A. N. PANOV Samara State University Samara, Russia apanov@list.ru

Invariants and orbits of the triangular group

Let N = UT(n, K) be the subgroup of lower triangular matrices of size n with units on the diagonal over a field K. We assume that K has zero characteristic. The problem of classification of the adjoint and coadjoint orbits of N is far from its solution up today. In the talk we present a complete description of some families of adjoint and coadjoint orbits.

Here we concern the only one aspect of the talk: the description of coadjoint orbits associated with involutions. Class of considered orbits contains all regular orbits and some subregular orbits.

Let **n** be the Lie algebra of N. Let σ be an involution in the symmetric group S_n (i.e. $\sigma^2 = id$). The involution σ decomposes in the product of commuting reflections $\sigma = r_1 r_2 \cdots r_s$, where r_m is a reflection with respect to the positive root $\xi_m = \varepsilon_{j_m} - \varepsilon_{i_m}$, $j_m < i_m$.

Let $\{y_{ij}\}_{1 \le j < i \le n-1}$ be a standard basis in \mathfrak{n} . Consider the subset X_{σ} in \mathfrak{n}^* that consists of all $f \in \mathfrak{n}^*$ such that $f(y_{i_m,j_m}) \neq 0$, $1 \le m \le s$, and f annihilates on the other vectors of the standard basis.

THEOREM 1. For any $f \in X_{\sigma}$ the dimension of the coadjoint orbit $\Omega(f)$ equals to $l(\sigma) - s(\sigma)$ where $l(\sigma)$ is a number of inversions in the permutation $(\sigma(1), \ldots, \sigma(n))$ and $s(\sigma) = s$.

A polarization of $f \in \mathfrak{n}^*$ is a subalgebra that is also a maximal isotropic subspace with respect to the skew symmetric bilinear form f([x, y]). It is known that any linear form on a nilpotent Lie algebra has a polarization. A polarization enables to construct a primitive ideal in $U(\mathfrak{n})$ and in the case of $K = \mathbb{R}$ an irreducible unitary representation of N. Our goal is to present a polarization of any $f \in X_{\sigma}$.

For any $1 \leq t \leq n$ we consider the involution σ_{t-1} that equals to a product of all reflections r_m , $1 \leq m \leq s$ such that $j_m < t$. Put $\sigma_0 = id$. Consider the set of pairs $P_{\sigma} = \{(i,t) : 1 \leq t < i \leq n, \sigma_{t-1}(t) < \sigma_{t-1}(i)\}$. Denote by \mathfrak{p}_{σ} the linear subspace spanned by $y_{ij}, (i,j) \in P_{\sigma}$.

THEOREM 2. The linear subspace \mathfrak{p}_{σ} is a polarization of any $f \in X_{\sigma}$.

Construct the symbolic matrix Φ filled by the elements y_{ij} , i > j and zeroes on and upper the diagonal. Consider the characteristic matrix $\Phi(\tau) = \tau \Phi + E$.

For any pair $1 \leq k, t \leq n$ we consider the ordered systems $J'(k,t) = \operatorname{ord}\{1 \leq j < t : \sigma(j) > k\}$ and $I'(k,t) = \operatorname{ord}\{\sigma J'(k,t)\}$. Complement J'(k,t) and I'(k,t) to the ordered systems $J(k,t) = J'(k,t) \sqcup \{t\}$ and $I(k,t) = \{k\} \sqcup I'(k,t)$. By $D_{k,t}$ (resp. $D_{k,t}(\tau)$) we denote a minor of the matrix Φ (resp. $\Phi(\tau)$) with the system of columns J(k,t) and system of rows I(k,t).

For any positive root $\zeta = \varepsilon_t - \varepsilon_i$, satisfying $\sigma(\gamma) > 0$, we consider the pair (k, t), where $k = \sigma(i)$. Decompose the minor $D_{k,t}(\tau) = \tau^m (P_{\zeta,0} + P_{\zeta,1}\tau + ...)$ where $P_{\zeta,i} \in S(\mathfrak{n}) = K[\mathfrak{n}^*]$ and $P_{\zeta,0} \neq 0$. If k > t, then we denote $P_{\zeta} = P_{\zeta,0}$; if k < t, then we denote $P_{\zeta} = P_{\zeta,1}$. For any $1 \leq m \leq s$ we denote $D_m = D_{i_m,j_m}$.

THEOREM 3. For any $f \in X_{\sigma}$ the defining ideal the coadjoint orbit $\Omega(f)$ is generated by P_{ζ} , where $\zeta \in \Delta^+$, $\sigma(\zeta) > 0$, and $D_m - D_m(f)$, where $1 \le m \le s$.