Introduction to the theory of multiplicative chaos

R. Rhodes, joint works with V.Vargas

University Paris-Dauphine

Moscow, September 2011

R.Rhodes

Plan de l'exposé

Motivations

Gaussian multiplicative chaos

KPZ formula

1 Motivations

3 KPZ formula

R.Rhodes

Plan of the talk

Motivations

Gaussian multiplicative chaos

KPZ formula

1 Motivations

2 Gaussian multiplicative chaos

3 KPZ formula

R.Rhodes

Motivations

Gaussian multiplicative chaos

KPZ formula

Eddies of a river current

Atmospheric turbulence

Smoulder and steam of a volcano

Wake turbulence

R.Rhodes

Motivations

Gaussian multiplicative chaos

KPZ formula

The motion of the fluid is ruled by the Navier-Stokes equation:

$$\frac{\partial}{\partial t}u + (u \cdot \nabla)u = -\nabla p + \nu \triangle u + f$$
 and $\nabla \cdot u = 0$.

The local dissipation of energy in the set *A* is defined by:

$$\epsilon(A) = \frac{\nu}{2} \int_A \sum_{i,j} (\partial_i u_j + \partial_j u_i)^2 \, dx.$$

R.Rhodes

Motivations

Gaussian multiplicative chaos

KPZ formula

Fully developped turbulence: Kolmogorov 1941

When the velocity of the fluid is "large", the energy dissipation

- is statistically homogeneous and isotrop,
- has linear power-law spectrum (no fluctuations)

 $\mathbb{E}\big[\epsilon(B(0,r))^q\big] \sim C r^{\alpha q}.$

Mathematical legacy of the K41 theory

Kolmogorov, Mandelbrot, Van Ness introduced the Fractional Brownian Motion:

• it is self similar or scale invariant:

 $\forall \lambda > 0, \quad B(\lambda x) \stackrel{law}{=} \lambda^{\alpha} B(x)$

• linear power law spectrum

 $\forall \lambda > 0, \quad \mathbb{E} \left[B(\lambda x)^q \right] \sim C \, \lambda^{\alpha q}.$

R.Rhodes

Motivations

Gaussian multiplicative chaos

KPZ formula

Fully developped turbulence: Kolmogorov 1941

When the velocity of the fluid is "large", the energy dissipation

- is statistically homogeneous and isotrop,
- has linear power-law spectrum (no fluctuations)

 $\mathbb{E}\big[\epsilon(B(0,r))^q\big] \sim C r^{\alpha q}.$

Mathematical legacy of the K41 theory

Kolmogorov, Mandelbrot, Van Ness introduced the Fractional Brownian Motion:

• it is self similar or scale invariant:

 $\forall \lambda > 0, \quad B(\lambda x) \stackrel{law}{=} \lambda^{\alpha} B(x)$

• linear power law spectrum

 $\forall \lambda > 0, \quad \mathbb{E}[B(\lambda x)^q] \sim C \,\lambda^{\alpha q}.$

R.Rhodes

Motivations

Gaussian multiplicative chaos

KPZ formula

Figure: Probability density function of longitudinal velocity increments $\delta_l u(x) = \langle u(x + le) - u(x), e \rangle$ at different scales l (e is any unit vector) • KOG2

R.Rhodes

Motivations

Gaussian multiplicative chaos

KPZ formula

Fully developped turbulence: Kolmogorov-Obukhov 1962

When the velocity of the fluid is "large", the energy dissipation

- is statistically homogeneous and isotrop,
- has non linear power-law spectrum (multifractality)

 $\mathbb{E}\big[\epsilon(B(0,r))^q\big] \sim Cr^{\xi(q)} \quad \text{as } r \to 0.$

Motivations

Gaussian multiplicative chaos

KPZ formula

Comparison fractional/multifractal Brownian motion

R.Rhodes

Motivations

Gaussian multiplicative chaos

KPZ formula

SP500 Returns: 2001-2009

Returns with Multifractal BM

Returns with Black-Scholes

2000

2500

1000

Returns with Multifractal BM

Intermittency in finance

R.Rhodes

Motivations

Gaussian multiplicative chaos

KPZ formula

A few names: Frisch, Kahane, Kolmogorov, Mandelbrot,... Main features:

- intermittency,
- long-range dependence,
- fat tail distribution,

pdf of velocity increments

Multifractality

Important subclass

A process is said stochastically scale invariant if:

 $X(\lambda x) \stackrel{law}{=} \lambda^{\alpha} e^{\Omega_{\lambda}} X(x) \quad \forall \ \lambda \leq 1 \text{ and } x \in B(0,T).$

where Ω_{λ} is an infinitely divisible random variable independent of the process *X*.

R.Rhodes

Motivations

Gaussian multiplicative chaos

KPZ formula

A few names: Frisch, Kahane, Kolmogorov, Mandelbrot,... Main features:

Multifractality

- intermittency,
- long-range dependence,
- fat tail distribution,

Important subclass

A process is said stochastically scale invariant if:

 $X(\lambda x) \stackrel{law}{=} \lambda^{\alpha} e^{\Omega_{\lambda}} X(x) \quad \forall \ \lambda \leq 1 \text{ and } x \in B(0,T).$

▶ pdf of velocity increments

where Ω_{λ} is an infinitely divisible random variable independent of the process *X*.

R.Rhodes

Gaussian multiplicative chaos

2 Gaussian multiplicative chaos

R.Rhodes

Motivations

Gaussian multiplicative chaos

KPZ formula

Objective

Find a stationary random measure M on \mathbb{R}^d that possesses a nonlinear power law spectrum.

• We look for *M* in the form

$$M(A) = \int_A e^{X(x) - \frac{1}{2}\mathbb{E}[X(x)^2]} dx$$

where X is a centered stationary Gaussian process.

• If the covariance kernel K is continuous at 0 then

 $\mathbb{E}[M(B_r)^q] \simeq |B_r|^q \mathbb{E}[(e^{X(0) - \frac{1}{2}\mathbb{E}[X(0)^2]})^q]$ $= C r^{dq}.$

 \Rightarrow linear power law spectrum.

The kernel K has to be divergent at 0.
 ⇒ Give sense to the exponential of a random distribution

R.Rhodes

Motivations

Gaussian multiplicative chaos

KPZ formula

Objective

Find a stationary random measure M on \mathbb{R}^d that possesses a nonlinear power law spectrum.

• We look for *M* in the form

$$M(A) = \int_A e^{X(x) - \frac{1}{2}\mathbb{E}[X(x)^2]} dx$$

where X is a centered stationary Gaussian process.

• If the covariance kernel K is continuous at 0 then

 $\mathbb{E}[M(B_r)^q] \simeq |B_r|^q \mathbb{E}[(e^{X(0) - \frac{1}{2}\mathbb{E}[X(0)^2]})^q]$ $= C r^{dq}.$

 \Rightarrow linear power law spectrum.

The kernel K has to be divergent at 0.
 ⇒ Give sense to the exponential of a random distribution

R.Rhodes

Motivations

Gaussian multiplicative chaos

KPZ formula

Objective

Find a stationary random measure M on \mathbb{R}^d that possesses a nonlinear power law spectrum.

• We look for *M* in the form

$$M(A) = \int_A e^{X(x) - \frac{1}{2}\mathbb{E}[X(x)^2]} dx$$

where X is a centered stationary Gaussian process.

• If the covariance kernel *K* is continuous at 0 then

 $\mathbb{E}[M(B_r)^q] \simeq |B_r|^q \mathbb{E}[(e^{X(0) - \frac{1}{2}\mathbb{E}[X(0)^2]})^q]$ = $C r^{dq}$.

\Rightarrow linear power law spectrum.

The kernel K has to be divergent at 0.
 ⇒ Give sense to the exponential of a random distribution!

R.Rhodes

Motivations

Gaussian multiplicative chaos

KPZ formula

Objective

Find a stationary random measure M on \mathbb{R}^d that possesses a nonlinear power law spectrum.

• We look for *M* in the form

$$M(A) = \int_A e^{X(x) - \frac{1}{2}\mathbb{E}[X(x)^2]} dx$$

where X is a centered stationary Gaussian process.

• If the covariance kernel *K* is continuous at 0 then

 $\mathbb{E}[M(B_r)^q] \simeq |B_r|^q \mathbb{E}[(e^{X(0) - \frac{1}{2}\mathbb{E}[X(0)^2]})^q]$ = $C r^{dq}$.

 \Rightarrow linear power law spectrum.

- The kernel K has to be divergent at 0. \Rightarrow Give sense to the exponential of a render
 - \Rightarrow Give sense to the exponential of a random distribution!

R.Rhodes

Motivations

Gaussian multiplicative chaos

KPZ formula

Assume *K* is of σ -positive type (a sum of continuous covariance kernels)

$$K(x, y) = \mathbb{E}[X(x)X(y)] = \sum_{n} p_n(x, y)$$

Let $(X_n)_n$ be a sequence of independent centered Gaussian processes with covariance kernel

 $\mathbb{E}[X_n(x)X_n(y)] = p_n(x,y).$

2 Define the truncated measure

$$M_n(dx) = \int_{\cdot} \exp\left(\sum_{k=1}^n X_k(x) - \frac{1}{2}\sum_{k=1}^n \mathbb{E}[X_k^2(x)]\right) dx$$

So For each set A ⊂ R^d, the sequence (M_n(A))_n is a positive martingale. Thus it converges towards a limit M(A), called Gaussian multiplicative chaos associated to the kernel K.

R.Rhodes

Motivations

Gaussian multiplicative chaos

KPZ formula

Assume *K* is of σ -positive type

$$K(x, y) = \mathbb{E}[X(x)X(y)] = \sum_{n} p_n(x, y)$$

• Let $(X_n)_n$ be a sequence of independent centered Gaussian processes with covariance kernel

 $\mathbb{E}[X_n(x)X_n(y)] = p_n(x,y).$

2 Define the truncated measure

$$M_n(dx) = \int_{\cdot} \exp\left(\sum_{k=1}^n X_k(x) - \frac{1}{2}\sum_{k=1}^n \mathbb{E}[X_k^2(x)]\right) dx$$

So For each set A ⊂ ℝ^d, the sequence (M_n(A))_n is a positive martingale. Thus it converges towards a limit M(A), called Gaussian multiplicative chaos associated to the kernel K.

R.Rhodes

Motivations

Gaussian multiplicative chaos

KPZ formula

Assume *K* is of σ -positive type

$$K(x, y) = \mathbb{E}[X(x)X(y)] = \sum_{n} p_n(x, y)$$

• Let $(X_n)_n$ be a sequence of independent centered Gaussian processes with covariance kernel

 $\mathbb{E}[X_n(x)X_n(y)] = p_n(x,y).$

② Define the truncated measure

$$M_n(dx) = \int_{\cdot} \exp\left(\sum_{k=1}^n X_k(x) - \frac{1}{2}\sum_{k=1}^n \mathbb{E}[X_k^2(x)]\right) dx$$

So For each set A ⊂ ℝ^d, the sequence (M_n(A))_n is a positive martingale. Thus it converges towards a limit M(A), called Gaussian multiplicative chaos associated to the kernel K.

R.Rhodes

Motivations

Gaussian multiplicative chaos

KPZ formula

Assume *K* is of σ -positive type

$$K(x, y) = \mathbb{E}[X(x)X(y)] = \sum_{n} p_n(x, y)$$

• Let $(X_n)_n$ be a sequence of independent centered Gaussian processes with covariance kernel

 $\mathbb{E}[X_n(x)X_n(y)] = p_n(x,y).$

② Define the truncated measure

$$M_n(dx) = \int_{\cdot} \exp\left(\sum_{k=1}^n X_k(x) - \frac{1}{2}\sum_{k=1}^n \mathbb{E}[X_k^2(x)]\right) dx$$

So For each set A ⊂ ℝ^d, the sequence (M_n(A))_n is a positive martingale. Thus it converges towards a limit M(A), called Gaussian multiplicative chaos associated to the kernel K.

R.Rhodes

Motivations

Gaussian multiplicative chaos

KPZ formula

Assume that the covariance kernel *K* is given by

$$K(x,y) = \mathbb{E}[X(x)X(y)] = \gamma^2 \ln_+ \frac{T}{|x-y|} + g(x,y)$$

Case of interest

where g is bounded and continuous.

Kahane (1985)

The Gaussian multiplicative chaos M associated to K is different from 0 if and only if

 $\gamma^2 < 2d.$

Kahane (1985)

For $\gamma^2 < 2d$, the multiplicative chaos *M* "lives" almost surely on a set with Hausdorff dimension $d - \frac{\gamma^2}{2}$.

R.Rhodes

Motivations

Gaussian multiplicative chaos

KPZ formula

2D-density profile: weak/strong intermittence

R.Rhodes

Motivations

Gaussian multiplicative chaos

KPZ formula

Example 1: Stoch. Scale Invariance

In dimension d = 1, 2 the kernel below is of σ -positive type

$$x \in \mathbb{R}^d \mapsto K(x) = \gamma^2 \ln_+ \left(\frac{T}{|x|}\right)$$

Theorem

The associated multiplicative chaos is stochastically scale invariant: $\forall \lambda < 1$

 $\left(M(\lambda A)\right)_{A \subset B(0,T)} \stackrel{law}{=} \lambda^d e^{\Omega_\lambda - \frac{1}{2}\mathbb{E}[\Omega_\lambda^2]} \left(M(A)\right)_{A \subset B(0,T)}$

where Ω_{λ} is a centered Gaussian variable with variance $\gamma^2 \ln \frac{1}{\lambda}$ independent of $(M(A))_{A \subset B(0,T)}$.

Rhodes, Vargas 2009

There exist stochastically scale invariant multiplicative chaos in dimension $d \ge 3$.

R.Rhodes

Motivations

Gaussian multiplicative chaos

KPZ formula

Example 1: Stoch. Scale Invariance

In dimension d = 1, 2 the kernel below is of σ -positive type

$$x \in \mathbb{R}^d \mapsto K(x) = \gamma^2 \ln_+ \left(\frac{T}{|x|}\right)$$

For $x \in B(0,T)$ and $\lambda < 1$,

$$K(\lambda x) = K(x) + \gamma^2 \ln \frac{1}{\lambda}.$$

Hence

$$X(\lambda x) \stackrel{law}{=} X(x) + \Omega_{\lambda}.$$

We deduce for $A \subset B(0,T)$

$$M(\lambda A) = \int_{\lambda A} e^{X(x) - \frac{1}{2}\mathbb{E}[X(x)^2]} dx$$

= $\lambda^d \int_A e^{X(\lambda y) - \frac{1}{2}\mathbb{E}[X(\lambda y)^2]} dy$
 $\stackrel{law}{=} \lambda^d e^{\Omega_\lambda - \frac{1}{2}\mathbb{E}[\Omega_\lambda^2]} \int_A e^{X(y) - \frac{1}{2}\mathbb{E}[X(y)^2]} dy$

R.Rhodes

Motivations

Gaussian multiplicative chaos

KPZ formula

Example 1: Stoch. Scale Invariance

In dimension d = 1, 2 the kernel below is of σ -positive type

$$x \in \mathbb{R}^d \mapsto K(x) = \gamma^2 \ln_+ \left(\frac{T}{|x|}\right)$$

For $x \in B(0, T)$ and $\lambda < 1$,

$$K(\lambda x) = K(x) + \gamma^2 \ln \frac{1}{\lambda}.$$

Hence

$$X(\lambda x) \stackrel{law}{=} X(x) + \Omega_{\lambda}.$$

We deduce for $A \subset B(0,T)$

$$M(\lambda A) = \int_{\lambda A} e^{X(x) - \frac{1}{2}\mathbb{E}[X(x)^2]} dx$$

= $\lambda^d \int_A e^{X(\lambda y) - \frac{1}{2}\mathbb{E}[X(\lambda y)^2]} dy$
 $\stackrel{law}{=} \lambda^d e^{\Omega_\lambda - \frac{1}{2}\mathbb{E}[\Omega_\lambda^2]} \int_A e^{X(y) - \frac{1}{2}\mathbb{E}[X(y)^2]} dy$

R.Rhodes

Motivations

Gaussian multiplicative chaos

KPZ formula

Example 1: Stoch. Scale Invariance

In dimension d = 1, 2 the kernel below is of σ -positive type

$$x \in \mathbb{R}^d \mapsto K(x) = \gamma^2 \ln_+ \left(\frac{T}{|x|}\right)$$

Theorem

The associated multiplicative chaos is stochastically scale invariant: $\forall \lambda < 1$

$$(M(\lambda A))_{A \subset B(0,T)} \stackrel{law}{=} \lambda^d e^{\Omega_\lambda - \frac{1}{2} \mathbb{E}[\Omega_\lambda^2]} (M(A))_{A \subset B(0,T)}$$

where Ω_{λ} is a centered Gaussian variable with variance $\gamma^2 \ln \frac{1}{\lambda}$ independent of $(M(A))_{A \subset B(0,T)}$.

Rhodes, Vargas 2009

There exist stochastically scale invariant multiplicative chaos in dimension $d \ge 3$.

R.Rhodes

Example 2: Turbulence

Castaing-Gagne-Hopfinger's equation 1990

The local energy dissipation M satisfies the cascading equation:

$$\forall \epsilon \in]0,1], \quad M(dx) \stackrel{law}{=} e^{X^{\epsilon}(x)} \epsilon M(\frac{dx}{\epsilon})$$

where X^{ϵ} is a Gaussian process independent of *M*.

Gaussian multiplicative

chaos

KPZ formula

R.Rhodes

Motivations

Gaussian multiplicative chaos

KPZ formula

Example 2: Turbulence

Castaing-Gagne-Hopfinger's equation 1990

The local energy dissipation M satisfies the cascading equation:

$$\forall \epsilon \in]0,1], \quad M(dx) \stackrel{law}{=} e^{X^{\epsilon}(x)} \epsilon M(\frac{dx}{\epsilon})$$

where X^{ϵ} is a Gaussian process independent of *M*.

Theorem: Allez, Rhodes, Vargas (2011)

All the solutions of the above equation are Gaussian multiplicative chaos with kernel of the type:

$$K(x) = \int_{1}^{+\infty} \frac{k(ux)}{u} \, du$$

where *k* is a continuous covariance kernel.

R.Rhodes

Motivations

Gaussian multiplicative chaos

KPZ formula

Example 2: Turbulence

Castaing-Gagne-Hopfinger's equation 1990

The local energy dissipation M satisfies the cascading equation:

$$\forall \epsilon \in]0,1], \quad M(dx) \stackrel{law}{=} e^{X^{\epsilon}(x)} \epsilon M(\frac{dx}{\epsilon})$$

where X^{ϵ} is a Gaussian process independent of *M*.

Theorem: Allez, Rhodes, Vargas (2011)

All the solutions of the above equation are Gaussian multiplicative chaos with kernel of the type:

$$K(x) = \int_{1}^{+\infty} \frac{k(ux)}{u} \, du = k(0) \ln_{+} \frac{1}{|x|} + g(x)$$

where k is a continuous covariance kernel.

R.Rhodes

Motivations

Gaussian multiplicative chaos

KPZ formula

Consider the measure

$$M(A) = \int_A e^{X(x) - \frac{1}{2}\mathbb{E}[X(x)^2]} dx$$

where *X* is a Gaussian Free Field in a domain $D \subset \mathbb{R}^2$, that is a Gaussian distribution with covariance kernel

$$K(x,y) = \gamma^2 G(x,y)$$

G= Green function of the Laplacian \triangle on D,

that is

$$\triangle G(x,\cdot) = -2\pi\delta_x.$$

R.Rhodes

Motivations

Gaussian multiplicative chaos

KPZ formula

The function G is of σ positive type:

$$G(x,y) = 2\pi \int_0^\infty p_D(t,x,y) \, dt = \sum_{n \in \mathbb{Z}} p_n(x,y)$$

with $p_n(x, y) = 2\pi \int_{2^n}^{2^{n+1}} p_D(t, x, y) dt$, and p_D are the transition densities of the symmetric semigroup associated to \triangle with 0 Dirichlet boundary condition.

Theorem

For some continuous bounded function G:

$$K(x,y) = \gamma^2 \ln \frac{1}{|x-y|} + \overline{G}(x,y).$$

Hence, for $\gamma^2 < 4$, the Quantum measure is not trivial.

R.Rhodes

Motivations

Gaussian multiplicative chaos

KPZ formula

The function G is of σ positive type:

$$G(x,y) = 2\pi \int_0^\infty p_D(t,x,y) \, dt = \sum_{n \in \mathbb{Z}} p_n(x,y)$$

with $p_n(x, y) = 2\pi \int_{2^n}^{2^{n+1}} p_D(t, x, y) dt$, and p_D are the transition densities of the symmetric semigroup associated to \triangle with 0 Dirichlet boundary condition.

Theorem

For some continuous bounded function \bar{G} :

$$K(x,y) = \gamma^2 \ln \frac{1}{|x-y|} + \overline{G}(x,y).$$

Hence, for $\gamma^2 < 4$, the Quantum measure is not trivial.

R.Rhodes

Plan of the talk

Motivations

Gaussian multiplicative chaos

KPZ formula

Motivations

2 Gaussian multiplicative chaos

3 KPZ formula

R.Rhodes

Motivations

Gaussian multiplicative chaos

KPZ formula

How to measure dimensions of sets?

Given a Radon measure μ on \mathbb{R}^d , define the s-dimensional μ -Hausdorff measure:

 $H^s_{\mu}(A) = \lim_{\delta \to 0} \inf \big\{ \sum_k \mu(B_k)^{s/d}; A \subset \bigcup_k B_k, \operatorname{diam}(B_k) \le \delta \big\}.$

 μ Hausdorff dimension

It is defined as the value

 $\dim_{\mu}(A) = \inf\{s \ge 0; \ H^{s}_{\mu}(A) = 0\}.$

R.Rhodes

Motivations

Gaussian multiplicative chaos

KPZ formula

How to measure dimensions of sets?

Given a Radon measure μ on \mathbb{R}^d , define the s-dimensional μ -Hausdorff measure:

 $H^s_{\mu}(A) = \lim_{\delta \to 0} \inf \big\{ \sum_k \mu(B_k)^{s/d}; A \subset \bigcup_k B_k, \operatorname{diam}(B_k) \le \delta \big\}.$

μ Hausdorff dimension

It is defined as the value

 $\dim_{\mu}(A) = \inf\{s \ge 0; \ H^{s}_{\mu}(A) = 0\}.$

R.Rhodes

Motivations

Gaussian multiplicative chaos

KPZ formula

Consider a multiplicative chaos

$$M(\cdot) = \int_{\cdot} e^{X(x) - \frac{1}{2}\mathbb{E}[X^2(x)]} dx$$

associated to the kernel ($\gamma^2 < 2d$)

$$K(x,y) = \gamma^2 \ln_+ \left(\frac{T}{|x-y|}\right) + g(x,y)$$

Problem

For a given compact set $A \subset \mathbb{R}^d$, find a relation between

 $\dim_{Leb}(A)$ and $\dim_M(A)$.

R.Rhodes

Motivations

Gaussian multiplicative chaos

KPZ formula

KPZ formula

Almost surely, we have the relation

$$\dim_{Leb}(A) = \xi\left(\frac{\dim_M(A)}{d}\right)$$

where

$$\xi(q) = (d + \frac{\gamma^2}{2})q - \frac{\gamma^2}{2}q^2$$

is the power-law spectrum of the chaos measure M, ie: $\mathbb{E}[M(B(0,r))^q] \simeq Cr^{\xi(q)}$ as $r \to 0$.

- **I.Benjamini, O.Schramm:** KPZ in one dimensional geometry of multiplicative cascades (2008)
- **B. Duplantier, S. Sheffield:** Liouville Quantum Gravity and KPZ (2008)
- - **R.Rhodes, V.Vargas:** KPZ formula for log-infinitely divisible multifractal random measures (2008)

R.Rhodes

Motivations

Gaussian multiplicative chaos

KPZ formula

Remark 1: Quantum measure

When d = 2 and M is the Quantum measure (associated to the GFF) we recover the original KPZ relation

$$\dim_{Leb}(A) = \left(1 + \frac{\gamma^2}{4}\right) \dim_M(A) - \frac{\gamma^2}{8} \dim_M(A)^2.$$

R.Rhodes

Motivations

Gaussian multiplicative chaos

KPZ formula

Remark 2: Rhodes, Vargas (2008)

More generally, this remains true for any Multifractal Random Measure *M* regardless of the dimension:

$$\dim_{Leb}(A) = \xi\left(\frac{\dim_M(A)}{d}\right)$$

where

$$\xi(q) = dq - \psi(q)$$

is the power law spectrum of M and ψ can be the Laplace exponent of any infinitely divisible random variable.

R.Rhodes

Motivations

Gaussian multiplicative chaos

KPZ formula

Remind of the s-dimensional Hausdorff measure

$$H^s_M(A) = \lim_{\delta \to 0} \inf \big\{ \sum_n M(B_{x_n,r_n})^{\frac{s}{d}}; \quad A \subset \bigcup_n B_{x_n,r_n}, \ r_n \leq \delta \big\}.$$

Heuristic

Take the expectation:

 $\mathbb{E}[H^s_M(A)] = \lim_{\delta \to 0} \inf \left\{ \sum_n \mathbb{E}[M(B_{x_n, r_n})^{\frac{\delta}{d}}]; \quad A \subset \bigcup_n B_{x_n, r_n}, \ r_n \le \delta \right\}$

R.Rhodes

Motivations

Gaussian multiplicative chaos

KPZ formula

Remind of the s-dimensional Hausdorff measure

$$H^s_M(A) = \lim_{\delta \to 0} \inf \big\{ \sum_n M(B_{x_n,r_n})^{\frac{\delta}{d}}; \quad A \subset \bigcup_n B_{x_n,r_n}, \ r_n \leq \delta \big\}.$$

Heuristic

Take the expectation:

$$\mathbb{E}[H^s_M(A)] = \lim_{\delta \to 0} \inf \left\{ \sum_n \mathbb{E}[M(B_{x_n, r_n})^{\frac{s}{d}}]; \quad A \subset \bigcup_n B_{x_n, r_n}, \ r_n \leq \delta \right\}$$

R.Rhodes

Motivations

Gaussian multiplicative chaos

KPZ formula

Remind of the s-dimensional Hausdorff measure

$$H^s_M(A) = \lim_{\delta \to 0} \inf \big\{ \sum_n M(B_{x_n,r_n})^{\frac{s}{d}}; \quad A \subset \bigcup_n B_{x_n,r_n}, \ r_n \leq \delta \big\}.$$

Heuristic

Take the expectation:

$$\mathbb{E}[H^s_M(A)] = \lim_{\delta \to 0} \inf \left\{ \sum_n Cr_n^{\xi(\frac{s}{d})}; \quad A \subset \bigcup_n B_{x_n, r_n}, \ r_n \leq \delta \right\}$$

R.Rhodes

Motivations

Gaussian multiplicative chaos

KPZ formula

Remind of the s-dimensional Hausdorff measure

$$H^s_M(A) = \lim_{\delta \to 0} \inf \big\{ \sum_n M(B_{x_n,r_n})^{\frac{s}{d}}; \quad A \subset \bigcup_n B_{x_n,r_n}, \ r_n \leq \delta \big\}.$$

Take the expectation:

$$\mathbb{E}[H_M^s(A)] = \lim_{\delta \to 0} \inf \left\{ \sum_n Cr_n^{\xi(\frac{s}{d})}; \quad A \subset \bigcup_n B_{x_n, r_n}, \ r_n \le \delta \right\}$$
$$= C H^{\xi(\frac{s}{d})}(A)$$

Heuristic

R.Rhodes

Motivations

Gaussian multiplicative chaos

KPZ formula

Choose the dimension d = 1 and consider the measure

$$M(\cdot) = \int_{\cdot} e^{X_x - \frac{1}{2}\mathbb{E}[X_x^2]} \, dx$$

associated to the kernel

$$K(x) = \gamma^2 \ln_+ \frac{T}{|x|}.$$

The difficult part is to prove

 $\xi(\dim_M(A)) \ge \dim_{Leb}(A).$

Proof of the KPZ formula

R.Rhodes

Motivations

Gaussian multiplicative chaos

KPZ formula

Basic tool: Frostman's lemma:

Each time you have a q > 0 and a probability measure ν supported by A such that

$$\int \int \frac{1}{|y-x|^{\xi(q)}} \nu(dx)\nu(dy) < +\infty,$$

find a probability measure $\bar{\nu}$ supported by A such that almost surely:

$$\int \int \frac{1}{M([x,y])^q} \bar{\nu}(dx) \bar{\nu}(dy) < +\infty.$$

Choose

$$ar{
u}(\cdot) = \int_{\cdot} e^{qX_x - rac{q^2}{2}\mathbb{E}[X_x^2]} \,
u(dx).$$

R.Rhodes

Motivations

Gaussian multiplicative chaos

KPZ formula

Basic tool: Frostman's lemma:

Each time you have a q > 0 and a probability measure ν supported by A such that

$$\int \int \frac{1}{|y-x|^{\xi(q)}} \nu(dx)\nu(dy) < +\infty,$$

find a probability measure $\bar{\nu}$ supported by A such that almost surely:

$$\int \int \frac{1}{M([x,y])^q} \bar{\nu}(dx) \bar{\nu}(dy) < +\infty.$$

Choose

$$\bar{\nu}(\cdot) = \int_{\cdot} e^{qX_x - \frac{q^2}{2}\mathbb{E}[X_x^2]} \nu(dx).$$

R.Rhodes

Motivations

Gaussian multiplicativ chaos

KPZ formula

$$\mathbb{E}\left[\int\int\frac{1}{M([x,y])^{q}}\bar{\nu}(dx)\bar{\nu}(dy)\right]$$
$$=\int\int\mathbb{E}\left[\frac{e^{qX_{x}+qX_{y}-q^{2}\mathbb{E}[X_{0}^{2}]}}{M([x,y])^{q}}\right]\nu(dx)\nu(dy)$$
$$=\int\int\mathbb{E}\left[\frac{e^{qX_{0}+qX_{y-x}-q^{2}\mathbb{E}[X_{0}^{2}]}}{M([0,y-x])^{q}}\right]\nu(dx)\nu(dy)$$

R.Rhodes

Motivations

Gaussian multiplicative chaos

KPZ formula

$$\mathbb{E}\left[\int\int\frac{1}{M([x,y])^{q}}\bar{\nu}(dx)\bar{\nu}(dy)\right]$$

= $\int\int\mathbb{E}\left[\frac{e^{qX_{x}+qX_{y}-q^{2}\mathbb{E}[X_{0}^{2}]}}{M([x,y])^{q}}\right]\nu(dx)\nu(dy)$
= $\int\int\mathbb{E}\left[\frac{e^{qX_{0}+qX_{y-x}-q^{2}\mathbb{E}[X_{0}^{2}]}}{M([0,y-x])^{q}}\right]\nu(dx)\nu(dy)$

R.Rhodes

Motivations

Gaussian multiplicativ chaos

KPZ formula

$$\mathbb{E}\left[\int\int\frac{1}{M([x,y])^{q}}\bar{\nu}(dx)\bar{\nu}(dy)\right]$$

= $\int\int\mathbb{E}\left[\frac{e^{qX_{x}+qX_{y}-q^{2}\mathbb{E}[X_{0}^{2}]}}{M([x,y])^{q}}\right]\nu(dx)\nu(dy)$
= $\int\int\mathbb{E}\left[\frac{e^{qX_{0}+qX_{y-x}-q^{2}\mathbb{E}[X_{0}^{2}]}}{M([0,y-x])^{q}}\right]\nu(dx)\nu(dy)$

R.Rhodes

Motivations

Gaussian multiplicative chaos

KPZ formula

$$\mathbb{E}\left[\int\int\frac{1}{M([x,y])^{q}}\bar{\nu}(dx)\bar{\nu}(dy)\right]$$

=
$$\int\int\mathbb{E}\left[\frac{e^{qX_{0}+qX_{y-x}-q^{2}\mathbb{E}[X_{0}^{2}]}}{M([0,y-x])^{q}}\right]\nu(dx)\nu(dy)$$

R.Rhodes

Motivations

Gaussian multiplicativ chaos

KPZ formula

$$\begin{split} \mathbb{E} \bigg[\int \int \frac{1}{M([x,y])^q} \bar{\nu}(dx) \bar{\nu}(dy) \bigg] \\ &= \int \int \mathbb{E} \bigg[\frac{e^{qX_0 + qX_{y-x} - q^2 \mathbb{E}[X_0^2]}}{M([0,y-x])^q} \bigg] \nu(dx) \nu(dy) \\ &= \int \int \mathbb{E} \bigg[\frac{e^{2q\Omega_{|y-x|} - q^2 \mathbb{E}[\Omega_{|y-x|}^2] + qX_0 + qX_1 - q^2 \mathbb{E}[X_0^2]}}{|y - x|^q e^{q\Omega_{|y-x|} - \frac{q}{2} \mathbb{E}[\Omega_{|y-x|}^2]} M([0,1])^q} \bigg] \nu(dx) \nu(dy) \end{split}$$

4

0 0

R.Rhodes

Motivations

Gaussian multiplicativ chaos

KPZ formula

$$\begin{split} \mathbb{E}\Big[\int\int\frac{1}{M([x,y])^{q}}\bar{\nu}(dx)\bar{\nu}(dy)\Big] \\ &= \int\int\mathbb{E}\Big[\frac{e^{qX_{0}+qX_{y-x}-q^{2}\mathbb{E}[X_{0}^{2}]}}{M([0,y-x])^{q}}\Big]\nu(dx)\nu(dy) \\ &= \int\!\!\int\mathbb{E}\Big[\frac{e^{q\Omega_{|y-x|}-(q^{2}-\frac{q}{2})E[\Omega_{|y-x|}^{2}]}}{|y-x|^{q}}\Big]\mathbb{E}\Big[\frac{e^{qX_{0}+\bar{q}X_{1}-q^{2}\mathbb{E}[X_{0}^{2}]}}{M([0,1])^{q}}\Big]\nu(dx)\nu(dy) \end{split}$$

R.Rhodes

Motivations

Gaussian multiplicative chaos

KPZ formula

$$\begin{split} \mathbb{E} \Big[\int \int \frac{1}{M([x,y])^q} \bar{\nu}(dx) \bar{\nu}(dy) \Big] \\ &= \int \int \mathbb{E} \Big[\frac{e^{qX_0 + qX_{y-x} - q^2 \mathbb{E}[X_0^2]}}{M([0,y-x])^q} \Big] \nu(dx) \nu(dy) \\ &= \int \int \frac{1}{|y-x|^{\xi(q)}} \mathbb{E} \Big[\frac{e^{qX_0 + \bar{q}X_1 - q^2 \mathbb{E}[X_0^2]}}{M([0,1])^q} \Big] \nu(dx) \nu(dy) \end{split}$$

R.Rhodes

Motivations

Gaussian multiplicative chaos

KPZ formula

$$\begin{split} \mathbb{E} \Big[\int \int \frac{1}{M([x,y])^q} \bar{\nu}(dx) \bar{\nu}(dy) \Big] \\ &= \int \int \mathbb{E} \Big[\frac{e^{qX_0 + qX_{y-x} - q^2 \mathbb{E}[X_0^2]}}{M([0,y-x])^q} \Big] \nu(dx) \nu(dy) \\ &= \int \int \frac{1}{|y-x|^{\xi(q)}} \mathbb{E} \Big[\frac{e^{qX_0 + \bar{q}X_1 - q^2 \mathbb{E}[X_0^2]}}{M([0,1])^q} \Big] \nu(dx) \nu(dy) \end{split}$$

R.Rhodes

Motivations

Gaussian multiplicativ chaos

KPZ formula

$$\mathbb{E}\left[\int\int\frac{1}{M([x,y])^{q}}\bar{\nu}(dx)\bar{\nu}(dy)\right]$$

= $\int\int\mathbb{E}\left[\frac{e^{qX_{0}+qX_{y-x}-q^{2}\mathbb{E}[X_{0}^{2}]}}{M([0,y-x])^{q}}\right]\nu(dx)\nu(dy)$
= $C\int\int\frac{1}{|y-x|^{\xi(q)}}\nu(dx)\nu(dy)$

R.Rhodes

Motivations

Gaussian multiplicativ chaos

KPZ formula

$$\mathbb{E}\Big[\int\int\frac{1}{M([x,y])^q}\bar{\nu}(dx)\bar{\nu}(dy)\Big]$$

= $\int\int\mathbb{E}\Big[\frac{e^{qX_0+qX_{y-x}-q^2\mathbb{E}[X_0^2]}}{M([0,y-x])^q}\Big]\nu(dx)\nu(dy)$
= $C\int\int\frac{1}{|y-x|^{\xi(q)}}\nu(dx)\nu(dy) < +\infty$

R.Rhodes

Motivations

Gaussian multiplicative chaos

KPZ formula

Thank You