Anomalous Diffusion

Alberto Rosso

Laboratoire Physique Theorique et Modeles Statistiques

Orsay Paris-Sud

A. Zoia, S. Majumdar, A. R., PRL 102, 120602 (2009) S. Majumdar, A. R., A. Zoia, PRL 104, 020602 (2010) K. Wiese, S. Majumdar, A. R., PRE 83, 06114 (2011)

Anomalous Diffusion

Subdiffusion

Diffusion

H > 1/2

Super-diffusion

We suppose τ_i identically distributed

We suppose ξ_i identically distributed

Brownian motion

- 1. Local in time: $\langle \tau \rangle < \infty$
- 2. Local in space: $\langle \xi^2 \rangle < \infty$
- 3. Markovian: $\langle \xi_i \xi_j \rangle = \delta_{i,j}$

$$x(t) \sim \sqrt{t}$$

$$Z(x, x_0, t) = \frac{e^{-\frac{(x-x_0)^2}{2t}}}{\sqrt{2\pi t}}$$

Fractional Brownian Motion (fBm)

$$Z(x, x_0, t) = \frac{e^{-\frac{(x-x_0)^2}{2t^{2H}}}}{\sqrt{2\pi t^H}} \quad \text{with} \quad 0 < H < 1$$

$$\left\{ [x(t_1) - x(t_2)]^2 \right\} \sim |t_1 - t_2|^{2H}$$

$$\xi_t = x(t+1) - x(t) \quad f(t) \sim -\frac{1}{t^{2-2H}} \quad H < 1/2$$

$$\left\{ \xi_0 \xi_t \right\} \sim f(t) \quad f(t) \sim +\frac{1}{t^{2-2H}} \quad H > 1/2$$

Subdiffusion: H = 1/4

Superdiffusion: H = 3/4

Continuous Time Random Walk (CTRW)

$$p(\tau) \xrightarrow{\tau \gg 1} \frac{1}{\tau^{\alpha+1}}$$

For
$$0 < \alpha < 1$$
, $x(t) \sim t^{\frac{\alpha}{2}}$

$$Z(x, x_0, t) = \frac{1}{t^{\frac{\alpha}{2}}} F(\frac{x - x_0}{t^{\frac{\alpha}{2}}})$$

Non Gaussian Process

CTRW vs fBm

Lévy flights

$$p(\xi) \xrightarrow{\xi \gg 1} \frac{1}{\xi^{\mu+1}}$$

For
$$0 < \mu < 2, x(t) \sim t^{\frac{1}{\mu}}$$

$$Z(x, x_0, t) = \frac{1}{t^{\frac{1}{\mu}}} F(\frac{x - x_0}{t^{\frac{1}{\mu}}})$$

Non Gaussian Process

Lévy flights vs fBm

Polymer Translocation

s(T) = N, if $s(t) \sim t^H$ then $T \sim N^{1/H}$

Monte Carlo simulation of polymer translocation in d=2, Chatelain, Kantor, Kardar, PRE 78, 021129 (2008) **Question I: A polymer chain will ultimately succeed in translocating through a pore ?**

Question II: Which portion of the polymer has translocated at time t?

Hitting probability Q(x, L): probability of exiting through L

Markov process:

$$Q(x,L) = \langle Q(x+\xi_1,L) \rangle$$

For BM $\langle \xi_1 \rangle = 0$, $\langle \xi_1^2 \rangle = \delta$

$$\frac{\partial^2 Q}{\partial x^2} = 0 \quad Q(0,L) = 0, \ Q(L,L) = 1$$

$$Q(x,L) = \frac{x}{L}$$

- Self affine process: $Q(x,L) = Q(z = \frac{x}{L})$
- Symmetric process: Q(1/2) = 1/2; Q(z) = 1 Q(1 z)
- Close to the origin: $Q(z) \sim c_1 z^{\phi} + \dots$

Translocation is enhanced or suppressed by excluded volume effects?

$$Q(x,L) = \operatorname{Prob}[m > L]$$

means

 $\operatorname{Prob}[t_f > L^{1/H}]$

Survival probability: $\operatorname{Prob}[t_f > t] \sim \left(\frac{x^{1/H}}{t}\right)^{\theta}$ θ persistence exponent $Q(x,L) \sim \operatorname{Prob}[t_f > L^{\frac{1}{H}}] \sim \left(\frac{x}{\tau}\right)^{\frac{\theta}{H}}, \quad \phi = \frac{\theta}{\tau\tau}$ Numerical test $\phi = \theta/H$

Persistence of fBm in known $\theta = 1 - H$ (see Krug et al.)

Prediction:
$$\phi = \frac{\theta}{H} = \frac{1-H}{H}$$

• Red: $H = 2/3 \longrightarrow \phi = 1/3$

Conclusion: volume effects "suppress" Translocation

Other models $\phi = \theta/H$:

CTRW:
$$H = \alpha/2, \ \theta = 2/\alpha$$

 $\frac{\partial^2 Q}{\partial x^2} = 0 \quad Q(0,L) = 0, \ Q(L,L) = 1$
 $Q(x,L) = \frac{x}{L}$
 $\phi = 1$

Lévy flights: $H = 1/\mu$, $\theta = 1/2$ (Sparre Andersen)

Widom ('61): $Q(z = \frac{x}{L}) = I_z[\frac{\mu}{2}, \frac{\mu}{2}]$

 $\phi = \mu/2$

Polymer Translocation

s(T) = N, if $s(t) \sim t^H$ then $T \sim N^{1/H}$

Numerical Simulations:

Monte Carlo simulation of polymer translocation in d=2, Chatelain, Kantor, Kardar, PRE 78, 021129 (2008)

Monte Carlo simulation tagged monomer in a box (d=1) Kantor, Kardar, PRE 76,061121 (2007)

$$d = 2, \quad \nu = \frac{3}{4}, \quad H = \frac{1}{2\nu + 1} = \frac{2}{5}$$

$$d = 1, \quad H = \frac{1}{4}$$

Single Boundary

For homogeneous processes, we predict $\sim x^{\phi}$ with $\phi = \frac{\theta}{H}$

- 2d translocation: simulations give $\phi \sim 1.44$ we predict $\phi = 1.5$
- Tagged monomer: Simulations give $\phi > 2$ we predict $\phi = 3$
- Direct simulations on fBm agree with scaling argument

Images method: Brownian motion

 $Z_{+}(x, x_{0}, t) = Z(x, x_{0}, t) - Z(x, -x_{0}, t)$

Images method: Brownian motion

$$P_{+}(x, x_{0}, t) = \frac{Z_{+}(x, x_{0}, t)}{\int_{0}^{\infty} dx \, Z_{+}(x, x_{0}, t)} \xrightarrow{t \to \infty} P_{+}(x, t)$$

Using
$$y = \frac{x}{\sqrt{t}}$$
 $P_+(x,t) \, dx = R_+(y) \, dy = y \, e^{-\frac{y^2}{2}} \, dy$

2

$$R_{+}(y) = y \, e^{-\frac{y^2}{2}}$$

For images method $\phi = 1$ always.

Path integral method: Perturbation Theory

$$Z_{+}(x_{0}, x, t) = \int_{x(0)=x_{0}}^{x(t)=x} \mathcal{D}[x] e^{-\mathcal{S}[x]} \Theta[x]$$

$$Z_{+}(x_{0}, x, t) = \int_{x(0)=x_{0}}^{x(t)=x} \mathcal{D}[x] e^{-\mathcal{S}[x]} \Theta[x]$$

$$e^{-\mathcal{S}[x]} \sim e^{-\mathcal{S}^{(0)}[x]} \left(1 + \epsilon \mathcal{S}^{(1)}[x]\right)$$

$$Z_+(x_0, x, t) \sim Z_+^{(0)}(x_0, x, t) + \epsilon Z_+^{(1)}(x_0, x, t)$$

$$Z_{+}^{(1)}(x_0, x, t) = \int_{x(0)=x_0}^{x(t)=x} \mathcal{D}[x] \,\mathcal{S}^{(1)}[x] \,e^{-\mathcal{S}^{(0)}[x]} \,\Theta[x]$$

For Brownian Motion

$$\mathcal{S}[x] = \frac{1}{2} \int_0^t dt \, \left(\frac{dx}{dt}\right)^2$$

For Gaussian process $\mathcal{S}[x] = \frac{1}{2} \int_0^t dt_1 \int_0^t dt_2 x(t_1) G(t_1, t_2) x(t_2)$

$$\langle x(t_1)x(t_2)\rangle = G^{-1}(t_1,t_2)$$

Brownian motion

$$H = \frac{1}{2} \quad \Rightarrow \quad \langle x(t_1)x(t_2) \rangle = 2\min(t_1, t_2) \quad \Rightarrow \quad \mathcal{S}^{(0)}[x] = \frac{1}{4} \int_0^t dt' \, (\partial_{t'} x)^2$$

Fractional Brownian motion

$$H - \mathrm{fBm} \quad \Rightarrow \quad \langle x(t_1)x(t_2) \rangle = t_1^{2H} + t_2^{2H} - |t_1 - t_2|^{2H} \quad \Rightarrow \quad \mathcal{S}[x] ??$$

Perturbation

$$H = \frac{1}{2} + \epsilon \quad \Rightarrow \quad \langle x(t_1)x(t_2) \rangle = 2 \min(t_1, t_2) - \epsilon \Sigma(t_1, t_2) + O(\epsilon^2)$$

 $\Sigma(t_1, t_2) = -2 \left[t_1 \ln t_1 + t_2 \ln t_2 - |t_1 - t_2| \ln |t_1 - t_2| \right]$

$$G^{-1}(t_1, t_2) = [G^{(0)}]^{-1}(t_1, t_2) - \epsilon \Sigma(t_1, t_2) \implies \epsilon \Sigma = [G^{(0)}]^{-1} - G^{-1}$$

$$G = G^{(0)} + \epsilon G^{(0)} \Sigma G \implies G = G^{(0)} + \epsilon G^{(0)} \Sigma G^{(0)}$$

$$\mathcal{S}[x] = \mathcal{S}^{(0)}[x] + \epsilon \,\mathcal{S}^{(1)}[x]$$

$$\mathcal{S}^{(1)}[x] \propto -\frac{1}{2} \int_0^t dt_1 \int_{t_1}^t dt_2 \, \frac{\partial_{t_1} x(t_1) \partial_{t_2} x(t_2)}{|t_1 - t_2|}$$

Brownian 2-points correlation function

Final Result I

$$R_{+}(y) = R_{+}^{(0)}(y) \left[1 + \epsilon W(y) + O(\epsilon^{2})\right]$$
$$W(y) = \frac{1}{6}y^{4} {}_{2}F_{2}\left(1, 1; \frac{5}{2}, 3; \frac{y^{2}}{2}\right)$$
$$+\pi(1 - y^{2}) \operatorname{erfi}\left(\frac{y}{\sqrt{2}}\right) + \sqrt{2\pi}e^{\frac{y^{2}}{2}}y$$
$$+ \left(y^{2} - 2\right) \left[\log(2y^{2}) + \gamma_{\mathrm{E}}\right] - 3y^{2}$$

Final Result II

$$\phi = 1 - 4\epsilon + O(\epsilon^2) , \quad \gamma = 1 - 2\epsilon + O(\epsilon^2)$$

- ϵ expansion in agreement with the conjecute $\phi = \frac{1-H}{H}$
- At large y, Free Gaussian Propagator
- + a New Exponent $\gamma \neq \phi$

The exponent
$$\gamma$$

 $r_+(y) = e^{\frac{y^2}{2}} R_+(y)$

Conclusions

- We have introduced different models displaying anomalous diffusion
- *H* is not enough to identify the universal behavior of the process
- $\phi = \theta/H$ characterizes the spatial properties of these processes
- Perturbation approach are possible around the Brownian results
- A new exponent γ has been found for the fBm