Hall effect, Jack polynomials, CFT....(More to come in the talk by D. Serban)

Benoit Estienne, Raoul
Santachiara, Didina Serban,
Vincent Pasquier

Most striking occurrence of a quantum macroscopic effect in the

 real word

 real word}

- In presence of of a magnetic field, the conductivity is quantized to be a simple fraction up to 10^{-10}
- Important experimental fractions for electrons are: $\frac{p}{2 p+1}$
- Theorists believe for bosons:

- Fraction called filling factor.

Hall effect

- Lowest Landau Level wave functions

$$
\psi_{n}(z)=\frac{z^{n}}{n!} e^{-\frac{z \bar{z}}{l^{2}}}
$$

$$
\frac{A}{? \pi \pi^{2}}=n_{0} \quad \begin{gathered}
\text { Number of avaiable cells also } \\
\text { the maximal degree in each variable }
\end{gathered}
$$

$$
\begin{aligned}
& S\left(z_{1}^{\lambda_{1}} \ldots z_{n}^{\lambda_{n}}\right)=m_{\lambda} \\
& A S\left(z_{1}^{\lambda_{1}} \ldots z_{n}^{\lambda_{n}}\right)=S_{\lambda} \Delta
\end{aligned}
$$

Is a basis of states for the system Labeled by partitions

Can be represented by a partition with N_0 particles in orbital 0, N_1 particles in orbital 1...N_k particles in orbital k.....

There exists a partial order on partitions, the squeezing order

Interactions translate into repulsion between particles.

\mathbf{m} universal measures the strength of the interactions.
Competition between interactions which spread electrons apart and high compression which minimizes the degree n . Ground state is the minimal degree symmetric polynomial compatible with the repulsive interaction.

Laughlin wave function occupation numbers:

Keeping only the dominant weight of the expansion

00100100100

1 particle at most into m orbitals ($\mathrm{m}=3$ here).

Important quantum number with a topological interpretation

- Filling factor equal to number of particles per unit cell:

$$
V=\frac{\text { Number of variables }}{\text { Degree of polynomial }}
$$

$\frac{1}{3}$
In the preceding case.

Excitation

$$
\prod_{i}\left(x-z_{i}\right) \prod_{k j}\left(z_{i}-z_{j}\right)^{n}
$$

Imagine you put the excitation at $x=0$

000100100100

It is pushing the motive to the right, inserting a $1 / 3$ charge

Edge Physics

- We shall make a not very well established assumption that electrons at the edge of the sample are relevant.
- Edge state physics described by a 1+1dimentional model.

Non commutativity.

- The dynamical degrees of freedom (r,p) are reorganized into two commuting sets, the dynamical momenta and guiding centers which obey heisenberg algebra:

$$
\boldsymbol{P}_{p} \boldsymbol{\rho}_{q}=\boldsymbol{e}^{i p \times q l^{2}} \boldsymbol{\rho}_{p+q}
$$

where I is the magnetic length, p takes $\mathrm{N}^{\wedge} 2$ values.

algebra realized on edge states as:

$$
\begin{aligned}
& W 1+\infty \\
& {\left[\rho_{p}, \rho_{q}\right]=} \\
& \left(e^{i p \times q l^{2}}-e^{-i p \times q l^{2}}\right) \rho_{p+q}+c \delta_{p+q}
\end{aligned}
$$

Jack Polynomials:

$$
\begin{aligned}
& L_{0}=\sum_{i=1}^{n} z_{i} \partial_{z_{i}} \\
& H^{g}=\sum_{i=1}^{n}\left(z_{i} \partial_{z_{i}}\right)^{2}+g \sum_{i \neq j} \frac{z_{i}+z_{j}}{z_{i}-z_{j}} z_{i} \partial_{z_{i}}
\end{aligned}
$$

Jack polynomials are eigenstates of the Calogero-
Sutherland Hamiltonian on a circle with $1 / \mathrm{r}^{\wedge} 2$ potential interaction.

Remarks

- By conjugating with a Vandermonde determinant,

$$
\Delta=\prod_{i<j}\left(z_{i}-z_{j}\right)^{g}
$$

- $g=m$ integer Hall effect
- H can be made Hermitian:

$$
H=-\sum \partial^{2} \theta_{i}+\frac{1}{4} \sum_{i<j} \frac{g(g-1)}{\sin \left(\theta_{i}-\theta_{j}\right)^{2}}
$$

- In particular H is noninteracting if $\mathrm{g}=0,1$
- Deformation of Schur functions.

Eigenstates

- C.S Hamiltonian is triangular in the monomial basis. Spectrum:

$$
\begin{aligned}
& H^{\prime}=H-N g L_{0} \\
& E_{\lambda}^{g}=\sum_{i=1}^{N} \lambda_{i}\left(\lambda_{i}+g(1-2 i)\right)
\end{aligned}
$$

Duality

$$
\begin{aligned}
& b(\lambda)=\sum(i-1) \lambda_{i}=\sum \lambda_{i}^{\prime}\left(\lambda_{i}^{\prime}-1\right) / 2 \\
& E(\lambda)=b\left(\lambda^{\prime}\right)-g b(\lambda)
\end{aligned}
$$

$$
E_{\lambda}^{g}+g E_{\lambda^{\prime}}^{1 / g}=0
$$

Jack polynomials at

$g=-\frac{r-1}{k+1}$

Feigin-Jimbo-Miwa-Mukhin

Generate ideal of polynomials"vanishing as the r power of the Distance between particles (difference
Between coordinates) as $\mathbf{k + 1}$ particles come together.

Exclusion statistics:

- No more than k particles into r consecutive orbitals. $\lambda_{i}-\lambda_{i+k} \geq r$

For example when
$\mathrm{k}=\mathrm{r}=2$, the possible ground states (most dense packings) are given by: 20202020....
11111111.....
02020202.....

Filling factor is

CFT

- Parafermionc minimal models :

$$
\begin{aligned}
& W A_{k-1}(k+1, k+r) \\
& \psi_{q} \times \psi_{p}=\psi_{q+p}
\end{aligned}
$$

- Models with Z_{k} symmetry ($\mathrm{q}=\mathrm{q}+\mathrm{k}$) .
- $r=2$ (Fateev-Zamolodchikov 85). $r=3,4$ generealizations.

Clustering properties

- Due to chiral ring properties:

$$
<\psi_{1}\left(z_{1}\right) \psi_{1}\left(z_{2}\right) \ldots \psi_{1}\left(z_{N}\right)>\prod_{i<j}\left(z_{i}-z_{j}\right)^{k / r}
$$

- Is a polynomial vanishing with a degree r when $k+1$ variables are clustered. This indicates a possible connection between Jack polynomials and parafermionic CFT.

Moore Read ($\mathrm{k}=\mathrm{r}=2$)

When 3 electrons are put together, the wave function vanishes as: \mathcal{E}^{2}

$$
\operatorname{Pfaff}\left[\frac{1}{z_{i}-z_{j}}\right] \prod_{i<j}\left(z_{i}-z_{j}\right)
$$

Annulations

When 3 electrons are put together, the wave function vanishes as:

Fractional excitations

$$
\prod\left(x-z_{i}\right) P f\left(\frac{1}{z_{i}-z_{j}}\right)
$$

Can be split into 2 charge $1 / 2$ excitations:

$$
\operatorname{Pf}\left(\frac{\left(x-z_{i}\right)\left(y-z_{j}\right)+x \leftrightarrow y}{z_{i}-z_{j}}\right)
$$

CFT analogous:

- Quasiparticles are represented by Ising field.
- Jastrow factor necessary to insure locality between electrons and quasiparticles.
- Quasiparicles obey braid statistics.

$$
<\sigma\left(z_{1}\right) \sigma\left(z_{2}\right) \ldots \psi\left(w_{1}\right) \ldots \psi\left(w_{N}\right)>\prod\left(z_{i}-w_{j}\right)^{1 / 2}
$$

Jack polynomials=CFT correlators and more?

- q deformed case.
- Bosonic Hamiltonian from CS.
- Duality.
- Another derivation from nullvector.
- More Hamiltonians and representations, some related to AGT conjecture.(Didina Serban talk)

q deformed CS=Macdonald

- Very interesting deformation of the CS model Ruisjenaars Hamiltonian (also Macdonald):

$$
H=\sum_{i} \prod_{i \neq j} \frac{t z_{i}-z_{j}}{z_{i}-z_{j}} T_{z_{i} \rightarrow q z_{i}}
$$

- 2 parameters $\mathrm{q}, \mathrm{t}>\mathrm{g}$ in limt $\mathrm{q}=\mathrm{t}=1$.
- Also H' obtained $\mathrm{t}, \mathrm{q}<>1 / \mathrm{t}, 1 / \mathrm{q}$.

Hecke Algebra (Lascoux Schutzenberger)

$$
T_{12} \Psi=\left(\Psi\left(z_{1}, z_{2}\right)-\Psi\left(z_{2}, z_{1}\right)\right) \frac{z_{1} t-z_{2} t^{-1}}{z_{1}-z_{2}}
$$

T projects onto polynomials divisible by:

$$
z_{1} t-z_{2} t^{-1}
$$

T obeys Braid group algebra relations

With adiabatic time QHE=TQFT

One must consider the space $P(x 1, x 2, x 3 \mid z i)$ of polynomials vanishing when zi-xj goes to 0 .

Compute Feynman path integrals

Collective variables

- Jevicki Sakita (NPB 165,1980)
- Stanley (Adv. Math. 77, 1989)
- Consider the action of the Hamiltonian on a wave function depending on collective variables:

$$
\Psi\left(p_{1}, p_{2}, \ldots\right)
$$

with

$$
p_{k}=\sum z_{i}^{k}
$$

Collective Hamiltonian:

- $\mathrm{H}=\mathrm{K}+\mathrm{gV}$

$$
\begin{aligned}
& =\sum_{n} n^{2} p_{n} \partial_{n}+\sum_{n, m} p_{n+m} n \partial_{n} m \partial_{m} \\
& +g\left(\sum_{k+l=n} p_{k} p_{l}+(N-1) p_{n}\right) n \partial_{n}
\end{aligned}
$$

In terms of bosons:

$$
\begin{aligned}
& a_{-n}=g^{1 / 2} p_{n} \\
& a_{n}=g^{-1 / 2} n \partial_{n} \\
& H=(1-g) \sum_{n>1} a_{-n} a_{n}+ \\
& g^{1 / 2} / 3 \sum_{n+m+l=0} a_{n} a_{m} a_{l}+N g L_{0}
\end{aligned}
$$

In terms of Virasoro

- H is hermitian but p depend on g , therefore,

$$
<p_{n}, p_{m}>=\frac{n}{g} \delta_{n, m}
$$

- Macdonald approach Hilbert Schmidt.
- $\mathrm{H}=\sum_{n>0} a_{-n} l_{n} \quad$ (Awata et al.)

Virasoro Algebra constructed via FF construction

$$
c=13-6\left(g+\frac{1}{g}\right)
$$

q-deformed case.

- Hamiltonians become zero mode of vertex operator analogous to e,f generators of SL2(q). Ding Iohara (Shiraishi et al.)
- Can be thougt as (central extension of) algebra generated by: $\sum y_{i}{ }^{k}, \sum z_{i}{ }^{k}$
- Analogous of Cartan generators K generated by: $\sum z_{i}$
- Also extention of :

W

SL2(Z) symmetry.

Classical limit

- Jevicki (81). Abanov Bettelheim, Wiegmann (08).
- Set

$$
\partial \varphi=\sum_{n>0} a_{n} z^{-(n+1)}=v / \sqrt{g}
$$

- Then:

$$
H=\int \frac{1}{3} v^{3}+\frac{1}{2} v \cdot h\left(v_{x}\right) d x
$$

Duality again:

- Recall the way quasiparticles are constructed in the Hall effect:

$$
\prod_{i}\left(x-z_{i}\right) \prod_{i<j}\left(z_{i}-z_{j}\right)^{m}
$$

- So, we can consider the Kernel:

$$
\prod_{a, i}\left(x_{a}-z_{j}\right)
$$

Kernel as intertwiner

- This Kernel intertwines electrons and quasiholes with fractional charge $1 / g$ (Laughlin argument and g an integer),
- It is not difficult to show (Macdonald,Gaudin):

$$
H_{x}^{1 / g}+H_{z}^{g}=0
$$

Correlators?

- Derive this Hamiltonian by using Correlation functions in CFT. (Cardy...) Consider degenerate fields ($\mathrm{g}=-1 / 3$ Moore Read) corresponds to :

$$
V_{g}=e^{-(g / 2)^{1 / 2} \varphi}
$$

- Obeying level 2 degeneracy equation:

$$
\partial_{x}^{2} V_{g}(x)=g T(x) V_{g}(x)
$$

Another expression:

- Going back to the boson representation for the Virasoro generators (F.F.), we can also rewrite the conserved quantities as a sum of two BO hamiltonians+ a coupling (Generalizing a formula of Belavin,Belavin)

$$
I_{3}^{+}=H_{3}^{+}(c)+H_{3}^{+}\left(c^{\prime}\right)+(1-g) \sum_{m>0} c_{-m} c_{m}^{\prime}
$$

Duality relation:

- The same can be repeated for the dual operators, absence of interations between the two type of fields implies similar separation as for the abelian case:

$$
H_{x}^{1 / g}+H_{z}^{g}=0
$$

- Implying a factorization of the conformal blocs:

$$
F(x, z)=\sum_{\lambda} P_{\lambda}(x) P_{\lambda^{\prime}}(z)
$$

In the Ising case

- Correlator becomes factorized:

$$
<\sigma\left(z_{1}\right) \sigma\left(z_{2}\right) \ldots \psi\left(w_{1}\right) \ldots \psi\left(w_{N}\right)>\prod\left(z_{i}-w_{j}\right)^{1 / 2}
$$

- Jastrow factor can be taken into accout by $\mathrm{U}(1)$ factor.

$$
V_{g}=e^{-(g / 2)^{1 / 2} \varphi} \quad V_{1 / g}=e^{-(1 / 2 g)^{1 / 2} \varphi}
$$

Organization of states.

- Didina Serban will show that the Hamiltonian is the sum of 2 independant C.S. Hamiltonians up to a lower triangular interaction term. So the spectrum is characterized by 2 sets of quantum numbers. Agrees with the exclusion statistics selection rules.

Conclusions extensions

- Can be generalized to W-n theories in particular to parafermionic theories relevant for the Hall effect (Haldane Rezayi serie).
- CS Hamiltonian seems to provide a « good» bases to classify the descendants inside a Virasoro module.
- A lot more need to be understood, non polynomial solutions of C.S. (Didina's talk), relevance for the QHE etc...

