V. F. MOLCHANOV G. R. Derzhavin Tambov State University Tambov, Russia molchanov@tsu.tmb.ru

Polynomial quantization on para-Hermitian symmetric spaces

The author was supported by the Russian Foundation for Basic Research: grants No. 05-01-00074a, No. 05-01-00001a and 07-01-91209 YaF_a, the Netherlands Organization for Scientific Research (NWO): grant 047-017-015, the Scientific Program "Devel. Sci. Potent. High. School": project RNP.2.1.1.351 and Templan No. 1.5.07.

We construct a variant of quantization (symbol calculus) in the spirit of Berezin on para-Hermitian symmetric spaces. A general scheme of quantization was presented in [1]. There are 4 classes of symplectic semisimple symmetric spaces G/H: (a) Hermitian symmetric spaces; (b) semi-Kählerian symmetric spaces; (c) para-Hermitian symmetric spaces; (d) complexifications of Hermitian symmetric spaces. Spaces of class (a) are Riemannian, spaces of other three classes are pseudo-Riemannian (non-Riemannian). Let us assume that G is a simple Lie group. Then these 4 classes give a classification.

Berezin constructed quantization for spaces of class (a). We consider spaces of class (c). We can assume that G/H is an adjoint *G*-orbit. The Lie algebra \mathfrak{g} of *G* splits into the direct orthogonal (in sense of the Killing form) sum: $\mathfrak{g} = \mathfrak{h} + \mathfrak{q}$ where \mathfrak{h} is the Lie algebra of *H*. The space \mathfrak{q} splits into the direct sum of Lagrangian subspaces \mathfrak{q}^- and \mathfrak{q}^+ of the tangent space to *G* at the initial point *H*. The subspaces \mathfrak{q}^{\pm} are invariant and irreducible with respect to *H*, they are Abelian subalgebras of \mathfrak{g} . The pair $(\mathfrak{q}^+, \mathfrak{q}^-)$ is a Jordan pair. Let *r* and \varkappa be rank and genus of it, *r* being also rank of G/H.

Set $Q^{\pm} = \exp \mathfrak{q}^{\pm}$. The subgroups $P^{\pm} = HQ^{\pm} = Q^{\pm}H$ are maximal parabolic subgroups of G. We have the following decompositions (the Gauss and "anti-Gauss" decompositions): $G = \overline{Q^+HQ^-}, G = \overline{Q^-HQ^+}$, where the bar means closure. The group G acts on \mathfrak{q}^- and \mathfrak{q}^+ : $\xi \mapsto \tilde{\xi}, \eta \mapsto \hat{\eta}$, where $\tilde{\xi}$ and $\hat{\eta}$ are taken from the Gauss and the anti-Gauss decompositions:

$$\exp \xi \cdot g = \exp Y \cdot \widetilde{h} \cdot \exp \widetilde{\xi}, \quad \exp \eta \cdot g = \exp X \cdot \widehat{h} \cdot \exp \widehat{\eta}, \tag{1}$$

Therefore, G acts on $\mathfrak{q}^- \times \mathfrak{q}$, the stabilizer of the point (0,0) is H, so that we obtain an embedding $\mathfrak{q}^- \times \mathfrak{q}^+ \hookrightarrow G/H$ with an open and dense image. Let us call ξ, η horospherical coordinates on G/H. For $\xi \in \mathfrak{q}^-$ and $\eta \in \mathfrak{q}^+$, let us decompose the anti-Gauss product $\exp \xi \cdot \exp(-\eta)$ according to the Gauss decomposition and denote by $h(\xi, \eta)$ the corresponding element in H. For $h \in H$, let us denote $b(h) = \det(\mathrm{Ad}h)|_{\mathfrak{q}^+}$. The function $k(\xi, \eta) = b(h(\xi, \eta))$ is an analogue of the Bergman kernel for Hermitian symmetric spaces. It is $N(\xi, \eta)^{-\varkappa}$, where $N(\xi, \eta)$ is an irreducible polynomial in ξ and η of degree r in ξ and η separately.

Representations π_{λ}^{\pm} , $\lambda \in \mathbb{C}$, of G of a maximal degenerate series associated with G/Hare defined as induced representations $\pi_{\lambda}^{\pm} = \operatorname{Ind}(G, P^{\mp}, \omega_{\mp\lambda})$, where $\omega_{\lambda}(h) = |b(h)|^{-\lambda/\varkappa}$ and $\omega_{\lambda} = 1$ on Q^{\pm} . In noncompact picture, these representations act on functions $\varphi(\xi)$ and $\psi(\eta)$ on \mathfrak{q}^- and \mathfrak{q}^+ respectively by (see (1)):

$$(\pi_{\lambda}^{-}(g)\varphi)(\xi) = \omega_{\lambda}(\widetilde{h})\varphi(\widetilde{\xi}), \quad (\pi_{\lambda}^{+}(g)\psi)(\eta) = \omega_{\lambda}(\widehat{h})\psi(\widehat{\eta}).$$

An operator $A_{-\lambda-\varkappa}$ with the kernel $\Phi_{\lambda}(\xi,\eta) = |N(\xi,\eta)|^{\lambda}$ intertwines $\pi_{-\lambda-\varkappa}^{\pm}$ with π_{λ}^{\mp} . The product $A_{\lambda}A_{-\lambda-\varkappa}$ is $c(\lambda)^{-1} \cdot id$, where $c(\lambda)$ is a meromorphic function of λ .

For the initial algebra of operators, we take the algebra of operators $D = \pi_{\lambda}^{-}(X)$, where X belongs to the universal enveloping algebra $\operatorname{Env}(\mathfrak{g})$ of \mathfrak{g} . This algebra acts on functions $\varphi(\xi)$ and $\psi(\eta)$ by representations π_{λ}^{-} and π_{λ}^{+} respectively. Spaces of these functions form analogues of the Fock space. For the supercomplete system we take the kernel $\Phi_{\lambda}(\xi, \eta)$. Let us call the *covariant symbol* of the operator $D = \pi_{\lambda}^{-}(X)$, $X \in \operatorname{Env}(\mathfrak{g})$, the following function F on G/H which in horosherical coordinates is given by

$$F(\xi,\eta) = \Phi_{\lambda}(\xi,\eta)^{-1}(\pi_{\lambda}^{-}(X) \otimes 1)\Phi_{\lambda}(\xi,\eta).$$

These functions are polynomials on G/H. It is why we call our version quantization the *polynomial quantization*. For λ generic, the space of covariant symbols is the space of all polynomials on G/H. The operator D is recovered by its covariant symbol F as follows:

$$(D\varphi)(\xi) = c(\lambda) \int F(\xi, v) \frac{\Phi_{\lambda}(\xi, v)}{\Phi_{\lambda}(u, v)} \varphi(u) \, dx(u, v),$$
(2)

where $dx(\xi, \eta)$ is a *G*-invariant measure on G/H. The correspondence $D \mapsto F$ is \mathfrak{g} -equivariant. The multiplication of operators gives raise to a multiplication \star of covariant symbols. It is given by the *Berezin kernel* \mathcal{B}_{λ} :

$$(F_1 * F_2)(\xi, \eta) = \int F_1(\xi, v) F_2(u, \eta) \mathcal{B}_{\lambda}(\xi, \eta; u, v) \, dx(u, v),$$

where

$$\mathcal{B}_{\lambda}(\xi,\eta;u,v) = c(\lambda) \frac{\Phi_{\lambda}(\xi,v)\Phi_{\lambda}(u,\eta)}{\Phi_{\lambda}(\xi,\eta)\Phi_{\lambda}(u,v)}$$

A function (a polynomial) $F(\xi, \eta)$ is the *contravariant* symbol for an operator A such that $(A\varphi)(\xi)$ is given by the right hand side of (2) with $F(\xi, v)$ replaced by F(u, v).

Thus, we have two maps: $\mathcal{O}_{\lambda} = (\text{contra}) \circ (\text{co})$ and the *Berezin transform* $\mathcal{B}_{\lambda} = (\text{co}) \circ (\text{contra})$. The map \mathcal{O}_{λ} (it was absent in Berezin's theory) assigns to an operator D with the covariant symbol F the operator A for which F is the contravariant symbol. The kernel of A is obtained from the kernel of D by the permutation of arguments and replacing λ by $-\lambda - \varkappa$. The map \mathcal{B}_{λ} assigns to the contravariant symbol F of an operator D the covariant symbol F of the same D. It is given just by the Berezin kernel.

Let us formulate open problems for arbitrary rank r: find an expression of the Berezin transform \mathcal{B}_{λ} in terms of Laplace operators, find eigenvalues of \mathcal{B}_{λ} on irreducible constituents, find its full asymptotic expansion of \mathcal{B}_{λ} when $\lambda \to -\infty$. These problems are solved for r = 1, see [2], and for spaces with $G = SO_0(p, q)$ (then r = 2).

There is another approach to the polynomial quantization using representation theory. It gives co- and contravariant symbols and the Berezin transform in a natural and transparent way. These symbols are obtained under the restriction of a representation R_{λ} of the overgroup $\tilde{G} = G \times G$ to the component subgroups $G \times e$ and $e \times G$ $(R_{\lambda}(g_1, g_2) = \pi_{\lambda}^-(g_2) \otimes \pi_{\lambda}^+(g_1))$.

References

- V. F. Molchanov, Quantization on para-Hermitian symmetric spaces. Amer. Math. Soc. Transl., Ser. 2, 1996, vol. 175 (Adv. in Math. Sci.-31), 81–95.
- [2] V. F. Molchanov, N. B. Volotova. Polynomial quantization on rank one para-Hermitian symmetric spaces. Acta Appl. Math., 2004, vol. 81, Nos. 1–3, 215–222.