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Turbulence

Eddies of a river current Smoulder and steam of a
volcano

Atmospheric turbulence Wake turbulence
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Mathematical approach

The motion of the fluid is ruled by the Navier-Stokes equation:

∂

∂t
u + (u · ∇)u = −∇p + ν4u + f and ∇ · u = 0.

The local dissipation of energy in the set A is defined by:

ε(A) =
ν

2

∫
A

∑
i,j

(∂iuj + ∂jui)2 dx.
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Fully developped turbulence: Kolmogorov 1941

When the velocity of the fluid is "large", the energy dissipation

is statistically homogeneous and isotrop,

has linear power-law spectrum (no fluctuations)

E
[
ε(B(0, r))q] ∼ C rαq.

Mathematical legacy of the K41 theory

Kolmogorov, Mandelbrot, Van Ness introduced the Fractional
Brownian Motion:

it is self similar or scale invariant:

∀λ > 0, B(λx) law= λαB(x)
linear power law spectrum

∀λ > 0, E
[
B(λx)q] ∼ C λαq.
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Figure: Probability density function of longitudinal velocity increments
δlu(x) = 〈u(x + le)− u(x), e〉 at different scales l (e is any unit vector)

KO62
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Fully developped turbulence: Kolmogorov-Obukhov 1962

When the velocity of the fluid is "large", the energy dissipation

is statistically homogeneous and isotrop,

has non linear power-law spectrum (multifractality)

E
[
ε(B(0, r))q] ∼ Crξ(q) as r → 0.

0 1
q

ξ(q)

ξ linear (K41 theory)

ξ non linear (K062 theory)

intermittency
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Comparison fractional/multifractal Brownian motion
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Intermittency in finance

SP500 Returns: 2001-2009 Returns with Black-Scholes

Returns with Multifractal BM Returns with Multifractal BM

KO62
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Multifractality

A few names: Frisch, Kahane, Kolmogorov, Mandelbrot,...

Main features:

intermittency,

long-range dependence,

fat tail distribution, pdf of velocity increments

Important subclass

A process is said stochastically scale invariant if:

X(λx) law= λαeΩλX(x) ∀ λ ≤ 1 and x ∈ B(0,T).

where Ωλ is an infinitely divisible random variable independent of
the process X.
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Objective

Find a stationary random measure M on Rd that possesses a
nonlinear power law spectrum.

We look for M in the form

M(A) =
∫

A
eX(x)− 1

2 E[X(x)2] dx

where X is a centered stationary Gaussian process.

If the covariance kernel K is continuous at 0 then

E[M(Br)q] ' |Br|qE[(eX(0)− 1
2 E[X(0)2])q]

= C rdq.

⇒ linear power law spectrum.

The kernel K has to be divergent at 0.
⇒ Give sense to the exponential of a random distribution!
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Assume K is of σ-positive type (a sum of continuous covariance
kernels)

K(x, y) = E[X(x)X(y)] =
∑

n

pn(x, y)

1 Let (Xn)n be a sequence of independent centered Gaussian
processes with covariance kernel

E[Xn(x)Xn(y)] = pn(x, y).

2 Define the truncated measure

Mn(dx) =
∫
·
exp

( n∑
k=1

Xk(x)− 1
2

n∑
k=1

E[X2
k (x)]

)
dx

3 For each set A ⊂ Rd, the sequence (Mn(A))n is a positive
martingale. Thus it converges towards a limit M(A), called
Gaussian multiplicative chaos associated to the kernel K.
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Case of interest

Assume that the covariance kernel K is given by

K(x, y) = E[X(x)X(y)] = γ2 ln+
T

|x− y|
+ g(x, y)

where g is bounded and continuous.

Kahane (1985)

The Gaussian multiplicative chaos M associated to K is different
from 0 if and only if

γ2 < 2d.

Kahane (1985)

For γ2 < 2d, the multiplicative chaos M "lives" almost surely on a
set with Hausdorff dimension d − γ2

2 .
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2D-density profile: weak/strong intermittence
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Example 1: Stoch. Scale Invariance

In dimension d = 1, 2 the kernel below is of σ-positive type

x ∈ Rd 7→ K(x) = γ2 ln+

( T
|x|
)

Theorem
The associated multiplicative chaos is stochastically scale
invariant: ∀λ < 1(

M(λA)
)

A⊂B(0,T)

law= λdeΩλ− 1
2 E[Ω2

λ]
(
M(A)

)
A⊂B(0,T)

where Ωλ is a centered Gaussian variable with variance γ2 ln 1
λ

independent of (M(A)
)

A⊂B(0,T)
.

Rhodes, Vargas 2009

There exist stochastically scale invariant multiplicative chaos in
dimension d ≥ 3.
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Example 1: Stoch. Scale Invariance

In dimension d = 1, 2 the kernel below is of σ-positive type

x ∈ Rd 7→ K(x) = γ2 ln+

( T
|x|
)

For x ∈ B(0,T) and λ < 1,

K(λx) = K(x) + γ2 ln
1
λ
.

Hence
X(λx) law= X(x) + Ωλ.

We deduce for A ⊂ B(0,T)

M(λA) =
∫
λA

eX(x)− 1
2 E[X(x)2] dx

= λd
∫

A
eX(λy)− 1

2 E[X(λy)2] dy

law= λdeΩλ− 1
2 E[Ω2

λ]

∫
A

eX(y)− 1
2 E[X(y)2] dy
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Example 2: Turbulence

Castaing-Gagne-Hopfinger’s equation 1990

The local energy dissipation M satisfies the cascading equation:

∀ε ∈]0, 1], M(dx) law= eXε(x) εM(
dx
ε

)

where Xε is a Gaussian process independent of M.

Theorem: Allez, Rhodes, Vargas (2011)

All the solutions of the above equation are Gaussian multiplicative
chaos with kernel of the type:

K(x) =
∫ +∞

1

k(ux)
u

du

where k is a continuous covariance kernel.
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Example 2: Turbulence

Castaing-Gagne-Hopfinger’s equation 1990

The local energy dissipation M satisfies the cascading equation:

∀ε ∈]0, 1], M(dx) law= eXε(x) εM(
dx
ε

)

where Xε is a Gaussian process independent of M.

Theorem: Allez, Rhodes, Vargas (2011)

All the solutions of the above equation are Gaussian multiplicative
chaos with kernel of the type:

K(x) =
∫ +∞

1

k(ux)
u

du = k(0) ln+
1
|x|

+ g(x)

where k is a continuous covariance kernel.
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Example 3: Quantum measure

Consider the measure

M(A) =
∫

A
eX(x)− 1

2 E[X(x)2] dx

where X is a Gaussian Free Field in a domain D ⊂ R2, that is a
Gaussian distribution with covariance kernel

K(x, y) = γ2G(x, y)

G= Green function of the Laplacian4 on D,

that is
4G(x, ·) = −2πδx.
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Example 3: Liouville quantum gravity

The function G is of σ positive type:

G(x, y) = 2π
∫ ∞

0
pD(t, x, y) dt =

∑
n∈Z

pn(x, y)

with pn(x, y) = 2π
∫ 2n+1

2n
pD(t, x, y) dt, and pD are the transition

densities of the symmetric semigroup associated to4 with 0
Dirichlet boundary condition.

Theorem
For some continuous bounded function Ḡ:

K(x, y) = γ2 ln
1

|x− y|
+ Ḡ(x, y).

Hence, for γ2 < 4, the Quantum measure is not trivial.



Multiplicative
chaos

R.Rhodes

Motivations

Gaussian
multiplicative
chaos

KPZ formula

Example 3: Liouville quantum gravity

The function G is of σ positive type:

G(x, y) = 2π
∫ ∞

0
pD(t, x, y) dt =

∑
n∈Z

pn(x, y)

with pn(x, y) = 2π
∫ 2n+1

2n
pD(t, x, y) dt, and pD are the transition

densities of the symmetric semigroup associated to4 with 0
Dirichlet boundary condition.

Theorem
For some continuous bounded function Ḡ:
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How to measure dimensions of sets?

Given a Radon measure µ on Rd, define the s-dimensional
µ-Hausdorff measure:

Hs
µ(A) = lim

δ→0
inf
{∑

k

µ(Bk)s/d; A ⊂
⋃

k

Bk, diam(Bk) ≤ δ
}
.

s

+∞

Hs
µ(A)

dimµ(A)

µ Hausdorff dimension

It is defined as the value

dimµ(A) = inf{s ≥ 0; Hs
µ(A) = 0}.
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KPZ formula

Consider a multiplicative chaos

M(·) =
∫
·
eX(x)− 1

2 E[X2(x)] dx

associated to the kernel (γ2 < 2d)

K(x, y) = γ2 ln+

( T
|x− y|

)
+ g(x, y)

Problem
For a given compact set A ⊂ Rd, find a relation between

dimLeb(A) and dimM(A).
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KPZ formula
Almost surely, we have the relation

dimLeb(A) = ξ
(dimM(A)

d

)
where

ξ(q) = (d +
γ2

2
)q− γ2

2
q2

is the power-law spectrum of the chaos measure M, ie:

E
[
M
(
B(0, r)

)q] ' Crξ(q) as r → 0.

I.Benjamini, O.Schramm: KPZ in one dimensional geometry
of multiplicative cascades (2008)

B. Duplantier, S. Sheffield: Liouville Quantum Gravity and
KPZ (2008)

R.Rhodes, V.Vargas: KPZ formula for log-infinitely divisible
multifractal random measures (2008)



Multiplicative
chaos

R.Rhodes

Motivations

Gaussian
multiplicative
chaos

KPZ formula
Remark 1: Quantum measure

When d = 2 and M is the Quantum measure (associated to the
GFF) we recover the original KPZ relation

dimLeb(A) =
(
1 +

γ2

4
)
dimM(A)− γ2

8
dimM(A)2.



Multiplicative
chaos

R.Rhodes

Motivations

Gaussian
multiplicative
chaos

KPZ formula

Remark 2: Rhodes, Vargas (2008)

More generally, this remains true for any Multifractal Random
Measure M regardless of the dimension:

dimLeb(A) = ξ
(dimM(A)

d

)
where

ξ(q) = dq− ψ(q)

is the power law spectrum of M and ψ can be the Laplace
exponent of any infinitely divisible random variable.
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Heuristic

Remind of the s-dimensional Hausdorff measure

Hs
M(A) = lim

δ→0
inf
{∑

n

M(Bxn,rn)
s
d ; A ⊂

⋃
n

Bxn,rn , rn ≤ δ
}
.

Take the expectation:

E[Hs
M(A)] = lim

δ→0
inf
{∑

n

E[M(Bxn,rn)
s
d ]; A ⊂

⋃
n

Bxn,rn , rn ≤ δ
}
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=C Hξ( s
d )(A)
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Proof of the KPZ formula

Choose the dimension d = 1 and consider the measure

M(·) =
∫
·
eXx− 1

2 E[X2
x ] dx

associated to the kernel

K(x) = γ2 ln+
T
|x|
.

The difficult part is to prove

ξ(dimM(A)) ≥ dimLeb(A).
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Basic tool: Frostman’s lemma:
Each time you have a q > 0 and a probability measure ν
supported by A such that∫ ∫

1
|y− x|ξ(q)

ν(dx)ν(dy) < +∞,

find a probability measure ν̄ supported by A such that almost
surely: ∫ ∫

1
M([x, y])q ν̄(dx)ν̄(dy) < +∞.

Choose
ν̄(·) =

∫
·
eqXx− q2

2 E[X2
x ] ν(dx).
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find a probability measure ν̄ supported by A such that almost
surely: ∫ ∫

1
M([x, y])q ν̄(dx)ν̄(dy) < +∞.

Choose
ν̄(·) =

∫
·
eqXx− q2

2 E[X2
x ] ν(dx).
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KPZ formula E
[ ∫ ∫ 1

M([x, y])q ν̄(dx)ν̄(dy)
]

=
∫ ∫

E
[eqXx+qXy−q2E[X2

0 ]

M([x, y])q

]
ν(dx)ν(dy)

=
∫ ∫

E
[eqX0+qXy−x−q2E[X2

0 ]

M([0, y− x])q

]
ν(dx)ν(dy)
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[ ∫ ∫ 1

M([x, y])q ν̄(dx)ν̄(dy)
]

=
∫ ∫

E
[eqXx+qXy−q2E[X2

0 ]

M([x, y])q

]
ν(dx)ν(dy)

=
∫ ∫

E
[eqX0+qXy−x−q2E[X2

0 ]

M([0, y− x])q

]
ν(dx)ν(dy)
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[ ∫ ∫ 1

M([x, y])q ν̄(dx)ν̄(dy)
]

=
∫ ∫

E
[eqXx+qXy−q2E[X2

0 ]

M([x, y])q

]
ν(dx)ν(dy)

=
∫ ∫

E
[eqX0+qXy−x−q2E[X2

0 ]

M([0, y− x])q

]
ν(dx)ν(dy)
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[ ∫ ∫ 1

M([x, y])q ν̄(dx)ν̄(dy)
]

=
∫ ∫

E
[eqX0+qXy−x−q2E[X2

0 ]

M([0, y− x])q

]
ν(dx)ν(dy)

We use the scale relation X|y−x|u = Ω|y−x| + Xu in law, where
Ω|y−x|,Xu are independent and Ω|y−x| is centered Gaussian with
variance γ2 ln 1

|y−x| .
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E
[ ∫ ∫ 1

M([x, y])q ν̄(dx)ν̄(dy)
]

=
∫ ∫

E
[eqX0+qXy−x−q2E[X2

0 ]

M([0, y− x])q

]
ν(dx)ν(dy)

=
∫ ∫

E
[ e2qΩ|y−x|−q2E[Ω2

|y−x|]+qX0+qX1−q2E[X2
0 ]

|y− x|qeqΩ|y−x|−
q
2 E[Ω2

|y−x|]M([0, 1])q

]
ν(dx)ν(dy)

We use the scale relation X|y−x|u = Ω|y−x| + Xu in law, where
Ω|y−x|,Xu are independent and Ω|y−x| is centered Gaussian with
variance γ2 ln 1

|y−x| .
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E
[ ∫ ∫ 1

M([x, y])q ν̄(dx)ν̄(dy)
]

=
∫ ∫

E
[eqX0+qXy−x−q2E[X2

0 ]

M([0, y− x])q

]
ν(dx)ν(dy)

=
∫ ∫

E
[eqΩ|y−x|−(q2− q

2 )E[Ω2
|y−x|]

|y− x|q
]
E
[eqX0+q̄X1−q2E[X2

0 ]

M([0, 1])q

]
ν(dx)ν(dy)

We use the scale relation X|y−x|u = Ω|y−x| + Xu in law, where
Ω|y−x|,Xu are independent and Ω|y−x| is centered Gaussian with
variance γ2 ln 1

|y−x| .
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E
[ ∫ ∫ 1

M([x, y])q ν̄(dx)ν̄(dy)
]

=
∫ ∫

E
[eqX0+qXy−x−q2E[X2

0 ]

M([0, y− x])q

]
ν(dx)ν(dy)

=
∫ ∫

1
|y− x|ξ(q)

E
[eqX0+q̄X1−q2E[X2

0 ]

M([0, 1])q

]
ν(dx)ν(dy)

We use the scale relation X|y−x|u = Ω|y−x| + Xu in law, where
Ω|y−x|,Xu are independent and Ω|y−x| is centered Gaussian with
variance γ2 ln 1

|y−x| .
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[ ∫ ∫ 1

M([x, y])q ν̄(dx)ν̄(dy)
]

=
∫ ∫

E
[eqX0+qXy−x−q2E[X2

0 ]

M([0, y− x])q

]
ν(dx)ν(dy)

=
∫ ∫

1
|y− x|ξ(q)

E
[eqX0+q̄X1−q2E[X2

0 ]

M([0, 1])q

]
ν(dx)ν(dy)

We use the scale relation X|y−x|u = Ω|y−x| + Xu in law, where
Ω|y−x|,Xu are independent and Ω|y−x| is centered Gaussian with
variance γ2 ln 1

|y−x| .
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E
[ ∫ ∫ 1

M([x, y])q ν̄(dx)ν̄(dy)
]

=
∫ ∫

E
[eqX0+qXy−x−q2E[X2

0 ]

M([0, y− x])q

]
ν(dx)ν(dy)

= C
∫ ∫

1
|y− x|ξ(q)

ν(dx)ν(dy)

We use the scale relation X|y−x|u = Ω|y−x| + Xu in law, where
Ω|y−x|,Xu are independent and Ω|y−x| is centered Gaussian with
variance γ2 ln 1

|y−x| .
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E
[ ∫ ∫ 1

M([x, y])q ν̄(dx)ν̄(dy)
]

=
∫ ∫

E
[eqX0+qXy−x−q2E[X2

0 ]

M([0, y− x])q

]
ν(dx)ν(dy)

= C
∫ ∫

1
|y− x|ξ(q)

ν(dx)ν(dy) < +∞

We use the scale relation X|y−x|u = Ω|y−x| + Xu in law, where
Ω|y−x|,Xu are independent and Ω|y−x| is centered Gaussian with
variance γ2 ln 1

|y−x| .



Multiplicative
chaos

R.Rhodes

Motivations

Gaussian
multiplicative
chaos

KPZ formula

Thank You
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