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Degree bounds, the regular representation, and
invariants of permutation groups in general

Let F be a field, G a finite group, and consider a faithful representation of G
p: G — GL(n,F)

of degree n over F. Via p the group G acts on the vector space V = F", hence on the dual
space V*, and thus on the symmetric algebra on the dual, denoted by F[V]. We are interested
in the subalgebra

FIV]® ={f €F[Vllgf = f Vg € G} — F[V]

of polynomial invariants of G. In particular, we want to focus on permutation representations,
ie.,

p(G) < GL(n, F)

consists of permutation matrices.

We note that since every field has a 0 and a 1, permutation representations live over every
field. Thus is makes sense to compare rings of invariants of the same permutation groups
over different fields.

If F > K is a field extension then

F[V]¢ = F ok K[V]¢

i.e., this case is not interesting. Instead, we want to compare rings of invariants of permutation
groups across characteristics.

There are several classical results about invariants of permutation representation that are
valid over any ground field F:

The basic example is probably given by the invariants of the symmetric group in its defin-
ing representation. They are, of course, generated by the elementary symmetric functions
over any ground field. More generally for any field F we have

e F[V]¢ is generated as an F-algebra by orbit sums of monomials.
e F[V] is generated by orbit sums of degree at most min{n, ()}. (Goebel 1996)

e The Poincaré series of a ring of invariants of a permutation group is independent of the
ground field.

If we want further results we discover that the classical invariant theoretic/representation
theoretic dichotomy nonmodular-modular is not really relevant, but rather the dichotomy
Cohen-Macaulay vs. Non-Cohen-Macaulay invariants. The fundamental result which justifies
such a statement is the following:

Theorem 1 (MDN 2007). Let F and K be fields. Assume that F[V|¢ and K[V]¢ are
both Cohen-Macaulay. Then there is a set {f1,..., fx} of orbit sums of monomials that is a
minimal algebra generating set for both rings simultaneously.

It is this result which we want to explain and put into context during the talk.

Since it allows us to compare Cohen-Macaulay permutation invariants across character-
istics, in particular we can compare them with an invariant ring with a characteristic zero
ground field. It thus leads to many interesting corollaries on Cohen-Macaulay invariant rings
of permutation representations, like Killiuséonjecture, the relative Noether bound, or the fact



that a Cohen-Macaulay ring of permutation invariants is polynomial if and only if the group
is generated by pseudoreflections. We want to present these and several more results, that
show that rings of permutation invariants “look” like characteristic zero rings of invariants
as long as they are Cohen-Macaulay.

Moreover, the above mentioned theorem allows us also to prove an old conjecture on rings
of invariants of arbitrary representations:

Since rings of polynomial invariants of finite groups are finitely generated graded F-
algebras, we define 3(F[V]%) to be the maximal degree of an F-algebra generator in a minimal
algebra generating set. An on-going theme in invariant theory of finite groups is the problem
of finding upper bounds on 3(F[V]¥). For example, in the nonmodular case it is known that

BEV]Y) <G|

independent of the representation (Noether 1916, Fleischmann 2000, Fogarty 2001). There
are many refinements (for special classes of groups or representations) as well as relative
versions of this result. Moreoever, in 1989 Schmid fixed a group G and compared degree
bounds across representations in characteristic zero and found

B(FIV]€) < B(F[FG]Y),

where FG denotes the regular representation. Schmid$ degree bound is not valid in the
modular case as the threefold regular representation of Z/2 over a field of characteristic 2
shows:

B(F2[(F2Z/2)®3)%/?) = 3 > 2 = B(F2[F2Z/2]"?).

However, it has been conjectured since that Schmid$ bound remains valid in the general
nonmodular case. Indeed, it had been proven for char(F) = p > |G| by Smith (2001),
for nonmodular representations of abelian groups by Sezer (2002), and for nonmodular rep-
resentations with char(F) = p > 3|G| + 1 by Knop (2004). Theorem 1 above allows us to
prove Schmids degree bound in the general nonmodular case thus confirming that the regular
representation is the “worst” case:

Theorem 2 (MDN 2007). Let p: G — GL(n,F) be an arbitrary nonmodular representa-
tion. Then
BEVY) < BFIFG]).



