S. KUMAR University of North Carolina Chapel Hill, United States shrawan@email.unc.edu

Descent of line bundles to GIT quotients of flag varieties

Let G be a connected semisimple complex algebraic group with a maximal torus T and let P be a parabolic subgroup containg T. We denote their Lie algebras by the corresponding Gothic characters. The following theorem is our main result.

Theorem. Let $\mathcal{L}(\lambda)$ be a homogeneous ample line bundle on the flag variety X = G/P. Then, the line bundle $\mathcal{L}(\lambda)$ descends to a line bundle on the GIT quotient $X^{ss}(\lambda)//T$ (i.e., there exists a line bundle \mathcal{L} on $X^{ss}(\lambda)//T$ whose pull-back to $X^{ss}(\lambda)$ is the restriction of $\mathcal{L}(\lambda)$) if and only if for all the semisimple subalgebras \mathfrak{s} of \mathfrak{g} containing \mathfrak{t} (in particular, rank $\mathfrak{s} = \operatorname{rank} \mathfrak{g}$),

$$\lambda \in \sum_{\alpha \in \triangle_+(\mathfrak{s})} \mathbb{Z}\alpha$$

where $\triangle_+(\mathfrak{s})$ is the set of positive roots of \mathfrak{s} .

As a consequence of the above theorem, we get precisely which line bundles descend to the geometric quotients $X^{ss}(\lambda)//T$.

In the following Q (resp., Λ) is the root (resp., weight) lattice and we follow the indexing convention as in Bourbaki.

Theorem. Let G be a connected, simply-connected simple algebraic group, $P \subset G$ a parabolic subgroup and let $\mathcal{L}(\lambda)$ be a homogeneous ample line bundle on the flag variety X = G/P. Then, the line bundle $\mathcal{L}(\lambda)$ descends to a line bundle on the GIT quotient $X^{ss}(\lambda)//T$ if and only if λ is of the following form depending upon the type of G.

- a) G of type A_{ℓ} ($\ell \geq 1$) : $\lambda \in Q$
- b) G of type B_{ℓ} ($\ell \geq 3$) : $\lambda \in 2Q$
- c) G of type C_{ℓ} ($\ell \geq 2$) : $\lambda \in \mathbb{Z}2\alpha_1 + \cdots + \mathbb{Z}2\alpha_{\ell-1} + \mathbb{Z}\alpha_{\ell}$
- d1) G of type $D_4 : \lambda \in \{n_1\alpha_1 + 2n_2\alpha_2 + n_3\alpha_3 + n_4\alpha_i : n_i \in \mathbb{Z} \text{ and } n_1 + n_3 + n_4 \text{ is even}\}.$
- d2) G of type D_{ℓ} ($\ell \geq 5$) : $\lambda \in \{2n_1\alpha_1 + 2n_2\alpha_2 + \dots + 2n_{\ell-2}\alpha_{\ell-2} + n_{\ell-1}\alpha_{\ell-1} + n_{\ell}\alpha_{\ell}, n_i \in \mathbb{Z}$ and $n_{\ell-1} + n_{\ell}$ is even $\}$.
- e) G of type $G_2 : \lambda \in \mathbb{Z}6\alpha_1 + \mathbb{Z}2\alpha_2$.
- f) G of type $F_4 : \lambda \in \mathbb{Z}6\alpha_1 + \mathbb{Z}6\alpha_2 + \mathbb{Z}12\alpha_3 + \mathbb{Z}12\alpha_4$.
- g) G of type $E_6 : \lambda \in 6P$.
- h) G of type $E_7 : \lambda \in 12P$
- i) G of type $E_8 : \lambda \in 60Q$.