co(Xo) — Go(Xo)| < do) =0

and

C = {xeR:Cyj(x)>Gy(x)}={xeR:x>xp}
E = {xeR:Cy(x) < Gy(x)} ={xeR:x < X0}
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Convergence of cont. values

For any 8 € R, and any function g on R? denote

g)= Y ¥ pegi,
[sI<[2] '

where s = (sq,...,Sq) is a multi-index, |s| = s1 + ...+ sg and
)S1+...+S
DS - 0 1 d
T auSt NSa
oxg .. 0Xy
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Convergence of cont. values

g € X(3, H,R9) ((8, H,R9)-Hdlder smooth function) if

» gis | 5] times continuously differentiable

» forany x, x’ € RY

g(x") = gx(x)| < Hlx = X'||”, x" € R
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Convergence of cont. values

» Assumption
Cr € %(B,H,RY), j=0,....7.

Proposition

There exist positive constants By, B> and B such that for any h
satisfying Byh® < +/|log h|/Mh? and any ¢ > (o with some (g > 0

A . |log Al
pet (fgg Cim(x) = GG () = ¢\ ~prg | < Baexp(=Bs()

forj=0,...,7 —1.
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Convergence of cont. values

Corollary

We get with h = M~1/(25+9) and any ¢ > (o > 0

> log'/? M
P (332‘0"=M( )~ Gl = W) < By exp(—Bs()

forj=0,...,7 —1.
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Numerical example: Bermudan max call

» Consider d identically distributed assets with dividend yield ¢

» The risk-neutral dynamic of assets is given by

aXk(t) _ (r—8)dt + cdWi(t), k=1,...d,

Xi(1)
where Wi(t), k = 1,...,d, are independent one-dimensional

Brownian motions and r, ¢, o are constants.
., t7} the holder of the option may exercise it

» Atanytimet e {t,..
and receive the payoff

G/(X)) = e~ (max(Xi (§), - Xa(t)) — )+

With X = (X (8), -, Xa(1)
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Numerical example: Bermudan max call

» Estimate all c.v. via DPP and Nadaraya-Watson estimator:

Guur) = = VMK« - X")/h)
! M K((x—X™)/h)

with
VT = max {(3()(}+1 ), G, M(XM)} j=0,...,T -1,

where K is a kernel and h is a bandwidth.
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Numerical example: Bermudan max call

» The first estimate for the price of the option at time f; = 0:
~ 1 M
YO,M = M Z V1(m)
m=1

» Construct stopping a policy 7 via

21 — min {1 <j<J: /C\j,M()(j(M+n)) < Gj()(j(M+n))}

» The second estimate

S 1
YO,M = Z G?(n)(X,(\{\:)+n))
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Numerical example: Bermudan max call

h: 40 h. 60 100 h 120
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