A. N. Panov
Samara State University
Samara, Russia
apanov@list.ru

Invariants and orbits of the triangular group

Let $N=\mathrm{UT}(n, K)$ be the subgroup of lower triangular matrices of size n with units on the diagonal over a field K. We assume that K has zero characteristic. The problem of classification of the adjoint and coadjoint orbits of N is far from its solution up today. In the talk we present a complete description of some families of adjoint and coadjoint orbits.

Here we concern the only one aspect of the talk: the description of coadjoint orbits associated with involutions. Class of considered orbits contains all regular orbits and some subregular orbits.

Let \mathfrak{n} be the Lie algebra of N. Let σ be an involution in the symmetric group S_{n} (i.e. $\sigma^{2}=$ id). The involution σ decomposes in the product of commuting reflections $\sigma=r_{1} r_{2} \cdots r_{s}$, where r_{m} is a reflection with respect to the positive root $\xi_{m}=\varepsilon_{j_{m}}-\varepsilon_{i_{m}}, j_{m}<i_{m}$.

Let $\left\{y_{i j}\right\}_{1 \leq j<i \leq n-1}$ be a standard basis in \mathfrak{n}. Consider the subset X_{σ} in \mathfrak{n}^{*} that consists of all $f \in \mathfrak{n}^{*}$ such that $f\left(y_{i_{m}, j_{m}}\right) \neq 0,1 \leq m \leq s$, and f annihilates on the other vectors of the standard basis.
THEOREM 1. For any $f \in X_{\sigma}$ the dimension of the coadjoint orbit $\Omega(f)$ equals to $l(\sigma)-s(\sigma)$ where $l(\sigma)$ is a number of inversions in the permutation $(\sigma(1), \ldots, \sigma(n))$ and $s(\sigma)=s$.

A polarization of $f \in \mathfrak{n}^{*}$ is a subalgebra that is also a maximal isotropic subspace with respect to the skew symmetric bilinear form $f([x, y])$. It is known that any linear form on a nilpotent Lie algebra has a polarization. A polarization enables to construct a primitive ideal in $U(\mathfrak{n})$ and in the case of $K=\mathbb{R}$ an irreducible unitary representation of N. Our goal is to present a polarization of any $f \in X_{\sigma}$.

For any $1 \leq t \leq n$ we consider the involution σ_{t-1} that equals to a product of all reflections $r_{m}, 1 \leq m \leq s$ such that $j_{m}<t$. Put $\sigma_{0}=\mathrm{id}$. Consider the set of pairs $P_{\sigma}=\left\{(i, t): 1 \leq t<i \leq n, \sigma_{t-1}(t)<\sigma_{t-1}(i)\right\}$. Denote by \mathfrak{p}_{σ} the linear subspace spanned by $y_{i j},(i, j) \in P_{\sigma}$.
THEOREM 2. The linear subspace \mathfrak{p}_{σ} is a polarization of any $f \in X_{\sigma}$.
Construct the symbolic matrix Φ filled by the elements $y_{i j}, i>j$ and zeroes on and upper the diagonal. Consider the characteristic matrix $\Phi(\tau)=\tau \Phi+E$.

For any pair $1 \leq k, t \leq n$ we consider the ordered systems $J^{\prime}(k, t)=\operatorname{ord}\{1 \leq j<$ $t: \sigma(j)>k\}$ and $I^{\prime}(k, t)=\operatorname{ord}\left\{\sigma J^{\prime}(k, t)\right\}$. Complement $J^{\prime}(k, t)$ and $I^{\prime}(k, t)$ to the ordered systems $J(k, t)=J^{\prime}(k, t) \sqcup\{t\}$ and $I(k, t)=\{k\} \sqcup I^{\prime}(k, t)$. By $D_{k, t}$ (resp. $\left.D_{k, t}(\tau)\right)$ we denote a minor of the matrix Φ (resp. $\Phi(\tau)$) with the system of columns $J(k, t)$ and system of rows $I(k, t)$.

For any positive root $\zeta=\varepsilon_{t}-\varepsilon_{i}$, satisfying $\sigma(\gamma)>0$, we consider the pair (k, t), where $k=\sigma(i)$. Decompose the minor $D_{k, t}(\tau)=\tau^{m}\left(P_{\zeta, 0}+P_{\zeta, 1} \tau+\ldots\right)$ where $P_{\zeta, i} \in S(\mathfrak{n})=K\left[\mathfrak{n}^{*}\right]$ and $P_{\zeta, 0} \neq 0$. If $k>t$, then we denote $P_{\zeta}=P_{\zeta, 0}$; if $k<t$, then we denote $P_{\zeta}=P_{\zeta, 1}$. For any $1 \leq m \leq s$ we denote $D_{m}=D_{i_{m}, j_{m}}$.
THEOREM 3. For any $f \in X_{\sigma}$ the defining ideal the coadjoint orbit $\Omega(f)$ is generated by P_{ζ}, where $\zeta \in \Delta^{+}, \sigma(\zeta)>0$, and $D_{m}-D_{m}(f)$, where $1 \leq m \leq s$.

