Return Probability for the Loop-Erasing Random Walk

V.B. Priezzhev

Dubna, Russia

Loop erased random walk on square lattice

Lawler, 1980
Pemantle, 1991
Majumdar, 1992
Kenyon, 2000
Lawler, Schramm,
Werner, 2004

LERW: a path obtained from the simple random walk by deleting all cycles in chronological order

1. The problem:

What is probability $\mathrm{P}(0,1)$ that the LERW starting from the origin $(0,0)$ visits ever the neighboring point $(0,1)$?

The conjecture: $\mathrm{P}(0,1)=5 / 16$
Poghosyan, V.P., 2010
Levine, Peres, 2011
2. Related problem and conjecture:

Average height in the Abelian sandpile $\langle\eta\rangle=25 / 8$.
Grassberger, 1994

胃期 Bogolinbov Laboratory of Theoretical Physics

Spanning tree ($\mathrm{V}=\mathrm{E}+\mathrm{l}$)

Number of spanning trees $\operatorname{det} \Delta^{*}$ (Kirhhoff, 1847)
Δ^{*} is the Laplacian where one diagonal element $\Delta_{i i}^{*}=\Delta_{i i}+1$

Two more conjectures

1. In the limit of infinitely large lattice (number of unicycles) / (number of spanning trees)
= $1 / 8$
2. The average length of the cycle in unicycles is 8

Levine, Peres, 2011

All four conjectures are reduced to the first one $(5 / 16)$.

The plan

1. Bijection between spanning trees and recurrent sandpile configurations.
2. Proof of the conjecture $5 / 16$.
3. Further problems.

Abelian Sandpile model

An integer height z_{i} is ascribed to each site.
The evolution is defined by rules:

$$
z_{i} \rightarrow z_{i}+1 \quad z_{i}=1,2,3,4
$$

Bak, Tang, Wiesenfeld, 1987
If any

$$
\begin{aligned}
& z_{i} \geq z_{i}^{C}=\operatorname{deg}(i) \\
z_{i} & \rightarrow z_{i}-z_{i}^{C} \\
z_{j} & \rightarrow z_{j}+1 \quad j \quad \text { is neighbor of } i
\end{aligned}
$$

1	2	5	3
3	3	1	4
2	2	4	4
1	2	3	3

1	3	1	4
3	3	2	4
2	2	4	4
1	2	3	3

Allowed and Forbidden Configurations

Allowed configurations $=$ Recurrent Configurations: each configuration \boldsymbol{C} is reachable from an arbitrary one C^{*} by sandpile dynamics

Forbidden configuration
D. Dhar, 1990

1	1

 | 1 | 2 | 1 |
| :--- | :--- | :--- | General FSC:

$$
z_{j} \leq \# \text { of nearest neighbors of } j \text { in } \Gamma
$$

Mapping onto Spanning Trees

C - Sandpile configuration
$\left[\hat{a}_{i}, \hat{a}_{j}\right]=0$
$\hat{a}_{i} C=C^{\prime}$ - operator of adding a particle to site i
D.Dhar, PRL 64, 1613 (1990)
\hat{a}_{i}^{-1} - inverse operator
Identity operator

$$
\sum_{j} \hat{a}_{i}^{\Delta_{i j}}=1
$$

Another form of identity operator

Bogolinbov Laboratory of Theoretical Physics

Height Probabilities

$z_{i}=1,2,3,4 \quad$ - local heights of recurrent sandpile

$$
\begin{align*}
& P_{1}=\operatorname{Prob}\left(z_{i}=1\right)=\frac{2(\pi-2)}{\pi^{3}} \\
& P_{2}=\frac{1}{2}-\frac{3}{2 \pi}-\frac{2}{\pi^{2}}+\frac{12}{\pi^{3}}+\frac{I_{1}}{4} \\
& P_{3}=\frac{1}{4}+\frac{3}{2 \pi}+\frac{1}{\pi^{2}}-\frac{12}{\pi^{3}}-\frac{I_{1}}{2}-\frac{I_{2}}{32} \tag{1994}\\
& P_{4}=1-P_{1}-P_{2}-P_{3}
\end{align*}
$$

1	4	3	2	3
3	2	4	4	1
2	4	3	2	4
3	2	3	3	1
1	4	2	3	3

Evaluation of integrals to twelve decimals leads to conjecture (Jeng,Piroux,Ruelle ,2006)

$$
\begin{array}{r}
P_{2}=\frac{1}{4}-\frac{1}{2 \pi}-\frac{3}{\pi^{2}}+\frac{12}{\pi^{3}} \quad \text { and } \quad P_{3}=\frac{3}{8}+\frac{1}{\pi}-\frac{12}{\pi^{3}} \\
<h>=P_{1}+2 P_{2}+3 P_{3}+4 P_{4}=25 / 8
\end{array}
$$

LERW and spanning trees

Red line is a path on the spanning tree $=$ LERW.

Point j is called predecessor of point k on the LERW if the LERW from 1 to N passes j first.

Return probability $\mathrm{P}(0,1)$ is the probability that point $(0,0)$ is the predecessor of point $(0,1)$.

BSHP Bogolinbov Laboratory of Theoretical Physics

Predecessors and height probabilities (V.P., 1994)
Open circles are not predecessors of the central site

N is the total number of spanning trees

$$
P(0,1)=\frac{X_{1}}{4 N}+\frac{X_{2}}{2 N}+\frac{3 X_{3}}{4 N}
$$

MSHP Bogolinbox Laboratory of Theoretical Physics

$P(0,1)=\frac{X_{1}}{4 N}+\frac{X_{2}}{2 N}+\frac{3 X_{3}}{4 N} ; \quad X_{1}, X_{2}, X_{3}$ are irrational numbers
For instance, from the sandpile theory $\frac{X_{1}}{N}=\frac{3}{2}-\frac{9}{2 \pi}-\frac{12}{\pi^{2}}+\frac{48}{\pi^{3}}+\frac{3 I_{1}}{4}$
where

$$
\begin{aligned}
& I_{1}=\frac{1}{16 \pi^{4}} \iiint \int_{0}^{2 \pi} \frac{i \sin \left(\beta_{1}\right) \operatorname{det}\left(M_{1}\right)}{D\left(\alpha_{1}, \beta_{1}\right) D\left(\alpha_{2}, \beta_{2}\right) D\left(\alpha_{1}+\alpha_{2}, \beta_{1}+\beta_{2}\right)} d \alpha_{1} d \alpha_{2} d \beta_{1} d \beta_{2} \\
& \text { with } \quad D(\alpha, \beta)=2-\cos (\alpha)-\cos (\beta)
\end{aligned}
$$

$$
M_{1}=\left(\begin{array}{cccc}
1 & 1 & e^{i \alpha_{2}} & 1 \tag{V.P.,1994}\\
3 & e^{i\left(\beta_{1}+\beta_{2}\right)} & e^{i\left(\alpha_{2}-\beta_{2}\right)} & e^{-i \beta_{1}} \\
4 / \pi-1 & e^{i\left(\alpha_{1}+\alpha_{2}\right)} & 1 & e^{-i \alpha_{1}} \\
4 / \pi-1 & e^{-i\left(\alpha_{1}+\alpha_{2}\right)} & e^{2 i \alpha_{2}} & e^{i \alpha_{1}}
\end{array}\right)
$$

Why is $\mathrm{P}(0,1)$ rational?

The idea of proof

1. Temperley's correspondence between the dimer model and spanning trees
2. Monomer impurities as sinks of lattice paths on trees
3. Assembling the LERW from two lattice paths.

Then the problem is reduced to evaluation of the monomer-monomer correlation function.

Dimers and spanning trees

Black circles: odd-odd sublattice; white: even-even sublattice
r - the root of the spanning tree on the odd-odd sublattice

Bogolinbov Laboratory of Theoretical Physics

Dimers and two monomers ($\mathrm{M}_{-} 1$)

(b) red path from $\mathrm{i}_{-} 1$ to j ; green path from $\mathrm{i}_{-} 2$ to the root.

ByHP Bogolinbov Laboratory of Theoretical Physics

Dimers and two monomers (M_2)

(b) red path from i_2 to j ; green path from i_1 to the root.

Dimers and two monomers (M_3)

(a)

(b)

(c)
(b) both paths from i_1 and from i_2 go to the root.
(c) given the spanning tree on the odd-odd sublattice, the single cycle appears on the even-even sublattice with two possible orientations.

All loops contributing to return probability

$1 / 4$ corresponds to the elementary step

Loops contributing to M_1, M_2, M_3

B
C

Mogi Bogolinbov Laboratory of Theoretical Physics

Monomer-monomer, monomer-dimer, dimer-dimer correlations (Fisher and Stephenson, 1963).

$$
P_{m m}=M_{1}+M_{2}+M_{3}=\frac{1}{4 \pi}+A+4 B+3 C=\frac{1}{2 \pi}
$$

$$
P_{m d m}=M_{2}+\frac{1}{2} M_{3}=A+2 B+C=\frac{1}{8}-\frac{1}{4 \pi}
$$

Solutions for A, B, C

$$
\begin{gathered}
\mathrm{A} \equiv \because=\because \bar{\because}=\because \equiv \mathrm{B} \\
A=B=\frac{3}{32}-\frac{1}{4 \pi} \\
C=\frac{1}{2 \pi}-\frac{5}{32} \\
P_{\text {ret }}=\frac{1}{4}+2(A+B+C)
\end{gathered}
$$

Results (Poghosyan, V.P., Ruelle, 2011)

$$
\begin{aligned}
& P_{\text {ret }}=\frac{5}{16} \\
& \langle h\rangle=\frac{25}{8} \\
& \frac{N_{\text {unicycles }}}{N_{S T}}=\frac{1}{8} \\
& \left\langle L_{\text {cycle }}\right\rangle=8
\end{aligned}
$$

Further development

- $\frac{1}{8}+\frac{1}{4 \pi}+\frac{1}{4 \pi^{2}}-\frac{3}{2 \pi^{3}}+\frac{1}{2 \pi^{4}}$
- $\frac{5}{16} \quad \bullet \frac{1}{4}-\frac{1}{4 \pi}+\frac{1}{2 \pi^{2}}$
- $1 \quad \frac{5}{16} \quad \bullet \frac{1}{8}+\frac{1}{4 \pi}+\frac{1}{4 \pi^{2}}-\frac{3}{2 \pi^{3}}+\frac{1}{2 \pi^{4}}$

Kenyon, Wilson, 2011

Open problems

Coulomb gas prediction (Poghosyan, V.P., 2010)

$$
P(r) \simeq \frac{1}{r^{3 / 4}}
$$

Logarithmic conformal field theory prediction (Jeng, Piroux, Ruelle, 2006)

$$
P_{22}-P_{2}^{2} \simeq-\frac{P_{1}^{2}}{2 r^{4}} \ln ^{2} r
$$

