Statistical Models on random lattices

Bertrand Eynard, CERN, IPHT CEA Saclay Moscow

Bertrand Eynard, CERN, IPHT CEA Saclay Moscow

Statistical Models on random lattices

- 1. Introduction
- 2. The Ising Model
- 3. The O(n) model
- 4. Continuum limit and conformal field theory
- 5. General properties of the recursion
- 6. Examples beyond random lattices

7. Conclusion and prospects

1. Introduction

Statistical models on random lattices

Bertrand Eynard, CERN, IPHT CEA Saclay Moscow Statistical Models on random lattices

≣ ▶

Statistical Models

On a random map, of given topology

- Genus = g
- Number of "boundaries" (boundary = marked face with a marked edge) = n.

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

add a statistical model

Example: Ising model.

Map, where each polygon carries a "spin" + or -.

프 (프)

3

Example: O(n) model.

Map, where n-colored loops are drawn on triangles

Other models: Potts model, Chain model, 6-vertex model, 3-color model have been solved, There exist other statistical models which have not been solved...

★週 ▶ ★ 理 ▶ ★ 理 ▶ …

What we can do:

compute the number of configurations (or its generating function), having

- given topology (given genus and number of marked faces)
- given number of k-gons
- given boundary configuration

and depending on the model:

 \bullet given total lenght of loops, or total number of + spins, or given number of +|- edges, connectivity pattern of loops ending on boundaries, ...

Bertrand Eynard, CERN, IPHT CEA Saclay Moscow Statistical Models on random lattices

(문)(문)

3

Example: Ising model.

Map, where each polygon carries a "spin" + or -.

< 注→ 注

三) -

Example: Ising model.

Map, where each polygon carries a "spin" + or -.

Marked faces can carry spins on their boundaries

3

Rules for constructing an Ising model map

▲■ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ ● � � �

Generating function for maps having + spins boundaries. We define:

$$W_{n}^{(g)}(x_{1},...,x_{n};t;t_{3},...,t_{d};\tilde{t}_{3},...,\tilde{t}_{\tilde{d}};c_{++},c_{+-},c_{--})$$

$$= \sum_{v} t^{v} \sum_{S \in M_{g,n}(v)} \frac{1}{\# \operatorname{Aut}(S)}$$

$$\frac{t_{3}^{n_{3}(S)}...t_{d}^{n_{d}(S)} \tilde{t}_{3}^{\tilde{n}_{3}(S)}...\tilde{t}_{\tilde{d}}^{\tilde{n}_{\tilde{d}}(S)}}{x_{1}^{1+h_{1}(S)}...x_{n}^{1+h_{n}(S)}}$$

$$(c_{++})^{n_{++}(S)} (c_{--})^{n_{--}(S)} (c_{+-})^{n_{+-}(S)}$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

 $\mathbf{v} = \#$ vertices, $n_{\epsilon\epsilon'} = \#$ edges separating spins $\epsilon | \epsilon'$.

Modified-Rules for constructing an Ising model map

Rewriting generating function for maps having + spins boundaries.

$$W_{n}^{(g)}(x_{1},...,x_{n};t;t_{3},...,t_{d};\tilde{t}_{3},...,\tilde{t}_{d};c_{++},c_{+-},c_{--})$$

$$=\sum_{v} t^{v} \sum_{S \in M_{g,n}(v)} \frac{1}{\# \operatorname{Aut}(S)}$$

$$\frac{t_{3}^{n_{3}(S)} \dots t_{d}^{n_{d}(S)}}{x_{1}^{1+l_{1}(S)} \dots x_{n}^{1+l_{n}(S)}}$$

$$c^{n_{2}(S)} a^{-n_{++}(S)} b^{-n_{--}(S)}$$

where

$$\begin{pmatrix} c_{++} & c_{+-} \\ c_{+-} & c_{--} \end{pmatrix}^{-1} = \begin{pmatrix} a & -c \\ -c & b \end{pmatrix}$$

weight for +|+ edges:

$$c_{++} = \frac{1}{a} + \frac{c^2}{a^2b} + \frac{c^4}{a^3b^2} + \dots = \frac{b}{ab-c^2}$$

weight for +|- edges:

weight for -|- edges:

$$c_{--} = \frac{1}{b} + \frac{c^2}{ab^2} + \frac{c^4}{a^2b^3} + \dots = \frac{a}{ab-c^2}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Tutte equations

Bertrand Eynard, CERN, IPHT CEA Saclay Moscow

Statistical Models on random lattices

Solution of Tutte equations, planar case

Theorem: Solution for $W_1^{(0)}$ (planar, 1 marked face): Let

$$c Y(x) \stackrel{\text{def}}{=} ax - \sum_{j=3}^{d} t_j x^{j-1} - W_1^{(0)}(x)$$

It satisfies a "rational" algebraic equation 0 = E(x, Y). More explicitly, parametric solution x = x(z), Y(x) = y(z) given by:

$$\begin{cases} x(z) = \gamma z + \sum_{j=0}^{\tilde{d}-1} \alpha_j z^{-j} \\ y(z) = \gamma z^{-1} + \sum_{j=0}^{d-1} \beta_j z^j \end{cases}$$

where γ , α_j , β_j are the unique solution of

$$\left(\begin{array}{c} ax(z) - \sum_{j=3}^{d} t_{j}x(z)^{j-1} = c y(z) + \frac{t}{\gamma}z^{-1} + O(z^{-2}) \\ by(z) - \sum_{j=3}^{\tilde{d}} \tilde{t}_{j}y(z)^{j-1} = c x(z) + \frac{t}{\gamma}z + O(z^{2}) \end{array} \right)$$

御 医米 医医米 医医外下 医

We define redefine the generating functions as functions of the variable *z*:

$$\omega_n^{(g)}(z_1,\ldots,z_n) = W_n^{(g)}(x(z_1),\ldots,x(z_n)) x'(z_1)\ldots x'(z_n) + \frac{\delta_{n,2}\delta_{g,0} x'(z_1) x'(z_2)}{(x(z_1)-x(z_2))^2}$$

Theorem: [Kazakov& al \sim 90's] the 2-point function is universal:

$$\omega_2^{(0)}(z_1, z_2) = \frac{1}{(z_1 - z_2)^2}$$

★ E ► ★ E ► E

Solution of Tutte equations, all topologies

Theorem: [Chekhov-E-Orantin 05,06] All other "stable" topologies (i.e. 2g - 2 + n > 0) are given by the "Topological recursion":

$$\omega_{n+1}^{(g)}(z_0, z_1, \dots, z_n) = \sum_{i} \operatorname{Res}_{z \to a_i} \mathcal{K}(z_0, z) \left[\omega_{n+2}^{(g-1)}(z, \zeta(z), z_1, \dots, z_n) + \sum_{h} \sum_{l \uplus \overline{l} = \{z_1, \dots, z_n\}}^{\prime} \omega_{1+\#l}^{(h)}(z, l) \, \omega_{1+\#\overline{l}}^{(g-h)}(\zeta(z), \overline{l}) \right]$$

where $x'(a_i) = 0$ and $x(\zeta(z)) = x(z)$, and the recursion kernel is defined as

$$\mathcal{K}(z_0, z) = \frac{\frac{1}{2} \int_{z'=\zeta(z)}^{z} \omega_2^{(0)}(z_0, z')}{\omega_1^{(0)}(z) - \omega_1^{(0)}(\zeta(z))}$$

This recursion really "computes" the generating functions. It is a recursion on the Euler characteristics $\chi_{g,n} = 2 - 2g_{m-1} - 2g_{m-2}$

Intuitive graphical explanation:

$$\omega_{n+1}^{(g)}(z_0,\ldots,z_n)$$

< 注→ 注

< 🗇 🕨

Intuitive graphical explanation:

$$\omega_{n+1}^{(g)}(z_0,\ldots,z_n)$$

< 注→ 注

< 🗇 🕨

Intuitive graphical explanation:

$$\omega_{n+1}^{(g)}(z_0,\ldots,z_n)$$

(문화)(문화)

< 🗇 ▶

æ

Intuitive graphical explanation:

$$\omega_{n+1}^{(g)}(z_0,\ldots,z_n)$$

표· · · 표· · · 표

< 🗇 ▶

Intuitive graphical explanation:

$$\omega_{n+1}^{(g)}(z_0,\ldots,z_n)$$

표· · · 표· · · 표

< 🗇 🕨

Intuitive graphical explanation:

$$K(z_0,z) \,\,\omega_{n+2}^{(g-1)}(z,\zeta(z),z_1,\ldots,z_n)$$

3

 $K(z_0, z) =$ pair of pants without legs = cylinder with one side pinched.

Intuitive graphical explanation:

$$\omega_{n+1}^{(g)}(z_0,\ldots,z_n)$$

프 🗼 🛛 프

Intuitive graphical explanation:

 $K(z_0, z) \, \omega_1^{(0)}(z) \, \omega_{n+1}^{(g)}(\zeta(z), z_1, \dots, z_n)$

ヘロト 人間 ト ヘヨト ヘヨト

э

Intuitive graphical explanation:

 $K(z_0, z) \, \omega_1^{(0)}(z) \, \omega_{n+1}^{(g)}(\zeta(z), z_1, \dots, z_n)$

・ 同 ト ・ ヨ ト ・ ヨ ト …

э

Intuitive graphical explanation:

$$K(z_0, z) = \frac{\frac{1}{2} \int_{z'=\zeta(z)}^{z} \omega_2^{(0)}(z_0, z')}{\omega_1^{(0)}(z) - \omega_1^{(0)}(\zeta(z))}$$

cylinder, with all possible discs

Bertrand Eynard, CERN, IPHT CEA Saclay Moscow

Statistical Models on random lattices

★ Ξ → ★ Ξ →

ъ

3. O(n) Model

Bertrand Eynard, CERN, IPHT CEA Saclay Moscow Statistical Models on random lattices

◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ の Q ()

O(n) model

Random self avoiding loops of n possible colors are drawn of the random lattice.

$$= \sum_{\mathbf{v}} t^{\mathbf{v}} \sum_{S \in \mathbb{M}_{g,n}(\mathbf{v})} \frac{1}{\# \operatorname{Aut}(S)} \frac{t_3^{n_3(S)} \cdots t_d^{n_d(S)}}{x_1^{1+l_1(S)} \cdots x_n^{1+l_n(S)}}$$

$$c^{\operatorname{loop length}} \mathfrak{n}^{\# \operatorname{loops}}$$

Bertrand Eynard, CERN, IPHT CEA Saclay Moscow

Statistical Models on random lattices

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

"Tutte's" equations:

allow to compute all $W_n^{(g)}$'s.

O(n) model solution

Theorem:

use the parametrization

$$\mathbf{x}(z) = rac{c}{2} + a \, \mathrm{sn}(z| au)$$

The 1-point function is

$$W_1^{(0)}(x) = \frac{x - \sum_j t_{2j} x^{2j-1}}{2 - \mathfrak{n}} - \frac{\sum_j t_{2j+1} x^{2j}}{2 + \mathfrak{n}} + A \frac{\prod_{j=1}^{d-1} \theta(z - \alpha_j | \tau)}{\theta(z - \frac{1}{2} - \frac{\tau}{2} | \tau)^{d-1}}$$

where the coefficients a, α_j, A , are fixed by requiring $W_1^{(0)}(x) \sim t/x$ at large x, and by

$$\mathfrak{n} = -2\cos\left(2\pi\sum_j lpha_j
ight)$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

э

We redefine the generating functions as functions of the variable *z*:

$$\omega_n^{(g)}(z_1,\ldots,z_n) = W_n^{(g)}(x(z_1),\ldots,x(z_n)) x'(z_1)\ldots x'(z_n)$$

$$+ \frac{\delta_{n,2}\delta_{g,0} x'(z_1) x'(z_2)}{(x(z_1)^2 - x(z_2)^2)^2} \left(\frac{x_1^2 + x_2^2}{2 + \mathfrak{n}} + \frac{2x_1x_2}{2 - \mathfrak{n}}\right)$$

Theorem: the 2-point function is universal:

$$\omega_2^{(0)}(z_1, z_2) = \wp_n(z_1 - z_2)$$

御下 《唐下 《唐下 》 唐

= twisted Weierstrass function \wp , with a monodromy \mathfrak{n} . It has a double pole at $z_1 = z_2$.

Solution of Tutte equations, all topologies

Theorem: [Borot-E 2009] All other "stable" topologies (i.e. 2g - 2 + n > 0) are given by the "Topological recursion":

$$\omega_{n+1}^{(g)}(z_0, z_1, \dots, z_n) = \sum_{i} \operatorname{Res}_{z \to a_i} \mathcal{K}(z_0, z) \left[\omega_{n+2}^{(g-1)}(z, \zeta(z), z_1, \dots, z_n) + \sum_{h} \sum_{I \uplus \overline{I} = \{z_1, \dots, z_n\}}^{\prime} \omega_{1+\#I}^{(h)}(z, I) \omega_{1+\#\overline{I}}^{(h)}(\zeta(z), \overline{I}) \right]$$

where $a_1 = \frac{1}{2}$, $a_2 = \frac{1+\tau}{2}$ and $x(\zeta(z)) = x(z)$, and the recursion kernel is defined as

$$K(z_0, z) = \frac{\frac{1}{2} \int_{z'=\zeta(z)}^{z} \omega_2^{(0)}(z_0, z')}{\omega_1^{(0)}(z) - \omega_1^{(0)}(\zeta(z))}$$

御下 不是下 不是下 一度

Same recursion as for the Ising model !

O(n) model with boundary loops

There is a "sewing" formula (deduced from [Duplantier, Kostov 88]) to compute generating functions of O(n)model configurations with loops ending on boundaries, with some given link pattern (planar or not), given lenghts, and given lengths for the pieces of boundary.

Question: planar case, one boundary: Temperley-Lieb alebra ? (Razumov-Stroganof conjecture)

Bertrand Eynard, CERN, IPHT CEA Saclay Moscow

Statistical Models on random lattices
4. Continuum limit and Conformal Field theory

What happens when the mesh size $\epsilon \rightarrow 0$?

Bertrand Eynard, CERN, IPHT CEA Saclay Moscow Statistical Models on random lattices

Continuum limit:

polygons have an area ϵ^2 , loop pieces have length ϵ . Choose t, t_3, t_4, \ldots such that:

- \bullet average # of polygons $\rightarrow \infty$
- area \rightarrow finite O(1)
- lenghts \rightarrow finite O(1)

$$\mathbb{E}(\#\text{triangles})_{g,n} = \mathbb{E}(n_3) = t_3 \frac{\partial}{\partial t_3} \ln W_n^{(g)}$$

therefore, choose t_3, t_4, \ldots such that $W_n^{(g)} = \text{non-analytical} \rightarrow \text{singularity}$!

Choose

$$t = t^* + \epsilon^\delta$$

such that $W_n^{(g)}$ is singular at $t = t^* = t_c$.

Continuum limit:

polygons have an area ϵ^2 , loop pieces have length ϵ . Choose t, t_3, t_4, \ldots such that:

- \bullet average # of polygons $\rightarrow \infty$
- area \rightarrow finite O(1)
- lenghts \rightarrow finite O(1)

$$\mathbb{E}(\#\text{triangles})_{g,n} = \mathbb{E}(n_3) = t_3 \frac{\partial}{\partial t_3} \text{ In } W_n^{(g)}$$

therefore, choose t_3, t_4, \ldots such that $W_n^{(g)} = \text{non-analytical} \rightarrow \text{singularity}$!

Choose

$$t_j = t_j^* + \sum_{i,j} C_{i,j} \hat{t}_j \epsilon^{\delta_j}$$

such that $W_n^{(g)}$ is singular at $t = t^* = t_c$.

Bertrand Eynard, CERN, IPHT CEA Saclay Moscow Statistical Models on random lattices

◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ の Q ()

◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ の Q ()

Bertrand Eynard, CERN, IPHT CEA Saclay Moscow Statistical Models on random lattices

◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ の Q ()

Let $y = W_1^{(0)}(x) =$ "spectral curve". Vary *t*:

At $t = t^*$, y has a cusp $y \sim x^{\mu}$ where

 $\mathfrak{n} = -2\cos\mu\pi.$

▲ 御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

3

Let
$$y = W_1^{(0)}(x) =$$
"spectral curve".
Vary *t*:

At $t - t^* \sim \hat{t} \epsilon^2$, we rescale

$$\mathbf{x} = \mathbf{x}^* + \epsilon^{\alpha} \ \tilde{\mathbf{x}} \qquad , \qquad \mathbf{y} = \mathbf{y}^* + \epsilon^{\mu \alpha} \ \tilde{\mathbf{y}}$$

<ロ> (四) (四) (三) (三) (三)

Critical spectral curve

The critical spectral curve is given by: $x = x^* + a \tilde{x}$, $y = y^* + a^{\mu} \tilde{y}$ where

$$\begin{cases} \tilde{x} = -a \cosh \chi \\ \tilde{y} = \sum_{k=0}^{m} \frac{m!}{k! (m-k)! (\mu-k)} (2 \cosh \chi)^k \cosh (\mu-k) \chi \\ a \sim (t-t^*)^{\frac{2}{\mu+1-\nu}} \sim \epsilon^{\frac{4}{\mu+1-\nu}} \end{cases}$$

 $\mu = 2m + 1 \pm \nu$, $\nu \in [0, 1[$, $\mathfrak{n} = -2\cos\mu\pi = 2\cos\nu\pi$.

Scaling limits

Theorem

$$\exists \lim a^{(2g-2+n)\mu-n} W_n^{(g)}(a\tilde{x}_1,\ldots,a\tilde{x}_n) = \tilde{W}_n^{(g)}(\tilde{x}_1,\ldots,\tilde{x}_n)$$

and $\tilde{\omega}_n^{(g)}(\chi_1, \ldots, \chi_n) = \tilde{W}_n^{(g)}(\tilde{x}_1, \ldots, \tilde{x}_n)$ where $\tilde{x}_i = -\cosh \chi_i$, are given by the "topological recursion"

$$\tilde{\omega}_{n+1}^{(g)}(\chi_0,\chi_1,\ldots,\chi_n) = \operatorname{Res}_{\boldsymbol{z}\to 0} \tilde{K}(\chi_0,\boldsymbol{z}) \left[\tilde{\omega}_{n+2}^{(g-1)}(\boldsymbol{z},-\boldsymbol{z},\chi_1,\ldots,\chi_n) + \sum_{\boldsymbol{h}} \sum_{\boldsymbol{l} \uplus \boldsymbol{\bar{l}} = \{\chi_1,\ldots,\chi_n\}}^{\prime} \tilde{\omega}_{1+\#\boldsymbol{l}}^{(h)}(\boldsymbol{z},\boldsymbol{l}) \, \tilde{\omega}_{1+\#\boldsymbol{\bar{l}}}^{(h)}(-\boldsymbol{z},\boldsymbol{\bar{l}}) \right]$$

where the recursion kernel is defined as

$$\tilde{K}(z_0, z) = \frac{\frac{1}{2} \int_{z'=-z}^{z} \tilde{\omega}_2^{(0)}(z_0, z')}{\tilde{\omega}_1^{(0)}(z) - \tilde{\omega}_1^{(0)}(-z)}$$

▲□ ▶ ▲ 三 ▶ ▲ 三 ▶ ● 三 ● ● ● ●

Theorem

$$\exists \text{ lim } a^{(2g-2+n)\mu-n} W_n^{(g)}(a\tilde{x}_1,\ldots,a\tilde{x}_n) = \tilde{W}_n^{(g)}(\tilde{x}_1,\ldots,\tilde{x}_n)$$

Let $\mu = \rho/q$, $(\mathfrak{n} = -2\cos\mu\pi)$. This theorem shows that

- rescaled generating functions counting "large" maps with an $O(\mathfrak{n})$ or Ising model, tend to some "universal" functions $\tilde{\omega}_n^{(g)}$.
- The exponents $a^{(2g-2+n)\mu-n}$, together with $a \sim (t-t^*)^{\frac{2}{\mu+1-\nu}} \sim \epsilon^{\frac{4}{\mu+1-\nu}}$, are those given by the KPZ[1988] formula = conformal field theory.

• the functions $\tilde{\omega}_n^{(g)}$ satisfy some differential equations, the same as expected from Liouville CFT coupled to gravity.

イロト 不得 とくほ とくほ とうほ

5. General properties of the recursion

Bertrand Eynard, CERN, IPHT CEA Saclay Moscow Statistical Models on random lattices

Remark: we can apply this "topological recursion" algorithm to any plane curve $y = W_1^{(0)}(x)$ (spectral curve), (*related to a combinatorial problem or not*).

The topological recursion defines some $W_n^{(g)}$ for any plane curve, and we define:

Definition

 $F_g =$ "Symplectic Invariants" of a plane curve.

$$\forall g \geq 2, \qquad F_g = \frac{1}{2 - 2g} \sum_{i} \mathop{\rm Res}_{x \to a_i} W_1^{(g)}(x) \Phi(x)$$

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

where $\Phi'(x) = W_1^{(0)}(x) = y$.

Separate definition exists for F_0 and F_1 ... (but not in a 1 hour talk)

General properties (valid for any plane curve y(x)):

- $F_g =$ symplectic invariant,
- F_g = (almost) modular form,

• Integrability: $Z_N = \exp(\sum N^{2-2g} F_g)(1 + \text{Non. Pert.}) =$ Tau-function

• Limits: F_g commute with limits: $\lim F_g(S)^n = "F_g(\lim S)$. This allows to study microscopic critical scaling regimes with the same method.

Ex: easily recover Tracy-Widom universal law near boundaries $(y \sim \sqrt{x})$.

Ex: recover KdV (p,2) reductions near critical points of order p (i.e. $y \sim x^{p/2}$), i.e. Painlevé I hierarchy.

• Many other nice properties, like special geometry deformations (form-cycle duality), Virasoro or W algebra, ...etc.

General properties (valid for any plane curve y(x)):

• F_g = symplectic invariant, Theorem: if two spectral curves (x, y) and (\tilde{x}, \tilde{y}) are such that $dx \wedge dy = d\tilde{x} \wedge d\tilde{y}$, then $F_g = \tilde{F}_g$.

- F_g = (almost) modular form,
- Integrability: $Z_N = \exp(\sum N^{2-2g} F_g)(1 + \text{Non. Pert.}) =$ Tau-function

• Limits: F_g commute with limits: $\lim F_g(S)^{"} = "F_g(\lim S)$. This allows to study microscopic critical scaling regimes with the same method.

Ex: easily recover Tracy-Widom universal law near boundaries $(y \sim \sqrt{x})$.

Ex: recover KdV (p,2) reductions near critical points of order p (i.e. $y \sim x^{p/2}$), i.e. Painlevé I hierarchy.

General properties (valid for any plane curve y(x)):

- $F_g =$ symplectic invariant,
- F_g = (almost) modular form,

• Integrability: $Z_N = \exp(\sum N^{2-2g} F_g)(1 + \text{Non. Pert.}) =$ Tau-function

• Limits: F_g commute with limits: $\lim F_g(S)^n = "F_g(\lim S)$. This allows to study microscopic critical scaling regimes with the same method.

Ex: easily recover Tracy-Widom universal law near boundaries $(y \sim \sqrt{x})$.

Ex: recover KdV (p,2) reductions near critical points of order p (i.e. $y \sim x^{p/2}$), i.e. Painlevé I hierarchy.

• Many other nice properties, like special geometry deformations (form-cycle duality), Virasoro or W algebra, ...etc.

General properties (valid for any plane curve y(x)):

- $F_g =$ symplectic invariant,
- F_g = (almost) modular form,

 F_g +polynomial((Im τ)⁻¹) is modular invariant, but not analytical. Satisfies BCOV holomorphic anomaly equation.

• Integrability: $Z_N = \exp(\sum N^{2-2g} F_g)(1 + \text{Non. Pert.}) =$ Tau-function

• Limits: F_g commute with limits: $\lim F_g(S)^{"} = "F_g(\lim S)$. This allows to study microscopic critical scaling regimes with the same method.

Ex: easily recover Tracy-Widom universal law near boundaries $(y \sim \sqrt{x})$.

Ex: recover KdV (p,2) reductions near critical points of order p (i.e. $y \sim x^{p/2}$), i.e. Painlevé I hierarchy.

 Many other nice properties, like special geometry deformations (form-cycle duality), Virasoro or W algebra,etc. *** Bertrand Eynard, CERN, IPHT CEA Saclay Moscow
Statistical Models on random lattices

General properties (valid for any plane curve y(x)):

- $F_g =$ symplectic invariant,
- F_g = (almost) modular form,

• Integrability: $Z_N = \exp(\sum N^{2-2g} F_g)(1 + \text{Non. Pert.}) =$ Tau-function

• Limits: F_g commute with limits: $\lim F_g(S)^n = "F_g(\lim S)$. This allows to study microscopic critical scaling regimes with the same method.

Ex: easily recover Tracy-Widom universal law near boundaries $(y \sim \sqrt{x})$.

Ex: recover KdV (p,2) reductions near critical points of order p (i.e. $y \sim x^{p/2}$), i.e. Painlevé I hierarchy.

• Many other nice properties, like special geometry deformations (form-cycle duality), Virasoro or W algebra, ...etc.

General properties (valid for any plane curve y(x)):

- $F_g = symplectic invariant,$
- $F_g =$ (almost) modular form,

• Integrability: $Z_N = \exp(\sum N^{2-2g} F_g)(1 + \text{Non. Pert.}) =$ Tau-function

 Z_N satisfies formal Hirota equations. $W_n^{(g)}$ are obtained as determinants of some integrable kernel.

• Limits: F_g commute with limits: $\lim F_g(S)^{"} = "F_g(\lim S)$. This allows to study microscopic critical scaling regimes with the same method.

Ex: easily recover Tracy-Widom universal law near boundaries $(y \sim \sqrt{x})$.

Ex: recover KdV (p,2) reductions near critical points of order p (i.e. $y \sim x^{p/2}$), i.e. Painlevé I hierarchy.

General properties (valid for any plane curve y(x)):

- $F_g =$ symplectic invariant,
- F_g = (almost) modular form,

• Integrability: $Z_N = \exp(\sum N^{2-2g} F_g)(1 + \text{Non. Pert.}) =$ Tau-function

• Limits: F_g commute with limits: $\lim F_g(S)^n = "F_g(\lim S)$. This allows to study microscopic critical scaling regimes with the same method.

Ex: easily recover Tracy-Widom universal law near boundaries $(y \sim \sqrt{x})$.

Ex: recover KdV (p,2) reductions near critical points of order p (i.e. $y \sim x^{p/2}$), i.e. Painlevé I hierarchy.

• Many other nice properties, like special geometry deformations (form-cycle duality), Virasoro or W algebra, ...etc.

General properties (valid for any plane curve y(x)):

- $F_g =$ symplectic invariant,
- F_g = (almost) modular form,
- Integrability: $Z_N = \exp(\sum N^{2-2g} F_g)(1 + \text{Non. Pert.}) =$ Tau-function

• Limits: F_g commute with limits: $\lim F_g(S)^{"} = "F_g(\lim S)$. $\lim_{t \to t_c} (t - t_c)^{(2-2g)(\mu_x + \mu_y)} F_g(S_t) = F_g(\tilde{S}), \quad \tilde{S} = \text{resolved curve.}$

This allows to study microscopic critical scaling regimes with the same method.

Ex: easily recover Tracy-Widom universal law near boundaries $(v \sim \sqrt{x})$.

Bertrand Eynard, CERN, IPHT CEA Saclay Moscow Statistical Models on random lattices

General properties (valid for any plane curve y(x)):

- $F_g =$ symplectic invariant,
- F_g = (almost) modular form,

• Integrability: $Z_N = \exp(\sum N^{2-2g} F_g)(1 + \text{Non. Pert.}) =$ Tau-function

• Limits: F_g commute with limits: $\lim F_g(S)^n = "F_g(\lim S)$. This allows to study microscopic critical scaling regimes with the same method.

Ex: easily recover Tracy-Widom universal law near boundaries $(y \sim \sqrt{x})$.

Ex: recover KdV (p,2) reductions near critical points of order p (i.e. $y \sim x^{p/2}$), i.e. Painlevé I hierarchy.

• Many other nice properties, like special geometry deformations (form-cycle duality), Virasoro or W algebra, ...etc.

6. Some applications Beyond combinatorics of maps

Bertrand Eynard, CERN, IPHT CEA Saclay Moscow Statistical Models on random lattices

(E) < (E)</p>

ъ

Bertrand Eynard, CERN, IPHT CEA Saclay Moscow Statistical Models on random lattices

Bertrand Eynard, CERN, IPHT CEA Saclay Moscow Statistical Models on random lattices

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Bertrand Eynard, CERN, IPHT CEA Saclay Moscow Statistical Models on random lattices

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Bertrand Eynard, CERN, IPHT CEA Saclay Moscow Statistical Models on random lattices

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Bertrand Eynard, CERN, IPHT CEA Saclay Moscow Statistical Models on random lattices

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

• $Z = \sum_{3D \text{ partitions}} q^{\text{\#boxes}}$, $q^{\text{size}} = O(1)$, large size: $q \to 1$, ln $Z = \sum_{g} (\ln q)^{2g-2} \mathcal{F}_{g}$.

Conjecture: $\mathcal{F}_g = \mathcal{F}_g$ (Stieljes transf. of limit density along a vertical line) ?

Bertrand Eynard, CERN, IPHT CEA Saclay Moscow Statistical Models on random lattices

Conjecture: $\mathcal{F}_g = \mathcal{F}_g$ (Stieljes transf. of limit density along a vertical line) ?

Bertrand Eynard, CERN, IPHT CEA Saclay Moscow Statistical Models on random lattices

Conjecture:

 $\mathcal{F}_g = F_g$ (Stieljes transf. of limit density along a vertical line) ? *Idea of a proof:* Z=matrix integral, which implies that it satisfies the topological recursion. Problem: show that $W_1^{(0)} =$ Kenyon-Okounkov-Sheffield curve (limit shape) ?

(人) 医子子 医子子 医

\bullet Let $\mathfrak X$ a 3D Calabi-Yau manifold with toric symmetry

• Gromov-Witten: $\mathcal{N}_{g,d}(\mathfrak{X}) = "\#$ of conformal mappings of a Riemann surface of genus g into \mathfrak{X} , with homology class d, and passing through given points".

• Generating function: $\mathcal{F}_g = \sum_d \mathcal{N}_{g,d}(\mathfrak{X}) Q^d$.

• String theory: \mathcal{F}_g = amplitude of a closed string of genus g in target space \mathfrak{X} .

• Conjecture [Mariño 2006, BKMP 2008]:

 $\mathcal{F}_g = \mathcal{F}_g(\operatorname{mirror} \mathfrak{X})$

Few cases proved so far:

- many low genus examples g = 0, 1, 2, ..., 20 for various choices of \mathfrak{X} , in particular $\mathfrak{X} = SW SU(n)$ theories.

・ロト ・ 理 ト ・ ヨ ト ・

 \bullet Let $\mathfrak X$ a 3D Calabi-Yau manifold with toric symmetry

• Gromov-Witten: $\mathcal{N}_{g,d}(\mathfrak{X}) = "\#$ of conformal mappings of a Riemann surface of genus g into \mathfrak{X} , with homology class d, and passing through given points".

• Generating function: $\mathcal{F}_g = \sum_d \mathcal{N}_{g,d}(\mathfrak{X}) Q^d$.

• String theory: \mathcal{F}_g = amplitude of a closed string of genus g in target space \mathfrak{X} .

• Conjecture [Mariño 2006, BKMP 2008]:

 $\mathcal{F}_g = \mathcal{F}_g(\operatorname{mirror} \mathfrak{X})$

Few cases proved so far:

- many low genus examples g = 0, 1, 2, ..., 20 for various choices of \mathfrak{X} , in particular $\mathfrak{X} = SW SU(n)$ theories.

イロト 不得 とくほ とくほ とうほ

 \bullet Let $\mathfrak X$ a 3D Calabi-Yau manifold with toric symmetry

• Gromov-Witten: $\mathcal{N}_{g,d}(\mathfrak{X}) = "\#$ of conformal mappings of a Riemann surface of genus g into \mathfrak{X} , with homology class d, and passing through given points".

• Generating function: $\mathcal{F}_g = \sum_d \mathcal{N}_{g,d}(\mathfrak{X}) Q^d$.

• String theory: \mathcal{F}_g = amplitude of a closed string of genus g in target space \mathfrak{X} .

• Conjecture [Mariño 2006, BKMP 2008]:

 $\mathcal{F}_g = \mathcal{F}_g(\operatorname{mirror} \mathfrak{X})$

Few cases proved so far:

- many low genus examples g = 0, 1, 2, ..., 20 for various choices of \mathfrak{X} , in particular $\mathfrak{X} = SW SU(n)$ theories.

イロト 不得 とくほ とくほ とうほ

 \bullet Let $\mathfrak X$ a 3D Calabi-Yau manifold with toric symmetry

• Gromov-Witten: $\mathcal{N}_{g,d}(\mathfrak{X}) = "\#$ of conformal mappings of a Riemann surface of genus g into \mathfrak{X} , with homology class d, and passing through given points".

- Generating function: $\mathcal{F}_g = \sum_d \mathcal{N}_{g,d}(\mathfrak{X}) Q^d$.
- String theory: \mathcal{F}_g = amplitude of a closed string of genus g in target space \mathfrak{X} .
- Conjecture [Mariño 2006, BKMP 2008]:

 $\mathcal{F}_g = F_g(\operatorname{mirror} \mathfrak{X})$

Few cases proved so far:

- many low genus examples g = 0, 1, 2, ..., 20 for various choices of \mathfrak{X} , in particular $\mathfrak{X} = SW SU(n)$ theories.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

 \bullet Let $\mathfrak X$ a 3D Calabi-Yau manifold with toric symmetry

• Gromov-Witten: $\mathcal{N}_{g,d}(\mathfrak{X}) = "\#$ of conformal mappings of a Riemann surface of genus g into \mathfrak{X} , with homology class d, and passing through given points".

• Generating function: $\mathcal{F}_g = \sum_d \mathcal{N}_{g,d}(\mathfrak{X}) Q^d$.

• String theory: \mathcal{F}_g = amplitude of a closed string of genus g in target space \mathfrak{X} .

• Conjecture [Mariño 2006, BKMP 2008]:

 $\mathcal{F}_g = F_g(\operatorname{mirror} \mathfrak{X})$

Few cases proved so far:

- many low genus examples g = 0, 1, 2, ..., 20 for various choices of \mathfrak{X} , in particular $\mathfrak{X} = SW SU(n)$ theories.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □
Topological strings - Gromov-Witten

 \bullet Let $\mathfrak X$ a 3D Calabi-Yau manifold with toric symmetry

• Gromov-Witten: $\mathcal{N}_{g,d}(\mathfrak{X}) = "\#$ of conformal mappings of a Riemann surface of genus g into \mathfrak{X} , with homology class d, and passing through given points".

• Generating function: $\mathcal{F}_g = \sum_d \mathcal{N}_{g,d}(\mathfrak{X}) Q^d$.

• String theory: \mathcal{F}_g = amplitude of a closed string of genus g in target space \mathfrak{X} .

• Conjecture [Mariño 2006, BKMP 2008]:

 $\mathcal{F}_g = F_g(\operatorname{mirror} \mathfrak{X})$

Few cases proved so far:

- many low genus examples g = 0, 1, 2, ..., 20 for various choices of \mathfrak{X} , in particular $\mathfrak{X} = SW SU(n)$ theories.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- to all genus $g = 0, \ldots, \infty$ for $\mathfrak{X} = \mathbb{C}^3$.

Conclusion

• We have solved Tutte's equations for Ising model, O(n) model on a random lattice, of any topology.

• We have computed the continuum limit of generating functions \rightarrow compatible with CFT. (exponents = KPZ).

• Extension to other combinatorial or algebraic problems (Gromov-Witten theory, plane partitions, random matrices...).

Some open questions

• can we compute generating functions of configurations with points at fixed distance (metrics properties) ? Idea: fix points as marked faces of zero size, then count configurations with loops of given lengths, between those marked faces...

(문화)(문화)

3

• Prove that the topological recursion computes plane partitions, Gromov-Witten invariants...

Book in preparation: draft can be found at http://eynard.bertrand.voila.net/TOCbook.htm

• For the O(n) model:

G. Borot, B. Eynard, Enumeration of maps with self avoiding loops and the O(n) model on random lattices of all topologies, math-ph: arxiv.0910.5896. J. Stat. Mech. (2011) P01010.

• For the Ising model:

L. Chekhov, B. E., N. Orantin, Free energy topological expansion for the 2-matrix model, JHEP 0612 (2006) 053, math-ph/0603003.

B. E., N. Orantin, Mixed correlation functions in the 2-matrix model, and the Bethe ansatz, JHEP/0508 (2005) 028, hep-th/0504029.

(日本) (日本) (日本)

1