V. F. Molchanov
G. R. Derzhavin Tambov State University
Tambov, Russia
molchanov@tsu.tmb.ru

Polynomial quantization on para-Hermitian symmetric spaces

The author was supported by the Russian Foundation for Basic Research: grants No. 05-01-00074a, No. 05-01-00001a and 07-01-91209 YaF_a, the Netherlands Organization for Scientific Research (NWO): grant 047-017-015, the Scientific Program "Devel. Sci. Potent. High. School": project RNP.2.1.1.351 and Templan No. 1.5.07.

We construct a variant of quantization (symbol calculus) in the spirit of Berezin on paraHermitian symmetric spaces. A general scheme of quantization was presented in [1]. There are 4 classes of symplectic semisimple symmetric spaces G / H : (a) Hermitian symmetric spaces; (b) semi-Kählerian symmetric spaces; (c) para-Hermitian symmetric spaces; (d) complexifications of Hermitian symmetric spaces. Spaces of class (a) are Riemannian, spaces of other three classes are pseudo-Riemannian (non-Riemannian). Let us assume that G is a simple Lie group. Then these 4 classes give a classification.

Berezin constructed quantization for spaces of class (a). We consider spaces of class (c). We can assume that G / H is an adjoint G-orbit. The Lie algebra \mathfrak{g} of G splits into the direct orthogonal (in sense of the Killing form) sum: $\mathfrak{g}=\mathfrak{h}+\mathfrak{q}$ where \mathfrak{h} is the Lie algebra of H. The space \mathfrak{q} splits into the direct sum of Lagrangian subspaces \mathfrak{q}^{-}and \mathfrak{q}^{+}of the tangent space to G at the initial point H. The subspaces $\mathfrak{q}^{ \pm}$are invariant and irreducible with respect to H, they are Abelian subalgebras of \mathfrak{g}. The pair $\left(\mathfrak{q}^{+}, \mathfrak{q}^{-}\right)$is a Jordan pair. Let r and \varkappa be rank and genus of it, r being also rank of G / H.

Set $Q^{ \pm}=\exp \mathfrak{q}^{ \pm}$. The subgroups $P^{ \pm}=H Q^{ \pm}=Q^{ \pm} H$ are maximal parabolic subgroups of G. We have the following decompositions (the Gauss and "anti-Gauss" decompositions): $G=\overline{Q^{+} H Q^{-}}, G=\overline{Q_{\widetilde{\xi}}^{-} H Q^{+}}$, where the bar means closure. The group G acts on \mathfrak{q}^{-}and \mathfrak{q}^{+}: $\xi \mapsto \widetilde{\xi}, \eta \mapsto \widehat{\eta}$, where $\widetilde{\xi}$ and $\widehat{\eta}$ are taken from the Gauss and the anti-Gauss decompositions:

$$
\begin{equation*}
\exp \xi \cdot g=\exp Y \cdot \widetilde{h} \cdot \exp \widetilde{\xi}, \quad \exp \eta \cdot g=\exp X \cdot \widehat{h} \cdot \exp \widehat{\eta} \tag{1}
\end{equation*}
$$

Therefore, G acts on $\mathfrak{q}^{-} \times \mathfrak{q}$, the stabilizer of the point $(0,0)$ is H, so that we obtain an embedding $\mathfrak{q}^{-} \times \mathfrak{q}^{+} \hookrightarrow G / H$ with an open and dense image. Let us call ξ, η horospherical coordinates on G / H. For $\xi \in \mathfrak{q}^{-}$and $\eta \in \mathfrak{q}^{+}$, let us decompose the anti-Gauss product $\exp \xi \cdot \exp (-\eta)$ according to the Gauss decomposition and denote by $h(\xi, \eta)$ the corresponding element in H. For $h \in H$, let us denote $b(h)=\left.\operatorname{det}(\operatorname{Ad} h)\right|_{\mathfrak{q}^{+}}$. The function $k(\xi, \eta)=b(h(\xi, \eta))$ is an analogue of the Bergman kernel for Hermitian symmetric spaces. It is $N(\xi, \eta)^{-\varkappa}$, where $N(\xi, \eta)$ is an irreducible polynomial in ξ and η of degree r in ξ and η separately.

Representations $\pi_{\lambda}^{ \pm}, \lambda \in \mathbb{C}$, of G of a maximal degenerate series associated with G / H are defined as induced representations $\pi_{\lambda}^{ \pm}=\operatorname{Ind}\left(G, P^{\mp}, \omega_{\mp \lambda}\right)$, where $\omega_{\lambda}(h)=|b(h)|^{-\lambda / \varkappa}$ and $\omega_{\lambda}=1$ on $Q^{ \pm}$. In noncompact picture, these representations act on functions $\varphi(\xi)$ and $\psi(\eta)$ on \mathfrak{q}^{-}and \mathfrak{q}^{+}respectively by (see (1)):

$$
\left(\pi_{\lambda}^{-}(g) \varphi\right)(\xi)=\omega_{\lambda}(\widetilde{h}) \varphi(\widetilde{\xi}), \quad\left(\pi_{\lambda}^{+}(g) \psi\right)(\eta)=\omega_{\lambda}(\widehat{h}) \psi(\widehat{\eta})
$$

An operator $A_{-\lambda-\varkappa}$ with the kernel $\Phi_{\lambda}(\xi, \eta)=|N(\xi, \eta)|^{\lambda}$ intertwines $\pi_{-\lambda-\varkappa}^{ \pm}$with π_{λ}^{\mp}. The product $A_{\lambda} A_{-\lambda-\varkappa}$ is $c(\lambda)^{-1} \cdot \mathrm{id}$, where $c(\lambda)$ is a meromorphic function of λ.

For the initial algebra of operators, we take the algebra of operators $D=\pi_{\lambda}^{-}(X)$, where X belongs to the universal enveloping algebra $\operatorname{Env}(\mathfrak{g})$ of \mathfrak{g}. This algebra acts on functions $\varphi(\xi)$ and $\psi(\eta)$ by representations π_{λ}^{-}and π_{λ}^{+}respectively. Spaces of these functions form analogues of the Fock space. For the supercomplete system we take the kernel $\Phi_{\lambda}(\xi, \eta)$. Let us call the covariant symbol of the operator $D=\pi_{\lambda}^{-}(X), X \in \operatorname{Env}(\mathfrak{g})$, the following function F on G / H which in horosherical coordinates is given by

$$
F(\xi, \eta)=\Phi_{\lambda}(\xi, \eta)^{-1}\left(\pi_{\lambda}^{-}(X) \otimes 1\right) \Phi_{\lambda}(\xi, \eta) .
$$

These functions are polynomials on G / H. It is why we call our version quantization the polynomial quantization. For λ generic, the space of covariant symbols is the space of all polynomials on G / H. The operator D is recovered by its covariant symbol F as follows:

$$
\begin{equation*}
(D \varphi)(\xi)=c(\lambda) \int F(\xi, v) \frac{\Phi_{\lambda}(\xi, v)}{\Phi_{\lambda}(u, v)} \varphi(u) d x(u, v) \tag{2}
\end{equation*}
$$

where $d x(\xi, \eta)$ is a G-invariant measure on G / H. The correspondence $D \mapsto F$ is \mathfrak{g}-equivariant. The multiplication of operators gives raise to a multiplication \star of covariant symbols. It is given by the Berezin kernel \mathcal{B}_{λ} :

$$
\left(F_{1} * F_{2}\right)(\xi, \eta)=\int F_{1}(\xi, v) F_{2}(u, \eta) \mathcal{B}_{\lambda}(\xi, \eta ; u, v) d x(u, v)
$$

where

$$
\mathcal{B}_{\lambda}(\xi, \eta ; u, v)=c(\lambda) \frac{\Phi_{\lambda}(\xi, v) \Phi_{\lambda}(u, \eta)}{\Phi_{\lambda}(\xi, \eta) \Phi_{\lambda}(u, v)}
$$

A function (a polynomial) $F(\xi, \eta)$ is the contravariant symbol for an operator A such that $(A \varphi)(\xi)$ is given by the right hand side of (2) with $F(\xi, v)$ replaced by $F(u, v)$.

Thus, we have two maps: $\mathcal{O}_{\lambda}=($ contra $) \circ(\mathrm{co})$ and the Berezin transform $\mathcal{B}_{\lambda}=(\mathrm{co}) \circ$ (contra). The map \mathcal{O}_{λ} (it was absent in Berezin's theory) assigns to an operator D with the covariant symbol F the operator A for which F is the contravariant symbol. The kernel of A is obtained from the kernel of D by the permutation of arguments and replacing λ by $-\lambda-\varkappa$. The map \mathcal{B}_{λ} assigns to the contravarint symbol F of an operator D the covariant symbol F of the same D. It is given just by the Berezin kernel.

Let us formulate open problems for arbitrary rank r : find an expression of the Berezin transform \mathcal{B}_{λ} in terms of Laplace operators, find eigenvalues of \mathcal{B}_{λ} on irreducible constituents, find its full asymptotic expansion of \mathcal{B}_{λ} when $\lambda \rightarrow-\infty$. These problems are solved for $r=1$, see [2], and for spaces with $G=\mathrm{SO}_{0}(p, q)$ (then $r=2$).

There is another approach to the polynomial quantization using representation theory. It gives co- and contravariant symbols and the Berezin transform in a natural and transparent way. These symbols are obtained under the restriction of a representation R_{λ} of the overgroup $\widetilde{G}=G \times G$ to the component subgroups $G \times e$ and $e \times G\left(R_{\lambda}\left(g_{1}, g_{2}\right)=\pi_{\lambda}^{-}\left(g_{2}\right) \otimes \pi_{\lambda}^{+}\left(g_{1}\right)\right)$.

References

[1] V. F. Molchanov, Quantization on para-Hermitian symmetric spaces. Amer. Math. Soc. Transl., Ser. 2, 1996, vol. 175 (Adv. in Math. Sci.-31), 81-95.
[2] V. F. Molchanov, N. B. Volotova. Polynomial quantization on rank one para-Hermitian symmetric spaces. Acta Appl. Math., 2004, vol. 81, Nos. 1-3, 215-222.

