M. Ceballos

Departamento de Geometría y Topología, Facultad de Matemáticas, Universidad de Sevilla

Sevilla, Spain
mceballosgonzalez@gmail.com

J. NúÑEZ

Departamento de Geometría y Topología, Facultad de Matemáticas,
Universidad de Sevilla
Sevilla, Spain
jnvaldes@us.es
Á. F. Tenorio
Departamento de Economía, Métodos Cuantitativos e H ${ }^{a}$ Económica, Escuela Politécnica Superior, Universidad Pablo de Olavide

Sevilla, Spain
aftenorio@upo.es

Computing maximal Abelian dimensions in upper-triangular matrix algebras

The topic which is dealt in this paper is the maximal abelian dimension of a given finitedimensional Lie algebra \mathfrak{g}, that is, the maximum among the dimensions of the abelian Lie subalgebras of \mathfrak{g}.

More concretely, this maximum is computed for the Lie algebra \mathfrak{h}_{n}, formed by all the $n \times n$ upper-triangular matrices. In this way, every vector in \mathfrak{h}_{n} can be expressed as follows:

$$
h_{n}\left(x_{r, s}\right)=\left(\begin{array}{cccc}
x_{11} & x_{12} & \cdots & x_{1 n} \\
0 & x_{22} & \cdots & x_{2 n} \\
\vdots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & x_{n n}
\end{array}\right)
$$

Starting from this expression for the vectors in \mathfrak{h}_{n}, the following basis can be obtained: $\mathcal{B}=\left\{X_{i, j}=h_{n}\left(x_{r, s}\right) \mid 1 \leq i \leq j \leq n\right\}$, where:

$$
x_{r, s}= \begin{cases}1, & \text { if }(r, s)=(i, j) \\ 0, & \text { if }(r, s) \neq(i, j)\end{cases}
$$

Therefore, the dimension of this algebra is:

$$
\operatorname{dim}\left(\mathfrak{h}_{n}\right)=d_{\mathfrak{h}_{n}}=\frac{n(n+1)}{2}
$$

and the nonzero brackets with respect to the basis \mathcal{B} are:

$$
\begin{aligned}
& {\left[X_{i, j}, X_{j, k}\right]=X_{i, k}, \quad \forall i=1 \ldots n-2, \forall j=i+1 \ldots n-1, \forall k=j+1 \ldots n .} \\
& {\left[X_{i, i}, X_{i, j}\right]=X_{i, j}, \quad \forall j>i .} \\
& {\left[X_{k, i}, X_{i, i}\right]=X_{k, i}, \quad \forall k<i .}
\end{aligned}
$$

Apart from other reasons related to Physics, our interest for studying the Lie algebras \mathfrak{h}_{n} lies in the fact which every finite-dimensional solvable Lie algebra is isomorphic to a Lie subalgebra in some Lie algebra \mathfrak{h}_{n} [1, Proposition 3.7.3]. Therefore, the computation of the maximal abelian dimension for \mathfrak{h}_{n} can be considered a first step to study the maximal abelian dimension of any given finite-dimensional solvable Lie algebra.

The present paper continues the authors' previous paper [2] in which some properties of the maximal abelian dimension were studied for the algebra \mathfrak{h}_{n} and a value for its maximal abelian dimension was conjectured:

Conjecture. Fixed and given $n \in \mathbb{N} \backslash\{1\}$, the maximal abelian dimension of \mathfrak{h}_{n} is:

$$
\mathcal{M}\left(\mathfrak{h}_{n}\right)= \begin{cases}n, & \text { if } n<4, \\ k^{2}+1, & \text { if } n=2 k, n \geq 4, \\ k^{2}+k+1, & \text { if } n=2 k+1, n \geq 4\end{cases}
$$

This conjecture was achieved starting from an algorithmic procedure to compute abelian subalgebras in the Lie algebra \mathfrak{h}_{n}. In fact, this conjecture was already proved for the particular cases $n=2$ and $n=3$ in [2].

In this paper, we show a proof for the previously commented conjecture for all $n \in \mathbb{N} \backslash\{1\}$. To do it, two lemmas will be proved and applied in order to prove the veracity of the conjecture. To get the proof, the vectors in a given basis of \mathfrak{h}_{n} have to be distinguished between main vectors and non-main ones for a given basis of the subalgebra. Such a distinction is based on writing each vector in the basis of the subalgebra as a linear combination of the basis of \mathfrak{h}_{n}; then these coefficients are written as the rows in a matrix and the vectors corresponding to the pivot positions of its echalon form are the main vectors.

References

[1] V.S. Varadarajan, Lie Groups, Lie Algebras and Their Representations, Springer, New York, 1984.
[2] M. Ceballos, J. Núñez, A.F. Tenorio, Obstructions to represent abelian Lie subalgebras in the Lie algebra of upper-triangular matrices. First French-Spanish Congress of Mathematics, Saragossa (Spain), July 2007.

