L. G. RYBNIKOV Institute for Theoretical and Experimental Physics Moscow, Russia leo.rybnikov@gmail.com

Opers with irregular singularity and spectra of the shift of argument subalgebra

(Joint work with Boris Feigin and Edward Frenkel, math.QA/0712.1183.)

Let \mathfrak{g} be a semisimple complex Lie algebra, and $U(\mathfrak{g})$ its universal enveloping algebra. The algebra $U(\mathfrak{g})$ bears a natural filtration by the degree with respect to the generators. The associated graded algebra is the symmetric algebra $S(\mathfrak{g}) = \mathbb{C}[\mathfrak{g}^*]$ by the Poincaré–Birkhoff– Witt theorem. The commutator on $U(\mathfrak{g})$ defines the Poisson bracket on $S(\mathfrak{g})$.

Let $ZS(\mathfrak{g}) = S(\mathfrak{g})^{\mathfrak{g}}$ be the center of $S(\mathfrak{g})$ with respect to the Poisson bracket, and let $\mu \in \mathfrak{g}^* = \mathfrak{g}$ be a regular semisimple element. Due to the result of Mischenko and Fomenko (1978) the algebra $\overline{\mathcal{A}_{\mu}} \subset S(\mathfrak{g})$ generated by the elements $\partial_{\mu}^{n}\Phi$, where $\Phi \in ZS(\mathfrak{g})$, is commutative with respect to the Poisson bracket, and has maximal possible transcendence degree equal to $\frac{1}{2}(\dim \mathfrak{g} + \operatorname{rk} \mathfrak{g})$. If μ is a regular element contained in the Cartan subalgebra $\overline{\mathcal{A}_{f}}$ contains the principal nilpotent subalgebra $\mathfrak{F}_{\mathfrak{g}}(f)$.

It was recently shown that the shift of argument subalgebras can be quantized:

Fact 1. (*R.*, Feigin – Frenkel – Toledano Laredo) There exist a family of commutative subalgebras $\mathcal{A}_{\mu} \subset U(\mathfrak{g})$ (where $\mu \in \mathfrak{g}_{reg}$) such that $\operatorname{gr} \mathcal{A}_{\mu} = \overline{\mathcal{A}_{\mu}}$.

The subalgebra $\mathcal{A}_{\mu} \subset U(\mathfrak{g})$ is the image of some homomorphism $Z(\hat{\mathfrak{g}}) \to U(\mathfrak{g})$, where $Z(\hat{\mathfrak{g}})$ is the center of the completed enveloping algebra of $\hat{\mathfrak{g}}$ at the critical level.

The main question we discuss is to describe the spectra of \mathcal{A}_{μ} in finite-dimensional irreducible g-modules. The most interesting case is the "most special" case when $\mu = f$ is the principal nilpotent element.

The principal gradation on $U(\mathfrak{g})$ is defined on the generators as follows.

$$\deg_{pr} e_{\alpha} = -(\rho, \alpha^{\vee}) \ \forall \alpha \in \Delta, \quad \deg_{pr} h = 0 \ \forall h \in \mathfrak{h}.$$

The generators of \mathcal{A}_f are homogeneous with respect to this gradation. Note that the Poincaré series of \mathcal{A}_f with respect to the principal gradation is equal to that of the algebra $U(\mathfrak{n}_-)$. I shall discuss the following main

Theorem 1. (Feigin – Frenkel – R.) For any integral dominant weight λ the highest vector of V_{λ} is a cyclic vector for \mathcal{A}_f acting on V_{λ} . Thus the space V_{λ} is naturally identified with a quotient of \mathcal{A}_f by a certain ideal $I_{\lambda} \subset \mathcal{A}_f$. $\mathcal{A}_f/I_{\lambda}$ is a complete intersection.

The spectrum of the center at the critical level $Z(\hat{\mathfrak{g}})$ is identified with the space of ^LG-opers on the punctured formal disc (where ^LG is the Langlands dual group for G). ^LG-opers are connections in the principal G^{L} -bundle satisfying a certain transversality condition. Namely, for a curve $U = \operatorname{Spec} R$ and some coordinate t on U, the space $\operatorname{Op}_{L_G}(U)$ of ^LG-opers is the quotient of the space of ^LG-connections of the form

$$d + (p_{-1} + \mathbf{v}(t))dt, \qquad \mathbf{v}(t) \in {}^{L}\mathfrak{b}(R)$$

by the action of the group ${}^{L}N(R)$, where ${}^{L}N \subset {}^{L}G$ is the maximal unipotent subgroup, and ${}^{L}\mathfrak{b} \subset {}^{L}\mathfrak{g}$ is the Borel subalgebra. For $G = GL_r$, we have $G^{L} = GL_r$, and G^{L} -opers are simply differential operators of the degree r.

Since \mathcal{A}_{μ} is a quotient of $Z(\hat{\mathfrak{g}})$, the algebra \mathcal{A}_{μ} is identified with the algebra of polynomial functions on a certain space of opers. It is shown by Feigin, Frenkel and Toledano Laredo that Spec \mathcal{A}_{μ} is the set of ^LG-opers, which

- 1. are defined globally on $\mathbb{C}P^1 \setminus \{0, \infty\}$,
- 2. have regular singularity at 0
- 3. have an irregular singularity of the degree 2 at ∞ with the 2-residue μ .

Moreover, the image of \mathcal{A}_{μ} in $\operatorname{End}(V_{\lambda})$ factors through the opers, which

- 1. have the residue λ at 0;
- 2. have trivial monodromy representation.

For every dominant weight λ , the no-monodromy condition of corresponding ^LG-opers is a finite set of polynomial relations in the generators of \mathcal{A}_f . The number of such relations is equal to the number of positive roots of \mathfrak{g} . These relations have the degrees $(\alpha^{\vee}, \lambda + \rho)$ with respect to the principal grading. We prove that the no-monodromy conditions generate the ideal I_{λ} .

Note that this agrees with the q-analog of the Weyl dimension formula. Namely, the Poincaré series of any irreducible finite-dimensional \mathfrak{g} -module V_{λ} with respect to the principal grading is

$$\chi_{\lambda}(q) = \prod_{\alpha > 0} \frac{1 - q^{(\alpha^{\vee}, \lambda + \rho)}}{1 - q^{(\alpha^{\vee}, \rho)}}.$$

We note that the non-central generators of \mathcal{A}_f have the degrees (α^{\vee}, ρ) with respect to the principal grading, and the no-monodromy relations have the degrees $(\alpha^{\vee}, \lambda + \rho)$, and hence $\mathcal{A}_f/I_{\lambda}$ has the same Poincaré series.