Home exam: course by Andrés Navas

Problem 1. a) Find a (non-minimal) map $T: X \rightarrow X$ and a function $\varphi: X \rightarrow \mathbb{R}$ with bounded Birkhoff sums,

$$
\forall x \in X, n \in \mathbb{N} \quad\left|B_{n}(\varphi)\right| \leq C
$$

for which the corresponding skew product admits no invariant continuous section.
b) The same question, but now T has to be topologically transitive.

Problem 2. Prove the Hedlund Theorem for group actions: if G acts on X minimally, and $c: G \times X \rightarrow \mathbb{R}$ is an additive cocycle, then the following conditions are equivalent:
i) $\exists x_{0} \in X, \exists C>0$ s.t. $\left|c\left(g, x_{0}\right)\right| \leq C \forall g \in G$
ii) $\forall x_{0} \in X, \exists C>0$ s.t. $\left|c\left(g, x_{0}\right)\right| \leq C \forall g \in G$
iii) The cohomological equation $\sigma(g x)-\sigma(x)=c(g, x)$ has a continuous solution.

Problem 3. Let $G=\mathbb{Z}^{d}$ be a group, for an action of which we are given a bounded cocycle $c(\cdot, \cdot)$. Prove that then a sequence of almost invariant sections could be written explicitly as

$$
\sigma_{n}(x)=\frac{1}{n^{d}} \sum_{0 \leq i_{k}<n} c\left(T_{1}^{i_{1}} \ldots T_{d}^{i_{d}}, x\right)
$$

Problem 4. Prove that the following are equivalent:
i) $\int_{S^{1}} \log D g(x) d \mu(x)=0$ for any g-invariant measure μ;
ii) g has no hyperbolic periodic fixed points

Problem 5. A center of a bounded set is the center of a ball of the smallest radius containing this set.
a) Find the center of a triangle;
b) Prove that the center belongs to convex closure of a set.

Problem 6. a) Prove that for an irrational rotation of the circle for any continuous function $\varphi \in C\left(S^{1}\right)$ one has a (uniform in $x \in S^{1}$) convergence

$$
\frac{S_{n} \varphi(x)}{n} \rightarrow \int_{S^{1}} \varphi(x) d x
$$

b) Prove that the cardinality of the set of $\{i: 0 \leq i<n \mid \theta+i \alpha \in I\}$, divided by n, tends to the length of an interval I.

Problem 7 (Denjoy-Koksma inequality). For a function φ on a circle with bounded variation show that

$$
\forall \theta, n \quad\left|S_{q_{n}} \varphi(\theta)-q_{n} \int_{S^{1}} \varphi(x) d x\right| \leq \operatorname{Var} \varphi,
$$

where $\frac{p_{n}}{q_{n}}$ is a sequence of good approximations of α, that is, incomplete fractions corresponding to the decomposition of α into a continuous fraction.

Problem 8. Let G be a semigroup acting by isometries on a $C A T(0)$-space. Assume that there is a point with a bounded orbit. Then, the action has a fixed point.

Problem 9. Prove the existence of a barycenter in the Cartan sense for the functional given by $w \mapsto \int_{H} d^{2}(w, z) d \mu(z)$

Problem 10. Prove that the procedure of constructing a barycenter by induction converges to a point and prove the inequality

$$
d\left(\operatorname{bar}_{n}\left(w_{1}, \ldots w_{n}\right), \operatorname{bar}_{n}\left(w_{1}^{\prime}, \ldots w_{n}^{\prime}\right)\right) \leq \frac{1}{n} \sum_{1}^{n} d\left(w_{i}, w_{i}^{\prime}\right)
$$

Problem 11. Prove the existence and uniqueness of a center for uniformly convex Banach spaces.

Problem 12 (Furstenberg example). Let $f: T^{2} \rightarrow T^{2}$ be a map defined as $(x, y) \mapsto$ $(x+\alpha, y+\varphi(x))$, where α is irrational, and $\int_{S^{1}} \varphi(x) d x=0$. Prove that
a) The map f is minimal if and only if the cohomological equation $\varphi(x)=h(x+$ $\alpha)-h(x)$ has no continuous solution;
b) Show that there exists α and φ such that the corresponding cohomological equation has a measurable solution, but no continuous one;
c) Construct such a map f that is minimal, but not ergodic.

Problem 13. Let G be a group of area-preserving diffeomorphisms of a compact orientable surface S.
a) Associate to it a skew product action on the total space $S \times \mathbb{H}$, where \mathbb{H} is a hyperbolic plane, such that the fiberwise actions are isometries.
b) Translate to this framework the isometries version of Hedlund theorem: what is the resulting statement?

