Отчет за 2018 год.

Для конкурса Молодая Математика России.

Принятые к печати и опубликованные работы

- Gurevich, Pavel; Tikhomirov, Sergey Spatially discrete reaction-diffusion equations with discontinuous hysteresis. Ann. Inst. H. Poincaré Anal. Non Linéaire 35 (2018), no. 4, 1041–1077.
- 2. G. Monakov, Tikhomirov S., A. Yakovlev On displacement of viscous liquid in a system of parallel tubes

Разрабатываемые курсы

- 1. Дополнен курс "Эргодическая теория", содержащий введение в предмет для студентов владеющих базовыми знаниями по динамическим системам.
- 2. В процессе разработки курс "Квантовые компьютеры". Курс разрабатывается совместно с профессором Александром Сергеевичем Охотиным.
- 3. Разрабатывается курс "Стохастические динамические системы".

Научная деятельность

Общее описание

В течении 2018 года продолжалась работа по направлениям "Системы с гистерезисом" и "Свойство отслеживания". Основную работу по этим направлениям проводят студенты бакалавриата Полина Перстнева и Григорий Монаков под моим руководством.

Тема "Бегущие волны" претерпела существенное изменение. В данный момент по этой теме ведутся исследования в области ламинарной гидродинамики: "вытеснение вязких жидкостей в пористых средах.".

Вытеснение вязких жидкостей в пористых средах

Мы изучаем вытеснение вязких жидкостей менее вязкими в тонком слое пористой среды. Уравнения соответсвующие этой задаче имеют чисто математический интерес. При этом мы имеем ввиду возможное приложение к нефтегазовой отразли, а именно вытеснение нефти водой в тонком слое коллектора.

Хорошо известно, что задачи такого типа сильно неустойчивы. В частности может быть достаточно трудно исследовать корректность постановки подобного рода задач,

например, недавние статьи [4, 5]. Менее вязкая жидкость формирует достаточно сложный узор, часто это явление называют эффектом Хеле-Шоу [6]. Отметим так же их свзяь с моделью Diffusion Limited Aggregation [7].

В этом проекте мы рассматриваем только те постановки, которые учитывают капилярные силы. Для изучения этой задачи применяется два различных подхода: задача Macketa (Muskat) и постановка Баклея-Леверетта (Buckley-Leverett). Мы изучаем оба подхода. Отметим, что математически оба представляют собой параболические уравнения, дискретные или непрерывные.

Постановка Маскета основана на описании границы между двумя жидкостями. Отметим, что включение капилярных сил в эту модель существенно использует кривизну свободной границы, см. например, классическую работу [8]. Такой подход не позволяет моделировать процессы в пористой среде, поскольку глобальная кривизна границы намного меньше локальной кривизне, возникающей в одной поре. В рамках этого подхода мы изучаем постановку типа Маскета в системе из большого числа трубок, формирующих граф, см. например, [10]. Мы начали с простой обратной задачи в системе параллельных трубок и сейчас изучаем движение на графах типа решетки.

Модель Баклея Леверетта [12] предполагает, что жидкости несмешиваемы, в то же время в кажой точке пространства обе жидкости представлены. Этот подход предполагается стандартом для нефтегазовой индустрии [11], в то же время она почти не исследована математически – в базе MathSciNet всего 50 работ с названием включающим модель Баклея-Леверетта. Мы исследуем устойчивые режимы вытеснения, концентрируясь на решениях типа бегущая волна, тем не менеее учитывая неоднородность сред и возможную нестационарность закачки. Мы начинаем с одномерной постановке, в первом приближении описывающей процессы вытеснения при эксплуатации горизонтальными скважинами.

Задача-мечта и глобальная цель проекта – показать, что модель Баклея-Леверетта может быть получена из постановки типа Маскета на графе при помощи предельного перехода. Ниже описан текущий прогресс по этому проекту.

Бегущие волны в уравнениях Баклея-Леверетта

Мы изучаем вопрос существования устойчивых решения типа бегущая волна в одномерной постановке уравнения Баклея-Леверетта, соответвующей вытеснению несмешиваемых жидкостей в пористых средах.

Рассмотрим пористую среду, заполненную вязкой эидкостью с нагнетательной скважиной нахлдящейся в точке 0. Мы изучаем изменений давления и водонасыщености. Согласно [11] этот процесс может быть описан уравнения Баклея-Леверетта:

$$\operatorname{div}(\varphi(n)\nabla p) = -\frac{\mu_1}{k}Q\delta(x),\tag{1}$$

$$m\frac{\partial n}{\partial t} - \operatorname{div}\left(\frac{k(x)f_1(n(x,t))}{\mu_1}\nabla p\right) + \frac{\sigma}{\mu_2}\sqrt{mk(x)}\operatorname{div}\left(\frac{f_1f_2}{\varphi}J'(n)\nabla n\right) = Q\delta(x), \quad (2)$$

где $n: R_x^d \times R_t^+ \to [0,1]$ – водонасыщенность. n = 1 соответсвует числой воде, n = 0 соответсвует чистой нефти; $p: R_x^d \times R_t^+ \to R$ – давление жидкости; Q скорость закачки; $m \in (0,1], k > 0$ – пористость и проницаемость среды; μ_1, μ_2 – вязкости воды и нефти соответсвенно; σ – коэффициент поверхостного натяжения; $f_1, f_2 : [0,1] \to R^+$ – относительные фазовые проницаемости [11], $\varphi(n) = f_1(n) + \frac{\mu_1}{\mu_2} f_2(n); J : [0,1] \to R^+$ функция Леверетта, описывающая капилярное давление в пористой среде.

Для упрощения везде далее мы считаем, что m = 1, k = 1, $\mu_1 = 1$. Уравнение (1), (2) может быть упрощено и сведено к параболическому уранению на n

$$n_t = Q(A(n))_x + \sigma E(B(n)n_x)_x, \qquad (3)$$

где Е – константа

$$A(n) = -\frac{f_1(n)}{\varphi(n)}, \quad B(n) = -\frac{f_1(n)f_2(n)}{\varphi(n)}J'.$$
(4)

Функция А часто называется функцией Баклея-Леверетта [11].

Мы изучаем решения типа бегущая волна:

$$n(x,t) = v_0(x - ct), \quad c > 0,$$
(5)

c uhfybxysvb eckjdbzvb

$$v_0(-\infty) = n_1, \quad v'_0(-\infty) = 0, \quad v_0(+\infty) = n_0, \quad v'_0(+\infty) = 0.$$
 (6)

Эти решения соответвуют регулярному вытеснению вдали от нагнетательной скважины. Для нефтяной отралсли особый интер предлавляют устойчивые бегущие волны при $\mu_1 < \mu_2$ и $n_1 > n_0$. На текущий момент мы доказали, что если $n_1 > n_0$, $A'(n_1) > A'(n_0)$ и для любого $a \in (A'(n_0), A'(n_1))$ уравнение A'(n) = a имеет только одно решение на интервале (n_0, n_1) , то существует единственные c > 0 и функция v_0 удовлетворяющие (6) т.ч. $n(x,t) = v_0(x - ct)$ является решением уравнения (3). Доказательство проводится методами динамических систем.

Устойчивость решения (5) определяется спектром оператора вида

$$D_{\sigma}w = D^1w + \sigma D^2w,\tag{7}$$

где

$$D^{1}w = (c - QA'(v_{0}))w_{y} - QA''(v_{0})v'_{0}w$$
$$D^{2}w = (B(v_{0}))w_{yy} + 2B'(v_{0})v'_{0}w_{y} + (B''(v_{0})(v'_{0})^{2} + B'(v_{0})v''_{0})w$$

Отметим, что первое слагаемое в (7) всегда неустойчиво, а второе всегда устойчиво. Это позволяет предположить, что оператор (7) устойчив или слабо-неустойчив для достаточно больших σ и может быть легко стабилизирвоан при неоднородностях палста (функции k(x) и m(x)) или при помощи нестационарности закачки Q(t). В этом направлении сейчас есть только предварительные результаты. Исследования ведутся методами спектральной теории дифференциальных операторов.

В дальнейшем планируется

- 1. найти точные условия при котором система (1), (2) обладает устойчивым реением типа бегущая волна.
- 2. изучить возможность стабилизации решения при помощи неоднородности закачки Q(t).
- 3. изучить стабилизирующий эффект неоднородностей, такое возможно, см. например мою недавнюю работу [15].

Вытеснение жидкостей в системе трубок

В [13] мы рассмотрели простую точно решаемую квазиодномерную задачу вытеснения вязкой жидкости в системе из паралеельныз трубок.

В этой моделе среда представлена множестом перересекающих трубок отличающихся длиной и толщиной. Для бесконечного количества трубок мы описываем их при помощи меры. Левый конеч всех трубок соответсвует нагнетательной скважине, правый конец добывающей (see fig. 1). В каждой трубке пространство разделено на 2 части, в которой находится одна из фаз (вода или нефть).

Рис. 1:: Модель, описанная в [13]

В [13] мы изучили обратную задачу — по данным добычи (называемой характеристикой вытеснения), найти геометрию резервуара, т.е. найти длины и толщины трубок. Мы доказали единственность и устойчивость задачи в некоторых функциональных пространствах. Так же мы провели численое моделирование, которое

стичных значениях погрешностей и большом отношении вязкостей задача неустойчива. В качестве обобщения задачи мы собираемся рассматривать случай когда трубки объеденины в граф. В этом направлении имеются экспериментальные и численные результаыт [14], но нам неизвестно математически строгих результатов.

показало, что задача устойчива при малых погрешностях приборов, однако при реали-

Мы собираемся рассматривать следующую постановку. Рассмотрим граф G с вершинами V и ребрами E. Каждое ребро e имеет длину $L_e > 0$. Все ребра заполнены двумя несмешивающимися жидкостями различных вязкостей. Вершина V_1 рассматривается как источник воды, а вершина V_2 сток (для обеих жидкостей). Для описания формы пятна вытеснения рассмотрим дополнительное множество I – точек соприкосновения различных жидкостей в ребрах

Рис. 2:: Blue — water, red — oil. Problem in vertex B

графа. Для каждой точки $p \in I$ в каждый момент времени мы знаем на каком ребре E(p) она находится и ее положение $l_p \in [0, L_{E(p)}]$. В общем случае множество I зависит от времени т.к. почти соприкосновения могут появляться или исцезать.

Для описания движения жидкостей нам нужно знать: Давление в каждой вершине $v \in V$: $p_v(t)$. Давления в вершинах V_1 и V_2 определяются внешними силами. Скорость — каждому ребру $e \in E$ мы сопоставляем скорость $u_e(t)$ движения жидкостей по нему.

Наша модель определяется следующими законами: закон Дарси на каждом ребре, связывающий скорость движения с разностью давлений на концах; закон сохранения – количество втекающей жидкости равно количеству вытекающей; и дифференциальные уравнения на местоположение точек соприкосновения $\frac{dl_p}{dt} = u_{E(p)}$.

В большинстве случаев этих уравнений достаточно для описания поведения системы. Тем не менее в некоторых специальных случаях рис. 2) законы оказываются противоречивы и требуется уточнение постановки. Этого уточнения можно добиться включением поверхостного натяжения в систему.

В дальнейшем мы собираемся изучать следующие задачи

- 1. Математически строгая формулировка задачи на графе.
- 2. Геометрическая характеризация вытесненной области. В частности сравнение ее с моделью DLA.
- 3. Предельный переход при измельчении решетки к уравнениям в частныз производных.

Рис. 3:: Процесс вытеснения на шестиугольной решетке

Системы с гистерезисом

Продолжаются исследования начатые в [1]. Исследования ведутся под моим руководством студенткой 4-го курса бакалавриата "Математика" Полиной Перстневой. Краткое описание повторяет отчет 2017 года. В конце приведены результаты полученные за 2018 год.

Рассмотрим задачу термоконтроля: пусть Ω область в \mathbb{R}^n с гладкой границей, u: $\Omega \times \mathbb{R}^+ \to \mathbb{R}$ – темпаратура в области. Предположим, что на границе области расположен охлажающий-нагревающий прибор. При этом контроль происходит посредством условия Неймана, и решение выборе режима нагрев или охлаждение происходит посредством оператора гистерезиса типа неидеальное реле. Подобная система задается уравнениями

$$u_t = \Delta u, \quad x \in \Omega \tag{8}$$

$$\frac{\partial u}{\partial \eta} = K(x)\mathcal{H}(\hat{u}(\cdot))(t), \quad x \in \partial\Omega$$
(9)

дополненная начальными данными. В этой системе K(x) соответсвует интенсивности нагревания, \hat{u} – средняя температура в области, задаваемая линейным оператором (в дальнейшем мы рассмотрим конкретные примеры и не будем сейчас концентрироваться на строгости общей постановки). H – оператор гистерезиса типа неидеальное реле: для вещественно-значной функции $\hat{u}(t)$ оператор задается следующим образом, Рис. 4. Зафиксируем два

Рис. 4:: Hysteresis \mathcal{H}

пороговых значения $\alpha < \beta$ и два выхода $h_1 \neq h_{-1}$. Если $u(t) \leq \alpha$, то $\mathcal{H}(u)(t) = h_1$; если $u(t) \geq \beta$, то $\mathcal{H}(u)(t) = h_{-1}$; если u(t) лежит между α и β , тогда $\mathcal{H}(u)(t)$ не меняет своего значения.

Основной задачей является описание поведение решения при $t \to +\infty$ и поиском его устойчивых режимов. Наиболее естесственным является вопрос – верно ли, что решение сходится к периодической по t функции. В работе [1] было продемонстрировано, что это не всегда так. Более того, неизвестно всегда ли существует хотя бы одно перидическое решение у системы.

Сейчас совместно с П. Перстневой мы занимаемся изучением вопроса существования и устойчивости периодических решений в случае одномерного пространства. В таком случае K(x) задается двумя числами, поскольку граница $\partial\Omega$ состоит из двух точек. Благодаря одномерности области $\partial\Omega$ так же удается расписать уравнения (8) в виде системы линейных уравнений

$$\dot{u}_n = -n^2 u + k H(\hat{u}(\cdot))(t), \quad n > 0.$$

Несмотря на кажущуюся простоту, уравнения связаны посредством оператора гистерезиса, что превращает задачу в нелинейную.

На конец 2017 года для некоторых частных случаев удалось доказать существование периодического решения, вопросы устойчивости были открыты.

В течении 2018 года задача в одномерном случае была сведена к случаю одноточечных измерений: $\hat{u} = u(x_0)$ для некоторой точки x_0 . Для трех специальных точек x_0 были показаны существование и единственность унимодальных периодически решений, доказана их асимптотическая устойчивость. Результаты представлены в виде постерного доклада на международной конференции "Real and Complex Dynamical Systems".

Отслеживание в неравномерно гиперболических системах

Рассмотрим динамическую систему порожденную отображением

$$f: M \to M$$

многообразия в себя. При фиксированном d > 0 назовем d-псевдотраекторией последовательность $\{y_k\}$, удовлетворяющую неравенствам

$$|y_{n+1} - f(y_n)| < d, \quad n \in [0, N].$$

Основным вопросом для нас является при каких условиях найдется точная траектория $\{x_n\}$, что выполнены неравенства

$$|x_n - y_n| < \varepsilon.$$

T.e. рядом с приближенной траекторией найдется точная траектория. Эта задача называется "задачей об отследивании" и позволяет ответить на такие важные прикладные

вопросы как влияние шума и ошибок округления при чисенном моделировании на свойства системы.

В [2] было продемонстрировано, что для систем не являющихся гиперболическими нельзя рассчитывать на свойство отслеживания для достаточно длинных псевдотраекторий.

В совместной работе с Г. Монаковым мы смогли ослабить понятие гиперболичности и доказать положительный результат следующего вида. При достаточно жестких ограничениях на α и β (например возможны только $\beta < 1/20$) конечная *d*-псевдотраектория длиня $1/d^{\beta}$ может быть $\varepsilon = d^{\alpha}$ отслежена.

Сейчас мы в процессе построения широкого класса неравномерно гиперболических систем, удовлетворяющих предположениям теоремы. Планируется, что процесс построения существенным образом опирается на теория Песина.

Список литературы

- Gurevich, Pavel; Tikhomirov, Sergey. Symmetric periodic solutions of parabolic problems with discontinuous hysteresis. J. Dynam. Differential Equations 23 (2011), no. 4, 923–960.
- [2] Tikhomirov, Sergey. Holder shadowing on finite intervals. Ergodic Theory Dynam. Systems 35 (2015), no. 6, 2000–2016.
- [3] Felix Otto, Viscous fingering : an optimal bound on the growth rate of the mixing zone. SIAM journal on applied mathematics, 57 (1997) 4, p. 982-990.
- [4] Constantin, Peter; Gancedo, Francisco; Shvydkoy, Roman; Vicol, Vlad Global regularity for 2D Muskat equations with finite slope. Ann. Inst. H. Poincaré Anal. Non Linéaire 34 (2017), no. 4, 1041–1074
- [5] Constantin, Peter; Córdoba, Diego; Gancedo, Francisco; Rodríguez-Piazza, Luis; Strain, Robert M. On the Muskat problem: global in time results in 2D and 3D. Amer. J. Math. 138 (2016), no. 6, 1455–1494.
- [6] Park, C., Gorell, S. Homsy G. 1984, "Two-phase displacement in Hele-Shaw cells: Experiments on viscously driven instabilities", Journal of Fluid Mechanics, vol. 141, pp. 275–287.
- [7] T. C. Hasley, Diffusion-Limited Aggregation: A Model for Pattern Formation, Physics Today 53, 11, 36 (2000).
- [8] Paterson, L. (1981). Radial fingering in a Hele Shaw cell. Journal of Fluid Mechanics, 113, pp. 513-529.

- [9] Maini, B.B., Nicola, F., Goldman, J. and Sarma, H.K., 1990. Measurements and Estimation of Three-Phase Relative Permeability. Petroleum Recovery Institute, Calgary, Canada.
- [10] Akhil Datta-Gupta, M. J. King, Streamline Simulation: Theory and Practice. Society of Petroleum Engineers, 2007.
- [11] Barenblatt, G.I., Entov, V.M., and Ryzhik, V.M., Theory of Fluid Flows through Natural Rocks, London: Kluwer, 2010.
- [12] Buckley, S., Leverett, M.: Mechanism of fluid displacement in sands. Trans. AIME Soc. Pet. Eng. 146, 107–116 (1942)
- [13] Monakov G.V., Tikhomirov S.B., Yakovlev A.A., On displacement of viscous liquid in a system of parallel tubes. Preprint.
- [14] Sahimi, M., 2011. Flow and transport in porous media and fractured rock: from classical methods to modern approaches. John Wiley & Sons.
- [15] Scheel, Arnd; Tikhomirov, Sergey Depinning asymptotics in ergodic media. Patterns of dynamics, 88–108, Springer Proc. Math. Stat., 205, Springer, Cham, 2017.