KOSZUL DUALITY AND SEMI-INFINITE COHOMOLOGY

RESEACH STATEMENT

LEONID POSITSELSKI

Extension of the Koszul duality to ungraded modules over ungraded algebras re-
quires elaboration of the distinction between derived categories of the first and the sec-
ond kind. Certain mixtures of the two kinds of derived categories, called semiderived
categories, play an important role in the theory of semi-infinite cohomology of asso-
ciative algebras. The aim of this project is to extend Koszul duality to the relative
situations with a base ring, a base coalgebra, or even a base coring; prove compari-
son theorems connecting the semi-infinite cohomology of Lie and associative algebras;
study the relations between relative Koszul duality and semi-infinite cohomology; and
look for generalizations of the existing definitions of semi-infinite cohomology.

1. PAsT RESEARCH

1.1. Nonhomogeneous quadratic duality. A graded algebra A = €, A; over a
field k£ such that A; =0 for 7 < 0 and Ay = k is called Koszul if Torfj(k, k) = 0 for
all i # j. A graded coalgebra € = @, C; over k such that €; =0 fori < 0 and Cy =k
is called Koszul if Extg’ (k, k) = 0 for all i # j. The functors A — € = Tor”(k, k)
and € — A = Exte(k, k) are mutually inverse equivalences between the categories
of Koszul algebras and Koszul coalgebras. The algebra A and the coalgebra € are
said to be quadratic dual to each other.

This equivalence can be extended to ungraded algebras as follows. A nonhomoge-
neous Koszul algebra is an associative algebra A over k endowed with an increasing
filtration F; A C A such that the associated graded algebra grp A = @, F;A/F;_1 A is
Koszul. The nonhomogeneous quadratic duality assigns to a nonhomogeneous Koszul
algebra a Koszul CDG-coalgebra (curved differential graded coalgebra).

A CDG-algebra B* over a field k is a graded algebra endowed with an odd deriva-
tion d of degree +1 and an element h € B? such that d?(z) = ha — zh for any z € B
and d(h) = 0. A morphism of CDG-algebras B'* — B'* is a pair (g,a) consisting
of a morphism of graded algebras g: B’ — B"” and an element a € B"! such that
g(d'z) = d"g(x) + [a,z] for any z € B" and g(h') = h" + d"a + a®.

A thematic example of a CDG-algebra is the algebra Q°*(M,End(E)) of differen-
tial forms with values in the bundle of endomorphisms of a vector bundle E over
a (smooth, analytic, or algebraic) variety M such that E is endowed with global
connection V. The derivation d is the de Rham differential corresponding to the in-
duced connection Vgy,q(r), while the element A is the curvature of V. CDG-algebras
corresponding to different connections are naturally isomorphic.

A CDG-coalgebra C, over k is a graded coalgebra endowed with an odd coderiva-
tion d of degree —1 and a linear function h: Co — k satisfying the dual equations.
A CDG-coalgebra is said to be Koszul if the underlying graded coalgebra is Koszul.
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There is a natural equivalence between the categories of nonhomogeneous Koszul al-
gebras and Koszul CDG-coalgebras such that the associated graded algebra of a non-
homogeneous Koszul algebra is quadratic dual to the underlying graded coalgebra of
the corresponding CDG-coalgebra (essentially [P1], see also [6] and [PP]). This result
is a generalization of the Poincare-Birkhoff-Witt theorem to algebras with nonho-
mogeneous quadratic relations of Koszul type.

1.2. Koszul duality and exotic derived categories. A thematic example of non-
homogeneous Koszul duality is the functor assigning to a complex of modules M*
over a Lie algebra g its standard homological complex C, (g, M*) considered as a DG-
comodule over the DG-coalgebra C,(g). Since the standard complexes of nontrivial
irreducible modules over semisimple Lie algebras are acyclic, one has to consider
exotic derived categories in order to make this functor an equivalence of categories.

A left CDG-module over a CDG-algebra B* is a graded left B-module M* endowed
with a differential dps of degree +1 compatible with the differential d in B as an odd
derivation and satisfying the equation d3,(m) = hm for all m € M*. A left CDG-
comodule over a CDG-coalgebra C, is a graded left €-comodule M, endowed with an
odd coderivation dy; of degree —1 satisfying the dual equation.

Left CDG-comodules over a given CDG-coalgebra €, form a DG-category: for
any CDG-comodules £, and M, there is a complex Home(L,,M,). Hence one can
consider the homotopy category of CDG-comodules. A CDG-comodule M, over a
CDG-coalgebra C, is called coacyclic if it is homotopy equivalent to a CDG-comodule
obtained from total CDG-comodules of exact triples of CDG-comodules using the
operations of cone and infinite direct sum. The coderived category of left CDG-
comodules over €, is defined as the quotient category of the homotopy category
of CDG-comodules over €, by the thick subcategory of coacyclic CDG-comodules.
Notice that one cannot even speak of CDG-comodules acyclic in the conventional
sense, as CDG-comodules have no cohomology.

To an augmented DG-algebra one can assign its bar construction, which is a
conilpotent DG-coalgebra. Extending this construction, one can assign to a nonaug-
mented DG-algebra A°® a conilpotent CDG-coalgebra Bar(A®). Conversely, to a
coaugmented CDG-coalgebra €, one can assign its cobar construction Cob(C,), which
is a DG-algebra. Then the derived category of DG-modules over A® is equivalent
to the coderived category of CDG-comodules over Bar(A®). The coderived category
of CDG-comodules over C, is equivalent to the coderived category of DG-modules
over Cob(C,). When the coalgebra C is conilpotent, the coderived category of CDG-
comodules over C, is equivalent to the derived category of DG-modules over Cob(C,).
For a nonhomogeneous Koszul algebra A and the Koszul CDG-coalgebra €, dual
to it, the derived category of A-modules is equivalent to the coderived category of
CDG-comodules over C,, since A is quasi-isomorphic to Cob(C,).

These results were presented in an informal series of talks in TAS, Princeton in the
Spring of 1999; later I spoke about them at various seminars in Moscow, MPIM-Bonn,
etc. They remain unpublished. In 2003 similar results appeared in the dissertation
of K. Lefevre-Hasegawa [9, 8], who also introduced the “coderived categories” termi-
nology. His definition of coacyclic DG-comodules in terms of the cobar construction
is different from, though equivalent to, the above.



1.3. Semi-infinite cohomology.

1.3.1. A coring € over a noncommutative ring A is a coring object in the tensor
category of A-A-bimodules; in other words, it is an A-A-bimodule endowed with a
comultiplication map € — € ®4 € and a counit map € — A, which should be
A-A-bimodule morphisms satisfying the usual coassociativity and counit equations.
A left comodule M over a coring C is a left A-module endowed with a left A-module
morphims of left coaction M — C® 4 M satisfying the usual equations. The category
of left C-comodules is abelian whenever € is a flat right A-module; in the sequel we
will presume € to be a flat left and right A-module.

The cotensor product N Oe M of a right C-comodule N and a left C-comodule M
is defined as the kernel of the pair of maps N @4 M = N®4 € ® 4 M. This functor
is neither left, nor right exact in general.

A right C-comodule is called coflat if the functor of cotensor product with it is
exact on the category of left C-comodules. The cotensor product of bicomodules is
not always associative, but for, say, bicomodules that are coflat right comodules, it
is. A right cofiat semialgebra 8 over a coring C is a ring object in the tensor category
of right coflat C-C-bicomodules; in other words, it is a C-C-bicomodule that is a
coflat right C-comodule endowed with a semimultiplication map 8§ e 8§ — 8§ and
a semiunit map € — 8, which should be morphisms of C-C-bicomodules satisfying
the usual associativity and unity equations. A left semimodule M over a right coflat
semialgebra 8 is a left C-comodule endowed with a left C-comodule morphism of
left semiaction 8§ Op M — M satisfying the usual equations. The category of left
semimodules over a right coflat semialgebra is abelian; in the sequel we will presume
that 8 is a coflat left and right C-comodule.

The semitensor product NOgM of a right 8-semimodule N and a left 8-semimodule
M is defined as the cokernel of the pair of maps N Oeg 8 O M = N Oe M. This
functor is not everywhere defined, as the triple cotensor product N Oe 8 Oe M is not
associative for arbitrary N and M but it is defined when one the semimodules N
and M is a coflat C-comodule, or when one of N and M is a flat A-module and the
ring A has a finite weak homological dimension.

1.3.2.  Assume that the ring A has a finite weak homological dimension. The
semiderived category of left 8-semimodules is defined as the quotient category of
the homotopy category of complexes of left S-semimodules by the thick subcategory
of complexes that are coacyclic as complexes of left C-comodules. A complex of right
S-semimodules N* is called semiflat if its semitensor product N* g M* with any
C-coacyclic complex of left S-semimodules M?* is acyclic.

The functor mapping the quotient category of the homotopy category of semi-
flat complezxes of left S-semimodules by its intersection with the thick subcategory
of C-coacyclic complexes of left S-semimodules into the semiderived category of left
S-semimodules is an equivalence of triangulated categories. Using this theorem, one
can define the double-sided derived functor SemiTor®(N*, M*) on the Cartesian prod-
uct of the semiderived categories of left and right 8-semimodules by restricting the
functor of semitensor product either to the Carthesian product of the homotopy cat-
egory of semiflat complexes of right S-semimodules and the homotopy category of
arbitrary complexes of left S-semimodules, or to the Carthesian product of the ho-
motopy category of arbitrary complexes of right 8-semimodules and the homotopy
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category of semiflat complexes of left 8-semimodules. This is a particular case of a
general categorical definition of double-sided derived functors.

The above results were first explained (in the case of semialgebras over coalgebras
over fields rather than corings over rings) in a series of letters to S. Arkhipov and
R. Bezrukavnikov which were distributed privately for some time and later made
available on the web [P2]. The influence of [P2] is acknowledged, e. g., in the pa-
per [7]. Subsequently this was written up (in the more general setting above) in the
long paper [P3]. It was shown in [P3] that the above construction of double-sided de-
rived functor SemiTor® and an analogous construction of double-sided derived functor
SemiExtg include as particular cases the definitions of semi-infinite Tor and Ext by
S. Arkhipov [1, 2] and A. Sevostyanov [10].

1.4. Comodule-contramodule correspondence. There are two kinds of modules
over a coalgebra: in addition to the more widely known comodules, there are also
contramodules. A left contramodule B over a coring € is a left A-module endowed
with a left A-module map Hom,4(C,PB) — ‘P satisfying certain contraassociativity
and counity equations. The category of left C-contramodules is abelian whenever
C is a projective left A-module; we will presume that C is a projective left and a
flat right A-module. The group of cohomomorphisms Cohome(M,B) from a left C-
comodule M to a left C-contramodule ‘B is defined as the cokernel of the pair of maps
Hom4(C®4M, PB) == Hom4(C, B), one of which comes from the C-coaction in M and
the other from the C-contraaction in . A left C-comodule is called coprojective if the
functor of cohomomorphisms from it is exact on the category of left C-contramodules.

Let 8 be a semialgebra; we will presume that 8 is a coprojective left and a coflat
right C-comodule. A left semicontramodule P over 8 is a left C-contramodule en-
dowed with a left C-contramodule map P — Cohome(S, P) satisfying certain as-
sociativity and unity equations. Assume that the ring A has a finite left homological
dimension. The semiderived category of left S-semicontramodules is defined analo-
gously to the semiderived category of left 8-semimodules except that one uses infinite
products instead of infinite direct sums.

The semiderived categories of left S-semimodules and left S-semicontramodules are
naturally equivalent. This result was proven modulo a certain conjecture in [P2] and
completely proven in [P3].

2. CURRENT RESEARCH AND FUTURE PLANS

Let (g, H) be a Tate Harish-Chandra pair, i. e., g is a Tate (locally linearly com-
pact) Lie algebra [4] and H is a proalgebraic group corresponding to a linearly com-
pact open Lie subalgebra h C g. Let c: (¢, H) — (g, H) be a morphism of Tate
Harish-Chandra pairs with the same subgroup H such that g’ — g is a central
extension of Lie algebras whose kernel is identified with the ground field k. One
example of such a central extension of Tate Harish-Chandra pairs comes from the
canonical central extension g of g; we denote the corresponding morphism by c¢y. It
is not difficult to see that the tensor product 8.(g, H) = U.(g) ®y(y) C(H) has a
natural structure of semialgebra over the coalgebra € = C(H) of functions on H;
the category of left semimodules over 8. = 8.(g, H) is isomorphic to the category of
(¢/, H)-modules where the unit central element of g’ acts by the identity. It is ex-
pected that the semialgebra 8P opposite to 8, is isomorphic to 8_.,_.. Now assume
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that the proalgebraic group H is prounipotent. Then it is expected that for any
complexes N* and M?* of right and left §.-semimodules the complex of semi-infinite
forms with coefficients in N* ®j M* computes SemiTorS (N*, M*).

I am now working together with S. Arkhipov on this problem and it seems that
the key ideas of the proof are present. The argument is based on a relative version
of nonhomogeneous quadratic duality; basically, in order to obtain an isomorphism
8P ~ 8§_.,_c one constructs a natural isomorphism between the CDG-coalgebras
corresponding to these filtered semialgebras.

I plan to study the example of a semialgebra 8 over a coring € over a commutative
ring A for which the right and the left actions of A in € are different that is coming
from a pair consisting of a smooth affine grouppoid and a closed subgrouppoid with
the same variety of objects. In particular, an equivalence between the categories of
left and right 8-semimodules is expected.

I am working together with R. Bezrukavnikov on a generalization of the results of
his paper [5]. The expected result in this direction would claim that under certain
rather strict conditions on a finite-dimensional graded semialgebra 8§ over a graded
coalgebra € the graded version of the functor SemiExtg for bounded complexes of
finite-dimensional semimodules and semicontramodules can be interpreted as mor-
phisms from objects of the derived category of left S-semimodules into objects of
the derived category of left §-semicontramodules through their common subcategory
of bounded complexes of finite-dimensional C-injective S-semimodules, or, which is
equivalent, C-projective 8-semicontramodules.

For a semialgebra 8 over a coalgebra €, it is expected that the relative Koszul
duality should transform the functors SemiTor® and SemiExtg into the functors Cotor
and Coext over the CDG-coalgebra obtained by applying the relative bar construction
to 8; the absolute Koszul duality should then transform these functors into the
conventional Tor and Ext over a DG-algebra. The same should hold for a semialgebra,
over a coring, except that the dual object would not be a CDG-coring, but rather
have a structure analogous to the structure on the coring of polyvector fields dual to
the de Rham differential on forms.

One would like to generalize the results of 1.3-1.4 from the case of a ring A of
finite homological dimension to the case of a ring of arbitrary size endowed with a
good enough topology, like the ring of functions on a good ind-affine ind-scheme.
Notice that it is not difficult to define contramodules over good enough topological
rings. I also plan to consider semialgebras in the categories of pro-vector spaces and
ind-pro-vector spaces in the spirit of [7].

I plan to write a detailed paper on relative Koszul duality at some point.

3. TEACHING EXPERIENCE AND PLANS

My teaching experience ranges from teaching informal advanced courses on various
mathematical subjects in Moscow in the beginning of ’90s to working as a Course
Assistant during my study as a Graduate Student at Harvard University to teaching
courses on Galois Theory and Inverse Galois Problem at the Independent Univer-
sity of Moscow in 1999-2000 and 2003-2004. I plan to give a series of lectures or
teach a course on semi-infinite cohomology of associative algebraic structures in ITUM,
provided that there is an interested audience.
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