Introduction to the theory of multiplicative chaos

R. Rhodes, joint works with V.Vargas

University Paris-Dauphine

Moscow, September 2011

Multiplicative chaos
 Plan de l'exposé

R.Rhodes

Motivations
Gaussian
multiplicative chaos

KPZ formula
(1) Motivations
(2) Gaussian multiplicative chaos
(3) KPZ formula
R.Rhodes

Motivations
Gaussian multiplicative chaos

KPZ formula

(1) Motivations

(2) Gaussian multiplicative chaos

(3) KPZ formula

Multiplicative chaos
 R.Rhodes

Turbulence

Motivations
Gaussian
multiplicative chaos

Eddies of a river current

Atmospheric turbulence

Smoulder and steam of a volcano

Wake turbulence

Mathematical approach

The motion of the fluid is ruled by the Navier-Stokes equation:

$$
\frac{\partial}{\partial t} u+(u \cdot \nabla) u=-\nabla p+\nu \triangle u+f \quad \text { and } \quad \nabla \cdot u=0
$$

The local dissipation of energy in the set A is defined by:

$$
\epsilon(A)=\frac{\nu}{2} \int_{A} \sum_{i, j}\left(\partial_{i} u_{j}+\partial_{j} u_{i}\right)^{2} d x
$$

Fully developped turbulence: Kolmogorov 1941

```
When the velocity of the fluid is "large", the energy dissipation
- is statistically homogeneous and isotrop,
- has linear power-law spectrum (no fluctuations)
\[
\mathbb{E}\left[\epsilon(B(0, r))^{q}\right] \sim C r^{\alpha q} .
\]
Mathematical legacy of the K41 theory
Kolmogorov, Mandelbrot, Van Ness introduced the Fractional
- it is self similar or scale invariant:
- linear power law spectrum
```

Multiplicative chaos

Fully developped turbulence: Kolmogorov 1941

When the velocity of the fluid is "large", the energy dissipation

- is statistically homogeneous and isotrop,
- has linear power-law spectrum (no fluctuations)

$$
\mathbb{E}\left[\epsilon(B(0, r))^{q}\right] \sim C r^{\alpha q}
$$

Mathematical legacy of the K41 theory
Kolmogorov, Mandelbrot, Van Ness introduced the Fractional Brownian Motion:

- it is self similar or scale invariant:

$$
\forall \lambda>0, \quad B(\lambda x) \stackrel{\text { law }}{=} \lambda^{\alpha} B(x)
$$

- linear power law spectrum

$$
\forall \lambda>0, \quad \mathbb{E}\left[B(\lambda x)^{q}\right] \sim C \lambda^{\alpha q} .
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { Multiplicative } \\
\text { chaos } \\
\text { R.Rhodes }
\end{array} \\
& \begin{array}{l}
\text { Motivations } \\
\text { Gaussian } \\
\text { multiplicative } \\
\text { KPZ formula }
\end{array} \\
& \hline
\end{aligned}
$$

Figure: Probability density function of longitudinal velocity increments $\delta_{l} u(x)=\langle u(x+l e)-u(x), e\rangle$ at different scales $l(e$ is any unit vector)

Multiplicative chaos

Fully developped turbulence: Kolmogorov-Obukhov 1962

When the velocity of the fluid is "large", the energy dissipation

- is statistically homogeneous and isotrop,
- has non linear power-law spectrum (multifractality)

$$
\mathbb{E}\left[\epsilon(B(0, r))^{q}\right] \sim C r^{\xi(q)} \quad \text { as } r \rightarrow 0 .
$$

$\xi(q)$

Comparison fractional/multifractal Brownian motion

Multiplicative
chaos
R.Rhodes

SP500 Returns: 2001-2009

Returns with Multifractal BM

Intermittency in finance

Motivations
Gaussian
multiplicative
chaos

Returns with Black-Scholes

Returns with Multifractal BM

```
Multiplicative chaos
```


Multifractality

Motivations

```
A few names: Frisch, Kahane, Kolmogorov, Mandelbrot,...
Main features:
- intermittency,
- long-range dependence,
- fat tail distribution, - pdf of velocity increments
Important subclass
A process is said stochastically scale invariant if:
\[
X(\lambda x)^{\text {Iatw }}=\lambda^{\alpha} e^{\Omega \lambda} X(x) \quad \forall \lambda \leq 1 \text { and } x \in B(0, T) \text {. }
\]
where \(\Omega_{\lambda}\) is an infinitely divisible random variable independent of the process \(X\).
```


Multifractality

A few names: Frisch, Kahane, Kolmogorov, Mandelbrot,...
Main features:

- intermittency,
- long-range dependence,
- fat tail distribution,

Important subclass

A process is said stochastically scale invariant if:

$$
X(\lambda x) \stackrel{\text { law }}{=} \lambda^{\alpha} e^{\Omega_{\lambda}} X(x) \quad \forall \lambda \leq 1 \text { and } x \in B(0, T)
$$

where Ω_{λ} is an infinitely divisible random variable independent of the process X.

```
Multiplicative chaos
R.Rhodes
Motivations
Gaussian multiplicative chaos
KPZ formula
```


Plan of the talk

(1) Motivations

(2) Gaussian multiplicative chaos

(3) KPZ formula

Multiplicative chaos
R.Rhodes

Motivations
Gaussian multiplicative chaos

KPZ formula

Objective

Find a stationary random measure M on \mathbb{R}^{d} that possesses a nonlinear power law spectrum.

- We look for M in the form $M(A)=\int_{A} e^{X(x)-\frac{1}{2} \mathbb{E}\left[X(x)^{2}\right]} d x$
where X is a centered stationary Gaussian process.
- If the covariance kernel K is continuous at 0 then

\Rightarrow linear power law spectrum.
- The kernel K has to be divergent at 0 . \Rightarrow Give sense to the exponential of a random distribution!

Objective

Find a stationary random measure M on \mathbb{R}^{d} that possesses a nonlinear power law spectrum.

- We look for M in the form

$$
M(A)=\int_{A} e^{X(x)-\frac{1}{2} \mathbb{E}\left[X(x)^{2}\right]} d x
$$

where X is a centered stationary Gaussian process.

- If the covariance kernel K is continuous at 0 then

\Rightarrow linear power law spectrum.
\Rightarrow Give sense to the exponential of a random distribution!

Objective

Find a stationary random measure M on \mathbb{R}^{d} that possesses a nonlinear power law spectrum.

- We look for M in the form

$$
M(A)=\int_{A} e^{X(x)-\frac{1}{2} \mathbb{E}\left[X(x)^{2}\right]} d x
$$

where X is a centered stationary Gaussian process.

- If the covariance kernel K is continuous at 0 then

$$
\begin{aligned}
\mathbb{E}\left[M\left(B_{r}\right)^{q}\right] & \simeq\left|B_{r}\right|^{q} \mathbb{E}\left[\left(e^{X(0)-\frac{1}{2} \mathbb{E}\left[X(0)^{2}\right]}\right)^{q}\right] \\
& =C r^{d q}
\end{aligned}
$$

\Rightarrow linear power law spectrum.

Objective

Find a stationary random measure M on \mathbb{R}^{d} that possesses a nonlinear power law spectrum.

- We look for M in the form

$$
M(A)=\int_{A} e^{X(x)-\frac{1}{2} \mathbb{E}\left[X(x)^{2}\right]} d x
$$

where X is a centered stationary Gaussian process.

- If the covariance kernel K is continuous at 0 then

$$
\begin{aligned}
\mathbb{E}\left[M\left(B_{r}\right)^{q}\right] & \simeq\left|B_{r}\right|^{q} \mathbb{E}\left[\left(e^{X(0)-\frac{1}{2} \mathbb{E}\left[X(0)^{2}\right]}\right)^{q}\right] \\
& =C r^{d q}
\end{aligned}
$$

\Rightarrow linear power law spectrum.

- The kernel K has to be divergent at 0 .
\Rightarrow Give sense to the exponential of a random distribution!

Multiplicative chaos
R.Rhodes

Motivations
Gaussian multiplicative chaos

KPZ formula
Assume K is of σ-positive type (a sum of continuous covariance kernels)

$$
K(x, y)=\mathbb{E}[X(x) X(y)]=\sum_{n} p_{n}(x, y)
$$

(1) Let $\left(X_{n}\right)_{n}$ be a sequence of independent centered Gaussian processes with covariance kernel

$$
\mathbb{E}\left[X_{n}(x) X_{n}(y)\right]=p_{n}(x, y) .
$$

(2) Define the truncated measure

(3) For each set $A \subset \mathbb{R}^{d}$, the sequence $\left(M_{n}(A)\right)_{n}$ is a positive martingale. Thus it converges towards a limit $M(A)$, called Gaussian multiplicative chaos associated to the kernel K.

Multiplicative chaos R.Rhodes

Motivations

Gaussian

 multiplicative chaosAssume K is of σ-positive type

$$
K(x, y)=\mathbb{E}[X(x) X(y)]=\sum_{n} p_{n}(x, y)
$$

(1) Let $\left(X_{n}\right)_{n}$ be a sequence of independent centered Gaussian processes with covariance kernel

$$
\mathbb{E}\left[X_{n}(x) X_{n}(y)\right]=p_{n}(x, y)
$$

(2) Define the truncated measure

(3) For each set $A \subset \mathbb{R}^{d}$, the sequence $\left(M_{n}(A)\right)_{n}$ is a positive martingale. Thus it converges towards a limit $M(A)$, called Gaussian multiplicative chaos associated to the kernel K.

Assume K is of σ-positive type

$$
K(x, y)=\mathbb{E}[X(x) X(y)]=\sum_{n} p_{n}(x, y)
$$

(1) Let $\left(X_{n}\right)_{n}$ be a sequence of independent centered Gaussian processes with covariance kernel

$$
\mathbb{E}\left[X_{n}(x) X_{n}(y)\right]=p_{n}(x, y)
$$

(2) Define the truncated measure

$$
M_{n}(d x)=\int \exp \left(\sum_{k=1}^{n} X_{k}(x)-\frac{1}{2} \sum_{k=1}^{n} \mathbb{E}\left[X_{k}^{2}(x)\right]\right) d x
$$

(3) For each set $A \subset \mathbb{R}^{d}$, the sequence $\left(M_{n}(A)\right)_{n}$ is a positive martingale. Thus it converges towards a limit $M(A)$, called Gaussian multiplicative chaos associated to the kernel K.

Assume K is of σ-positive type

$$
K(x, y)=\mathbb{E}[X(x) X(y)]=\sum_{n} p_{n}(x, y)
$$

(1) Let $\left(X_{n}\right)_{n}$ be a sequence of independent centered Gaussian processes with covariance kernel

$$
\mathbb{E}\left[X_{n}(x) X_{n}(y)\right]=p_{n}(x, y)
$$

(2) Define the truncated measure

$$
M_{n}(d x)=\int \exp \left(\sum_{k=1}^{n} X_{k}(x)-\frac{1}{2} \sum_{k=1}^{n} \mathbb{E}\left[X_{k}^{2}(x)\right]\right) d x
$$

(3) For each set $A \subset \mathbb{R}^{d}$, the sequence $\left(M_{n}(A)\right)_{n}$ is a positive martingale. Thus it converges towards a limit $M(A)$, called Gaussian multiplicative chaos associated to the kernel K.

Case of interest

Assume that the covariance kernel K is given by

$$
K(x, y)=\mathbb{E}[X(x) X(y)]=\gamma^{2} \ln _{+} \frac{T}{|x-y|}+g(x, y)
$$

where g is bounded and continuous.

Kahane (1985)

The Gaussian multiplicative chaos M associated to K is different from 0 if and only if

$$
\gamma^{2}<2 d
$$

Kahane (1985)

For $\gamma^{2}<2 d$, the multiplicative chaos M "lives" almost surely on a set with Hausdorff dimension $d-\frac{\gamma^{2}}{2}$.

Multiplicative chaos
 R.Rhodes

Motivations

Gaussian multiplicative chaos

2D-density profile: weak/strong intermittence


```
Multiplicative chaos
```


Example 1: Stoch. Scale Invariance

Motivations
Gaussian multiplicative chaos

```
In dimension \(d=1,2\) the kernel below is of \(\sigma\)-positive type
\[
x \in \mathbb{R}^{d} \mapsto K(x)=\gamma^{2} \ln _{+}\left(\frac{T}{|x|}\right)
\]
Theorem
The associated multiplicative chaos is stochastically scale invariant: \(\forall \lambda<1\)
where \(\Omega_{\lambda}\) is a centered Gaussian variable with variance \(\gamma^{2} \ln \frac{1}{\lambda}\) independent of \((M(A))_{A \subset B(0, T)}\)
```


Rhodes, Vargas 2009

```
There evist stochastically scale invariant multiplicative chaos in dimension \(d \geq 3\).
```


Example 1: Stoch. Scale Invariance

For $x \in B(0, T)$ and $\lambda<1$,

$$
K(\lambda x)=K(x)+\gamma^{2} \ln \frac{1}{\lambda}
$$

Hence

$$
X(\lambda x) \stackrel{\text { law }}{=} X(x)+\Omega_{\lambda} .
$$

We deduce for $A \subset B(0, T)$

Example 1: Stoch. Scale Invariance

In dimension $d=1,2$ the kernel below is of σ-positive type

$$
x \in \mathbb{R}^{d} \mapsto K(x)=\gamma^{2} \ln _{+}\left(\frac{T}{|x|}\right)
$$

For $x \in B(0, T)$ and $\lambda<1$,

$$
K(\lambda x)=K(x)+\gamma^{2} \ln \frac{1}{\lambda}
$$

Hence

$$
X(\lambda x) \stackrel{\text { law }}{=} X(x)+\Omega_{\lambda} .
$$

We deduce for $A \subset B(0, T)$

$$
\begin{aligned}
M(\lambda A) & =\int_{\lambda A} e^{X(x)-\frac{1}{2} \mathbb{E}\left[X(x)^{2}\right]} d x \\
& =\lambda^{d} \int_{A} e^{X(\lambda y)-\frac{1}{2} \mathbb{E}\left[X(\lambda y)^{2}\right]} d y \\
& \stackrel{\text { law }}{=} \lambda^{d} e^{\Omega_{\lambda}-\frac{1}{2} \mathbb{E}\left[\Omega_{\lambda}^{2}\right]} \int_{A} e^{X(y)-\frac{1}{2} \mathbb{E}\left[X(y)^{2}\right]} d y
\end{aligned}
$$

Multiplicative chaos

Example 1: Stoch. Scale Invariance

In dimension $d=1,2$ the kernel below is of σ-positive type

$$
x \in \mathbb{R}^{d} \mapsto K(x)=\gamma^{2} \ln _{+}\left(\frac{T}{|x|}\right)
$$

Theorem

The associated multiplicative chaos is stochastically scale invariant: $\forall \lambda<1$

$$
(M(\lambda A))_{A \subset B(0, T)} \stackrel{\text { law }}{=} \lambda^{d} e^{\Omega_{\lambda}-\frac{1}{2} \mathbb{E}\left[\Omega_{\lambda}^{2}\right]}(M(A))_{A \subset B(0, T)}
$$

where Ω_{λ} is a centered Gaussian variable with variance $\gamma^{2} \ln \frac{1}{\lambda}$ independent of $(M(A))_{A \subset B(0, T)}$.

Rhodes, Vargas 2009

There exist stochastically scale invariant multiplicative chaos in dimension $d \geq 3$.
Multiplicative
chaos

Example 2: Turbulence

R.Rhodes

Motivations

Gaussian multiplicative chaos

Castaing-Gagne-Hopfinger's equation 1990

The local energy dissipation M satisfies the cascading equation:

$$
\forall \epsilon \in] 0,1], \quad M(d x) \stackrel{\text { law }}{=} e^{X^{\epsilon}(x)} \epsilon M\left(\frac{d x}{\epsilon}\right)
$$

where X^{ϵ} is a Gaussian process independent of M.

Example 2: Turbulence

Castaing-Gagne-Hopfinger's equation 1990

The local energy dissipation M satisfies the cascading equation:

$$
\forall \epsilon \in] 0,1], \quad M(d x) \stackrel{l a w}{=} e^{X^{\epsilon}(x)} \epsilon M\left(\frac{d x}{\epsilon}\right)
$$

where X^{ϵ} is a Gaussian process independent of M.

Theorem: Allez, Rhodes, Vargas (2011)

All the solutions of the above equation are Gaussian multiplicative chaos with kernel of the type:

$$
K(x)=\int_{1}^{+\infty} \frac{k(u x)}{u} d u
$$

where k is a continuous covariance kernel.

Multiplicative chaos

Castaing-Gagne-Hopfinger's equation 1990

The local energy dissipation M satisfies the cascading equation:

$$
\forall \epsilon \in] 0,1], \quad M(d x) \stackrel{\text { law }}{=} e^{X^{\epsilon}(x)} \epsilon M\left(\frac{d x}{\epsilon}\right)
$$

where X^{ϵ} is a Gaussian process independent of M.

Theorem: Allez, Rhodes, Vargas (2011)

All the solutions of the above equation are Gaussian multiplicative chaos with kernel of the type:

$$
K(x)=\int_{1}^{+\infty} \frac{k(u x)}{u} d u=k(0) \ln _{+} \frac{1}{|x|}+g(x)
$$

where k is a continuous covariance kernel.

Example 3: Quantum measure

Motivations
Gaussian multiplicative chaos

Consider the measure

$$
M(A)=\int_{A} e^{X(x)-\frac{1}{2} \mathbb{E}\left[X(x)^{2}\right]} d x
$$

where X is a Gaussian Free Field in a domain $D \subset \mathbb{R}^{2}$, that is a Gaussian distribution with covariance kernel

$$
K(x, y)=\gamma^{2} G(x, y)
$$

$$
\mathrm{G}=\text { Green function of the Laplacian } \triangle \text { on } D,
$$

that is

$$
\triangle G(x, \cdot)=-2 \pi \delta_{x}
$$

Multiplicative chaos

Example 3: Liouville quantum gravity

The function G is of σ positive type:

$$
G(x, y)=2 \pi \int_{0}^{\infty} p_{D}(t, x, y) d t=\sum_{n \in \mathbb{Z}} p_{n}(x, y)
$$

with $p_{n}(x, y)=2 \pi \int_{2^{n}}^{2^{n+1}} p_{D}(t, x, y) d t$, and p_{D} are the transition densities of the symmetric semigroup associated to \triangle with 0 Dirichlet boundary condition.

Theorem
For some continuous bounded function \bar{G} :

Multiplicative chaos

Example 3: Liouville quantum gravity

The function G is of σ positive type:

$$
G(x, y)=2 \pi \int_{0}^{\infty} p_{D}(t, x, y) d t=\sum_{n \in \mathbb{Z}} p_{n}(x, y)
$$

with $p_{n}(x, y)=2 \pi \int_{2^{n}}^{2^{n+1}} p_{D}(t, x, y) d t$, and p_{D} are the transition densities of the symmetric semigroup associated to \triangle with 0 Dirichlet boundary condition.

Theorem

For some continuous bounded function \bar{G} :

$$
K(x, y)=\gamma^{2} \ln \frac{1}{|x-y|}+\bar{G}(x, y)
$$

Hence, for $\gamma^{2}<4$, the Quantum measure is not trivial.

Multiplicative chaos
R.Rhodes

Motivations
Gaussian
multiplicative chaos

KPZ formula

(1) Motivations

(2) Gaussian multiplicative chaos

(3) KPZ formula

How to measure dimensions of sets?

Given a Radon measure μ on \mathbb{R}^{d}, define the s-dimensional μ-Hausdorff measure:

$$
H_{\mu}^{s}(A)=\lim _{\delta \rightarrow 0} \inf \left\{\sum_{k} \mu\left(B_{k}\right)^{s / d} ; A \subset \bigcup_{k} B_{k}, \operatorname{diam}\left(B_{k}\right) \leq \delta\right\} .
$$

Multiplicative chaos

How to measure dimensions of sets?

Given a Radon measure μ on \mathbb{R}^{d}, define the s-dimensional μ-Hausdorff measure:

$$
H_{\mu}^{s}(A)=\lim _{\delta \rightarrow 0} \inf \left\{\sum_{k} \mu\left(B_{k}\right)^{s / d} ; A \subset \bigcup_{k} B_{k}, \operatorname{diam}\left(B_{k}\right) \leq \delta\right\}
$$

μ Hausdorff dimension

It is defined as the value

$$
\operatorname{dim}_{\mu}(A)=\inf \left\{s \geq 0 ; H_{\mu}^{s}(A)=0\right\}
$$

Consider a multiplicative chaos

$$
M(\cdot)=\int e^{X(x)-\frac{1}{2} \mathbb{E}\left[X^{2}(x)\right]} d x
$$

associated to the kernel $\left(\gamma^{2}<2 d\right)$

$$
K(x, y)=\gamma^{2} \ln _{+}\left(\frac{T}{|x-y|}\right)+g(x, y)
$$

Problem

For a given compact set $A \subset \mathbb{R}^{d}$, find a relation between $\operatorname{dim}_{\text {Leb }}(A)$ and $\operatorname{dim}_{M}(A)$.

KPZ formula

Almost surely, we have the relation

$$
\operatorname{dim}_{L e b}(A)=\xi\left(\frac{\operatorname{dim}_{M}(A)}{d}\right)
$$

where

$$
\xi(q)=\left(d+\frac{\gamma^{2}}{2}\right) q-\frac{\gamma^{2}}{2} q^{2}
$$

is the power-law spectrum of the chaos measure M, ie:

$$
\mathbb{E}\left[M(B(0, r))^{q}\right] \simeq C r^{\xi(q)} \quad \text { as } r \rightarrow 0
$$

围 I.Benjamini, O.Schramm: KPZ in one dimensional geometry of multiplicative cascades (2008)
B. Duplantier, S. Sheffield: Liouville Quantum Gravity and KPZ (2008)

- R.Rhodes, V.Vargas: KPZ formula for log-infinitely divisible multifractal random measures (2008)

Remark 1: Quantum measure

When $d=2$ and M is the Quantum measure (associated to the GFF) we recover the original KPZ relation

$$
\operatorname{dim}_{L e b}(A)=\left(1+\frac{\gamma^{2}}{4}\right) \operatorname{dim}_{M}(A)-\frac{\gamma^{2}}{8} \operatorname{dim}_{M}(A)^{2}
$$

Remark 2: Rhodes, Vargas (2008)

More generally, this remains true for any Multifractal Random Measure M regardless of the dimension:

$$
\operatorname{dim}_{L e b}(A)=\xi\left(\frac{\operatorname{dim}_{M}(A)}{d}\right)
$$

where

$$
\xi(q)=d q-\psi(q)
$$

is the power law spectrum of M and ψ can be the Laplace exponent of any infinitely divisible random variable.

Multiplicative chaos
 R.Rhodes

Heuristic

Motivations

Gaussian

 multiplicative chaosKPZ formula

Remind of the s-dimensional Hausdorff measure

$$
H_{M}^{s}(A)=\lim _{\delta \rightarrow 0} \inf \left\{\sum_{n} M\left(B_{x_{n}, r_{n}}\right)^{\frac{s}{d}} ; \quad A \subset \bigcup_{n} B_{x_{n}, r_{n}}, r_{n} \leq \delta\right\} .
$$

Take the expectation:

Heuristic

Remind of the s-dimensional Hausdorff measure

$$
H_{M}^{s}(A)=\lim _{\delta \rightarrow 0} \inf \left\{\sum_{n} M\left(B_{x_{n}, r_{n}}\right)^{\frac{s}{d}} ; \quad A \subset \bigcup_{n} B_{x_{n}, r_{n}}, r_{n} \leq \delta\right\} .
$$

Take the expectation:

$$
\mathbb{E}\left[H_{M}^{s}(A)\right]=\lim _{\delta \rightarrow 0} \inf \left\{\sum_{n} \mathbb{E}\left[M\left(B_{x_{n}, r_{n}}\right)^{\frac{s}{d}}\right] ; \quad A \subset \bigcup_{n} B_{x_{n}, r_{n}}, r_{n} \leq \delta\right\}
$$

Motivations

Remind of the s-dimensional Hausdorff measure

$$
H_{M}^{s}(A)=\lim _{\delta \rightarrow 0} \inf \left\{\sum_{n} M\left(B_{x_{n}, r_{n}}\right)^{\frac{s}{d}} ; \quad A \subset \bigcup_{n} B_{x_{n}, r_{n}}, r_{n} \leq \delta\right\}
$$

Take the expectation:

$$
\mathbb{E}\left[H_{M}^{S}(A)\right]=\lim _{\delta \rightarrow 0} \inf \left\{\sum_{n} C r_{n}^{\xi\left(\frac{s}{d}\right)} ; \quad A \subset \bigcup_{n} B_{x_{n}, r_{n}}, r_{n} \leq \delta\right\}
$$

Remind of the s-dimensional Hausdorff measure

$$
H_{M}^{s}(A)=\lim _{\delta \rightarrow 0} \inf \left\{\sum_{n} M\left(B_{x_{n}, r_{n}}\right)^{\frac{s}{d}} ; \quad A \subset \bigcup_{n} B_{x_{n}, r_{n}}, r_{n} \leq \delta\right\}
$$

Take the expectation:

$$
\begin{aligned}
\mathbb{E}\left[H_{M}^{s}(A)\right] & =\lim _{\delta \rightarrow 0} \inf \left\{\sum_{n} C r_{n}^{\xi\left(\frac{s}{d}\right)} ; \quad A \subset \bigcup_{n} B_{x_{n}, r_{n}}, r_{n} \leq \delta\right\} \\
& =C H^{\xi\left(\frac{s}{d}\right)}(A)
\end{aligned}
$$

Proof of the KPZ formula

Choose the dimension $d=1$ and consider the measure

$$
M(\cdot)=\int e^{X_{x}-\frac{1}{2} \mathbb{E}\left[X_{x}^{2}\right]} d x
$$

associated to the kernel

$$
K(x)=\gamma^{2} \ln _{+} \frac{T}{|x|}
$$

The difficult part is to prove

$$
\xi\left(\operatorname{dim}_{M}(A)\right) \geq \operatorname{dim}_{\text {Leb }}(A)
$$

Multiplicative chaos

Basic tool: Frostman's lemma:
Each time you have a $q>0$ and a probability measure ν supported by A such that

$$
\iint \frac{1}{|y-x|^{\xi(q)}} \nu(d x) \nu(d y)<+\infty
$$

find a probability measure $\bar{\nu}$ supported by A such that almost surely:

$$
\iint \frac{1}{M([x, y])^{q}} \bar{\nu}(d x) \bar{\nu}(d y)<+\infty .
$$

Choose

Multiplicative chaos

Basic tool: Frostman's lemma:
Each time you have a $q>0$ and a probability measure ν supported by A such that

$$
\iint \frac{1}{|y-x|^{\xi(q)}} \nu(d x) \nu(d y)<+\infty
$$

find a probability measure $\bar{\nu}$ supported by A such that almost surely:

$$
\iint \frac{1}{M([x, y])^{q}} \bar{\nu}(d x) \bar{\nu}(d y)<+\infty
$$

Choose

$$
\bar{\nu}(\cdot)=\int e^{q X_{x}-\frac{q^{2}}{2} \mathbb{E}\left[X_{x}^{2}\right]} \nu(d x) .
$$

Multiplicative chaos
 R.Rhodes

Motivations

Gaussian

multiplicative chaos

KPZ formula

$$
\begin{aligned}
& \mathbb{E}\left[\iint \frac{1}{M([x, y])^{q}} \bar{\nu}(d x) \bar{\nu}(d y)\right] \\
& \quad=\iint \mathbb{E}\left[\frac{e^{q x_{x}}+q x_{y}-q^{2} \mathbb{E}\left[x_{0}^{2}\right]}{M([x, y])^{q}}\right] \nu(d x) \nu(d y) \\
& \quad=\iint \mathbb{E}\left[\frac{e^{q x_{0}}+q x_{y}-x-q^{2} \mathbb{E}\left[x_{0}^{2}\right]}{M([0, y-x])^{q}}\right] \nu(d x) \nu(d y)
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { Multiplicative } \\
\text { chaos } \\
\text { R.Rhodes }
\end{array} \\
& \text { Motivations } \\
& \begin{array}{l}
\text { Gaussian } \\
\text { multiplicative } \\
\text { chaos }
\end{array} \\
& \begin{array}{l}
\text { KPZ formula }
\end{array} \\
& =\int \mathbb{E}\left[\iint \frac{1}{M([x, y])^{q}} \bar{\nu}(d x) \bar{\nu}(d y)\right] \\
& \\
&
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { Multiplicative } \\
\text { chaos }
\end{array} \\
& \text { R.Rhodes } \\
& \text { Motivations } \\
& \begin{array}{l}
\text { Gaussian } \\
\text { multiplicative } \\
\text { chaos } \\
\text { KPZ formula }
\end{array} \\
& \qquad \begin{aligned}
& \mathbb{E}\left[\iint \frac{1}{M([x, y])^{q}} \bar{\nu}(d x) \bar{\nu}(d y)\right] \\
&=\iint \mathbb{E}\left[\frac{e^{q X_{x}+q X_{y}-q^{2} \mathbb{E}\left[X_{0}^{2}\right]}}{M([x, y])^{q}}\right] \nu(d x) \nu(d y) \\
&\left.M([0, y-x])^{q}\right] \nu(d x) \nu(d y)
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { Multiplicative } \\
\text { chaos } \\
\text { R.Rhodes }
\end{array} \\
& \text { Motivations } \\
& \begin{array}{l}
\text { Gaussian } \\
\text { multiplicative } \\
\text { chaos } \\
\text { KPZ formula }
\end{array} \\
& \\
& \\
& \\
&
\end{aligned}
$$

We use the scale relation $X_{|y-x| u}=\Omega_{|y-x|}+X_{u}$ in law, where $\Omega_{|y-x|}, X_{u}$ are independent and $\Omega_{|y-x|}$ is centered Gaussian with variance $\gamma^{2} \ln \frac{1}{|y-x|}$.

Multiplicative chaos

R.Rhodes

$$
\begin{aligned}
\mathbb{E} & {\left[\int \frac{1}{M([x, y])^{q}} \bar{\nu}(d x) \bar{\nu}(d y)\right] } \\
& =\iint \mathbb{E}\left[\frac{e^{q X_{0}+q X_{y-x}-q^{2} \mathbb{E}\left[X_{0}^{2}\right]}}{M([0, y-x])^{q}}\right] \nu(d x) \nu(d y) \\
& =\iint \mathbb{E}\left[\frac{e^{2 q \Omega_{|y-x|}-q^{2} \mathbb{E}\left[\Omega_{|y-x|}^{2}\right]+q X_{0}+q X_{1}-q^{2} \mathbb{E}\left[X_{0}^{2}\right]}}{|y-x|^{q} e^{q \Omega_{|y-x|}-\frac{q}{2} \mathbb{E}\left[\Omega_{|y-x|}^{2}\right]} M([0,1])^{q}}\right] \nu(d x) \nu(d y)
\end{aligned}
$$

We use the scale relation $X_{|y-x| u}=\Omega_{|y-x|}+X_{u}$ in law, where $\Omega_{|y-x|}, X_{u}$ are independent and $\Omega_{|y-x|}$ is centered Gaussian with variance $\gamma^{2} \ln \frac{1}{|y-x|}$.

Multiplicative chaos

R.Rhodes

$$
\begin{aligned}
\mathbb{E} & {\left[\iint \frac{1}{M([x, y])^{q}} \bar{\nu}(d x) \bar{\nu}(d y)\right] } \\
& =\iint \mathbb{E}\left[\frac{e^{q X_{0}+q X_{y-x}-q^{2} \mathbb{E}\left[X_{0}^{2}\right]}}{M([0, y-x])^{q}}\right] \nu(d x) \nu(d y) \\
& =\iint \mathbb{E}\left[\frac{e^{q \Omega_{|y-x|}-\left(q^{2}-\frac{q}{2}\right) E\left[\Omega_{|y-x|}^{2}\right]}}{|y-x|^{q}}\right] \mathbb{E}\left[\frac{e^{q X_{0}+\bar{q} X_{1}-q^{2} \mathbb{E}\left[X_{0}^{2}\right]}}{M([0,1])^{q}}\right] \nu(d x) \nu(d y)
\end{aligned}
$$

We use the scale relation $X_{|y-x| u}=\Omega_{|y-x|}+X_{u}$ in law, where $\Omega_{|y-x|}, X_{u}$ are independent and $\Omega_{|y-x|}$ is centered Gaussian with variance $\gamma^{2} \ln \frac{1}{|y-x|}$.

$$
\begin{aligned}
& \begin{array}{c}
\text { Multiplicative } \\
\text { chaos } \\
\text { R.Rhodes }
\end{array} \\
& \text { Motivations } \\
& \begin{array}{l}
\text { Gaussian } \\
\text { multiplicative } \\
\text { chaos } \\
\text { KPZ formula }
\end{array} \\
& \\
& \\
& =\iint \mathbb{E}\left[\int \frac{1}{M([x, y])^{q}} \bar{\nu}(d x) \bar{\nu}(d y)\right] \\
& \\
&
\end{aligned}
$$

We use the scale relation $X_{|y-x| u}=\Omega_{|y-x|}+X_{u}$ in law, where $\Omega_{|y-x|}, X_{u}$ are independent and $\Omega_{|y-x|}$ is centered Gaussian with variance $\gamma^{2} \ln \frac{1}{|y-x|}$.

$$
\begin{aligned}
& \begin{array}{l}
\text { Multiplicative } \\
\text { chaos } \\
\text { R.Rhodes }
\end{array} \\
& \text { Motivations } \\
& \begin{array}{l}
\text { Gaussian } \\
\text { multiplicative } \\
\text { chaos } \\
\text { KPZ formula }
\end{array} \\
& \\
& \\
& =\iint \mathbb{E}\left[\int \frac{1}{M([x, y])^{q}} \bar{\nu}(d x) \bar{\nu}(d y)\right] \\
& \\
&
\end{aligned}
$$

We use the scale relation $X_{|y-x| u}=\Omega_{|y-x|}+X_{u}$ in law, where $\Omega_{|y-x|}, X_{u}$ are independent and $\Omega_{|y-x|}$ is centered Gaussian with variance $\gamma^{2} \ln \frac{1}{|y-x|}$.

$$
\begin{aligned}
& \begin{array}{l}
\text { Multiplicative } \\
\text { chaos } \\
\text { R.Rhodes }
\end{array} \\
& \text { Motivations } \\
& \begin{array}{l}
\text { Gaussian } \\
\text { multiplicative } \\
\text { chaos } \\
\text { KPZ formula }
\end{array} \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
&
\end{aligned}
$$

We use the scale relation $X_{|y-x| u}=\Omega_{|y-x|}+X_{u}$ in law, where $\Omega_{|y-x|}, X_{u}$ are independent and $\Omega_{|y-x|}$ is centered Gaussian with variance $\gamma^{2} \ln \frac{1}{|y-x|}$.

Multiplicative chaos

$$
\begin{aligned}
\mathbb{E} & {\left[\iint \frac{1}{M([x, y])^{q}} \bar{\nu}(d x) \bar{\nu}(d y)\right] } \\
& =\iint \mathbb{E}\left[\frac{e^{q X_{0}+q X_{y-x}-q^{2} \mathbb{E}\left[X_{0}^{2}\right]}}{M([0, y-x])^{q}}\right] \nu(d x) \nu(d y) \\
& =C \iint \frac{1}{|y-x|^{\xi(q)}} \nu(d x) \nu(d y)<+\infty
\end{aligned}
$$

We use the scale relation $X_{|y-x| u}=\Omega_{|y-x|}+X_{u}$ in law, where $\Omega_{|y-x|}, X_{u}$ are independent and $\Omega_{|y-x|}$ is centered Gaussian with variance $\gamma^{2} \ln \frac{1}{|y-x|}$.

Multiplicative

 chaosR.Rhodes

Motivations

Gaussian

multiplicative chaos

KPZ formula

Thank You

