Arseniy Akopyan. Geometry in Figures.

This book is a collection of theorems and problems in classical Euclidean geometry formulated in figures. It is intended for advanced high school and undergraduate students, teachers and all who like classical geometry.

Cover art created by Maria Zhilkina.
Contents

1. Elementary theorems ... 6
2. Triangle centers .. 9
3. Triangle lines ... 15
4. Elements of a triangle ... 18
 4.1. Altitudes of a triangle 18
 4.2. Orthocenter of a triangle 21
 4.3. Angle bisectors of a triangle 23
 4.4. The symmedian and its properties 27
 4.5. Inscribed circles .. 29
 4.6. Inscribed and circumscribed circles of a triangle 38
 4.7. Circles tangent to the circumcircle of a triangle ... 39
 4.8. Circles related to a triangle 42
 4.9. Concurrent lines of a triangle 50
 4.10. Right triangles ... 55
 4.11. Theorems about certain angles 55
 4.12. Other problems and theorems 57
5. Quadrilaterals .. 59
 5.1. Parallelograms ... 59
 5.2. Trapezoids .. 61
 5.3. Squares ... 62
 5.4. Circumscribed quadrilaterals 63
 5.5. Inscribed quadrilaterals 66
 5.6. Four points on a circle 68
 5.7. Altitudes in quadrilaterals 71
6. Circles .. 73
 6.1. Tangent circles ... 73
 6.2. Monge’s theorem and related constructions 75
 6.3. Common tangents of three circles 79
 6.4. Butterfly theorem .. 81
 6.5. Power of a point and related questions 82
 6.6. Equal circles .. 84
 6.7. Diameter of a circle 84
 6.8. Constructions from circles 86
 6.9. Circles tangent to lines 89
 6.10. Miscellaneous problems 90
7. Projective theorems .. 94
8. Regular polygons .. 96
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1 Remarkable properties of the equilateral triangle</td>
<td>98</td>
</tr>
<tr>
<td>9 Appended polygons</td>
<td>101</td>
</tr>
<tr>
<td>10 Chain theorems</td>
<td>104</td>
</tr>
<tr>
<td>11 Remarkable properties of conics</td>
<td>110</td>
</tr>
<tr>
<td>11.1 Projective properties of conics</td>
<td>113</td>
</tr>
<tr>
<td>11.2 Conics intersecting a triangle</td>
<td>118</td>
</tr>
<tr>
<td>11.3 Remarkable properties of the parabola</td>
<td>119</td>
</tr>
<tr>
<td>11.4 Remarkable properties of the rectangular hyperbola</td>
<td>121</td>
</tr>
<tr>
<td>12 Remarkable curves</td>
<td>122</td>
</tr>
<tr>
<td>13 Comments</td>
<td>124</td>
</tr>
</tbody>
</table>
Preface

This book is a collection of theorems (or rather facts) of classical Euclidean geometry formulated in figures.

The figures were drawn in such a way that the corresponding statements can be understood without any additional text.

We usually draw primary lines of each problem using bold lines. Final conclusions are illustrated by dashed lines. Centers of circles, polygons and foci of conics are denoted by points with a hole. Bold lines in the section about conics denote directrices of conics.

It is commonly very hard to determine who the author of certain results is. There are comments at the end of the book, most of which refer to the source of a result. Some of the results were discovered by the author while working on this book, but these results are probably not new.

I thank Dmitry Shvetsov, Fedor Petrov, Pavel Kozhevnikov and Ilya Bogdanov for useful remarks. I’m grateful to Mikhail Vyalyi for helping me to learn the METAPOST system, which was used to draw all the figures, except the cover which has been made by the admirable Maria Zhilkina.

If you have any comments or remarks or you spot any mistakes, please send an email to arseny.akopyan@gmail.com.
1 Elementary theorems

1.1) Elementary theorems

1.2) Pythagorean theorem

\[a^2 + b^2 = c^2 \]

The inscribed angle theorem

1.3) The inscribed angle theorem

1.4) The inscribed angle theorem

\[\alpha + \beta = 180^\circ \]

1.5) The inscribed angle theorem

1.6) The inscribed angle theorem

1.7) The inscribed angle theorem

1.8) Miquel’s theorem
1.9)

1.10)

1.11)

1.12)

1.13)

1.14)

\[
a/b = x/y
\]

1.15)

a + c = b + d

1.16)

a + c = b + d
1.17) \[\text{Diagram with circle and triangle.} \]

1.18) \[\alpha + \beta + \gamma + \delta + \varepsilon = 180^\circ \]

1.19) \[a \cdot c = b \cdot d \]

1.20) \[\text{Diagram with pentagon and circle.} \]

1.21) \[\text{Diagram with square and circle.} \]
2 Triangle centers

2.1) M

2.2) H

2.3) I

2.4) Gergonne point

2.5) O

2.6) Lemoine point
2.7) Nagel point

2.8) Torricelli point

2.9) First Torricelli point

2.10) Second Torricelli point

2.11) First Apollonius point

2.12) Second Apollonius point
2.13) First Soddy point

\[a + x = b + y = c + z \]

2.14) Second Soddy point

\[a - x = b - y = c - z \]

2.15)

2.16)

2.17)

2.18)
2.26)

2.27)

2.28)

2.29)

2.30)

2.31) First Lemoine circle

2.32) Second Lemoine circle
Miquel point and its properties

2.33) Miquel point

2.34)

2.35) Clifford’s circle theorem

2.36)

2.37)
3 Triangle lines

3.1) Euler line

3.2) Nagel line

3.3)

3.4)

3.5)

3.6) Soddy line
3.7) Aubert line

3.8) Gauss line

3.9)

3.10) Plücker’s theorem
The Simson line and its properties

3.11) Simson line

3.12) General Simson line

3.13)

3.14)

3.15)

3.16)
4 Elements of a triangle

4.1 Altitudes of a triangle

4.1.1)

4.1.2)

4.1.3)

4.1.4)

4.1.5)

4.1.6)
4.2 Orthocenter of a triangle

4.2.1)

4.2.2)

4.2.3)

4.2.4)

4.2.5)

4.2.6)
4.2.7) Droz-Farny’s theorem

4.2.8)

4.2.9)
4.3 Angle bisectors of a triangle

4.3.1)

4.3.2)

4.3.3)

4.3.4)
4.3.5) \[a + b = c \]

4.3.6) \[\frac{1}{a} = \frac{1}{b} + \frac{1}{c} \]

4.3.7)

4.3.8)
4.3.9) \[c = a + b \]
4.4 The symmedian and its properties

4.4.1)

4.4.2)

4.4.3)

4.4.4)

4.4.5)

4.4.6)
4.5 Inscribed circles

4.5.1)

4.5.2)

4.5.3)

4.5.4)
4.6 Inscribed and circumscribed circles of a triangle

4.6.1)

4.6.2)

4.6.3) Euler’s formula

\[d^2 = R^2 - 2Rr \]

4.6.4)

4.6.5)

4.6.6)
4.7 Circles tangent to the circumcircle of a triangle

Mixtilinear incircles

4.7.1) Verriër’s lemma

4.7.2)

4.7.3)

4.7.4)

4.7.5)

4.7.6)
4.7.13) Sawaya’s lemma

4.7.14)

4.7.15) Thébault’s theorem

4.7.16)

4.7.17)

4.7.18)
4.8 Circles related to a triangle

4.8.1) Euler circle

4.8.2) Feuerbach’s theorem
4.8.3) Fontené’s theorem

4.8.4) Emelyanov’s theorem

4.8.5)

4.8.6)

4.8.7)
Common chord of two circles

4.8.34)

4.8.35)

4.8.36)

4.8.37)

4.8.38)

4.8.39)
4.9 Concurrent lines of a triangle

4.9.1

4.9.2

4.9.3

4.9.4

4.9.5

4.9.6
4.9.15) Ceva’s theorem
\[a \cdot c \cdot e = b \cdot d \cdot f \]

4.9.16) Carnot’s theorem
\[a^2 + c^2 + e^2 = b^2 + d^2 + f^2 \]

4.9.17) Steiner’s theorem
4.10 Right triangles

4.10.1)

4.10.2)

4.10.3)

4.10.4)

4.10.5)

4.10.6)

4.10.7)

4.10.8)

4.11 Theorems about certain angles

4.11.1) 60°

4.11.2) 60°
4.12 Other problems and theorems

4.12.1) Blanchet’s theorem

4.12.2)

4.12.3)

4.12.4)

4.12.5)

4.12.6)

4.12.7)

4.12.8)
4.12.9)

4.12.10)

4.12.11) **Morley’s theorem**

4.12.12)
5 Quadrilaterals

5.1 Parallelograms
5.2 Trapezoids

5.2.1

5.2.2

5.2.3

5.2.4

5.2.5

5.2.6

5.2.7

5.2.8

61
5.3 Squares

5.3.1)

5.3.2)

5.3.3)
5.4 Circumscribed quadrilaterals

5.4.1)

5.4.2)

5.4.3)

5.4.4)

5.4.5)

5.4.6) Newton’s theorem
5.5 Inscribed quadrilaterals

5.5.1)

5.5.2)

5.5.3)

5.5.4)

5.5.5)

5.5.6) Ptolemy's theorem

\[a \cdot c + b \cdot d = e \cdot f \]
5.6 Four points on a circle

5.6.1)

5.6.2)

5.6.3)

5.6.4)

5.6.5)

5.6.6)
5.7 Altitudes in quadrilaterals

5.7.1)

5.7.2)

5.7.3) Brahmagupta’s theorem

5.7.4)

5.7.5)

5.7.6)
6 Circles

6.1 Tangent circles

6.1.1)

6.1.2)

6.1.3)

6.1.4)

6.1.5)

6.1.6)
6.1.7)

6.1.8)

6.1.9)

6.1.10) **Casey’s theorem**

\[a \cdot c + b \cdot d = e \cdot f \]
6.2 Monge’s theorem and related constructions

6.2.1) Eyeball theorem

6.2.2)

6.2.3) Monge’s theorem
6.2.10)

6.2.11)
6.3 Common tangents of three circles
6.4 Butterfly theorem

6.4.1)

6.4.2) Dual butterfly theorem

6.4.3) Butterfly theorem

6.4.4)

6.4.5)

6.4.6)
6.5 Power of a point and related questions

6.5.1) Radical axis theorem

6.5.2)

6.5.3)

6.5.4)

6.5.5)

6.5.6)
6.6 Equal circles

6.6.1)

6.6.2)

6.6.3)

6.6.4)

6.7 Diameter of a circle

6.7.1)

6.7.2)
6.8 Constructions from circles

6.8.1)

6.8.2)

6.8.3)

6.8.4)

6.8.5)

6.8.6)
6.8.7)

6.8.8)

6.8.9)

6.8.10) Seven circles theorem

6.8.11)

6.8.12)
6.8.13)

6.8.14)

6.8.15) Hart’s theorem
6.9 Circles tangent to lines

6.9.1)

6.9.2)

6.9.3)

6.9.4)

6.9.5)

6.9.6)

6.9.7)

6.9.8)

6.9.9)
6.10 Miscellaneous problems

6.10.1)

6.10.2)

6.10.3)

6.10.4)

6.10.5)

6.10.6)

6.10.7)

6.10.8)
6.10.23)

6.10.24) $a \cdot c \cdot e = b \cdot d \cdot f$

6.10.25) $a \cdot c \cdot e = b \cdot d \cdot f$
7 Projective theorems

7.1) Desargues’ theorem

7.2)

7.3) Pappus’ theorem
\[
\frac{a_1 \cdot c_1}{b_1 \cdot (a_1 + b_1 + c_1)} = \frac{a_2 \cdot c_2}{b_2 \cdot (a_2 + b_2 + c_2)}
\]
8 Regular polygons

8.1)

8.2)

8.3)

8.4)

8.5)

8.6)
8.1 Remarkable properties of the equilateral triangle

8.1.1)

8.1.2)

8.1.3) Pompeiu’s theorem

8.1.4)

8.1.5)

8.1.6)
8.1.15) Napoleon’s theorem

8.1.19) Thébault’s theorem

8.1.20) Thébault’s theorem
9 Appended polygons

9.1) Napoleon point

9.2)

9.3)

9.4)

9.5)

9.6)
9.14) Thébault’s theorem

9.15) Van Aubel’s theorem

9.16)

9.17)

9.18)

9.19)

9.20)

9.21)
10 Chain theorems

10.1) [Diagram]

10.2) [Diagram]

10.3) [Diagram]

10.4) [Diagram]

10.5) [Diagram]

10.6) [Diagram]
10.13)

10.14)

10.15) Six circles theorem

10.16) Nine circles theorem
Poncelet’s porism
11 Remarkable properties of conics

11.1) $a + b = c + d$

11.2) $a/b = c/d$

11.3) **Optical property of an ellipse**

11.4) $a + b = \text{const}$

11.5) **Poncelet’s theorem**

11.6)
11.1 Projective properties of conics

Pascal’s theorem
Briançon's theorem
11.1.16) **Three conics theorem**

11.1.19) **Dual three conics theorem**
11.1.20) **Four conics theorem**

11.1.21)

11.1.22)

11.1.23)

11.1.24)
11.2 Conics intersecting a triangle

11.2.1) [Diagram]

11.2.2) [Diagram]

11.2.3) [Diagram]

11.2.4) [Diagram]

11.2.5) [Diagram]

11.2.6) [Diagram]

11.2.7) [Diagram]

11.2.8) [Diagram]

11.2.9) [Diagram]
11.3 Remarkable properties of the parabola

11.3.1)

11.3.2) Optical property

11.3.3)

11.3.4)

11.3.5)

11.3.6)

11.3.7)

11.3.8)
11.4 Remarkable properties of the rectangular hyperbola
12 Remarkable curves

Lemniscate of Bernoulli

12.1) $a \cdot b = c \cdot d$

12.3)

Cissoid of Diocles

12.4)

12.5)

12.6)
Cardioid

12.7)

12.8)

12.9)

12.10)

12.11)

12.12)
13 Comments

2.32) Lemoine point is the center of the dashed circle.
3.9) Here it is shown that the Aubert line is perpendicular to the Gauss line.
4.1.9) V. V. Astakhov, All-Russian Mathematical Olympiad, 2006–2007, Final round, Grade 10, Problem 3.
4.1.17) See also 5.7.9.
4.2.6) United Kingdom, IMO Shortlist 1996.
4.3.8) Moscow Mathematical Olympiad, 1994, Grade 11, Problem 5.
4.3.19) D. V. Prokopenko, All-Russian Mathematical Olympiad, 2009–2010, Regional round, Grade 10, Problem 3.
4.3.21) M. G. Sonkin, All-Russian Mathematical Olympiad, 1999–2000, District round, Grade 8, Problem 4.
4.5.5) USA, IMO Shortlist 1979.
4.5.12) Twenty First Tournament of Towns, 1999–2000, Fall round, Senior A-Level, Problem 4.
4.5.15) Personal communication from L. A. Emelyanov.
4.5.16) Bulgaria, IMO Shortlist 1996.
4.5.22) Brazil, IMO Shortlist 2006. The bold line is parallel to the base of the triangle.
4.5.23) A. A. Polansky, All-Russian Mathematical Olympiad, 2006–2007, Final round, Grade 11, Problem 2. The bold line is parallel to the base of the triangle.
4.5.29) Special case of 6.3.3.
4.5.31) This construction using circles is not rare. See 10.15.
4.5.35) D. V. Shvetsov, Sixth Geometrical Olympiad in Honour of I. F. Sharygin, 2010, Correspondence round, Problem 8.
4.5.36) M. G. Sonkin, From the materials of the Summer Conference Tournament of Towns “Circles inscribed in circular segments and tangents”, 1999.
4.5.38, 4.5.39) Based on Bulgarian problem from IMO Shortlist 2009.
4.6.4) V. P. Filimonov, Moscow Mathematical Olympiad, 2008, Grade 11, Problem 4.
4.6.6) V. Yu. Protasov, Third Geometrical Olympiad in Honour of I. F. Sharygin, 2006, Correspondence round, Problem 15.
4.7.6) Generalization of 4.7.1.
4.7.16) Personal communication from K. V. Ivanov.
4.8.5) Personal communication from L. A. Emelyanov and T. L. Emelyanova.
4.8.7) Personal communication from F. F. Ivlev.
4.8.8) China, Team Selection Test, 2011.
4.8.21) Special case of 4.8.23.
4.9.1) The obtained point is called the isogonal conjugate with respect to the triangle.
4.9.3) The obtained point is called the isotomic conjugate with respect to the triangle.
4.9.20) This point will be the isogonal conjugate with respect to the triangle. See 4.9.1.
4.10.4) D. V. Shvetsov, Sixth Geometrical Olympiad in Honour of I. F. Sharygin, 2010, Correspondence round, Problem 2.
4.10.6) A. V. Smirnov, Saint Petersburg Mathematical Olympiad, 2005, Round II, Grade 10, Problem 2.
4.11.2) D. V. Prokopenko, All-Russian Mathematical Olympiad, 2009–2010, Regional round, Grade 9, Problem 4.
4.11.9) S. L. Berlov, Saint Petersburg Mathematical Olympiad, 2007, Round II, Grade 9, Problem 2.
4.12.1) Generalization of Blanchet’s theorem (see 4.12.1).
4.12.4) The bold line is parallel to the base of the triangle.
5.2.3) S. V. Markelov, Sixteenth Tournament of Towns, 1994–1995, Spring round, Senior A-Level, Problem 3.
5.2.5) A. A. Zaslavsky, First Geometrical Olympiad in Honour of I. F. Sharygin, 2005, Final round, Grade 10, Problem 3.
5.2.8) A. A. Zaslavsky, Third Geometrical Olympiad in Honour of I. F. Sharygin, 2007, Correspondence round, Problem 14.
5.2.10) A. V. Akopyan, Moscow Mathematical Olympiad, 2011, Problem 9.5.
5.2.2) The more general construction is illustrated in 5.4.16.
5.3.2) United Kingdom, IMO Shortlist 1979.
5.4.1–5.4.4) Special case of 5.4.5.
5.4.9) I. Wanshteyn.
5.4.10) A. A. Zaslavsky, Fourth Geometrical Olympiad in Honour of I. F. Sharygin, 2008, Correspondence round, Problem 10.
5.4.13) This construction is dual to the butterfly theorem. See 6.4.3 and 6.4.4.
5.5.2) F. V. Petrov, Saint Petersburg Mathematical Olympiad, 2006, Round II, Grade 11, Problem 3.
5.5.3) W. Pompe, International Mathematical Olympiad, 2004, Problem 5.
5.5.8) M. I. Isaev, All-Russian Mathematical Olympiad, 2006–2007, District round, Grade 10, Problem 4.
5.5.9) P. A. Kozhevnikov, All-Russian Mathematical Olympiad, 2009–2010, Final round, Grade 11, Problem 3.
5.6.1, 5.6.2) I. F. Sharygin, International Mathematical Olympiad, 1985, Problem 5.
5.6.10) Personal communication from L. A. Emelyanov.
5.7.4) Poland, IMO Shortlist 1996.
6.5.9) V. B. Mokin. XIV The A. N. Kolmogorov Cup, 2010, Personal competition, Senior level, Problem 5.
6.8.11) Constructions satisfying the condition of the figure are not rare (see 10.8).
6.10.3) A. A. Zaslavsky, P. A. Kozhevnikov, Moscow Mathematical Olympiad, 1999, Grade 10, Problem 2.
6.10.4) P. A. Kozhevnikov, All-Russian Mathematical Olympiad, 1997–1998, District round, Grade 9, Problem 2.
6.10.7) Dinu Şerbănescu, Romanian, Team Selection Test for Balkanian Mathematical Olympiad.
6.10.21) USA, IMO Longlist 1984.
6.10.23) Personal communication from E. A. Avksent’ev. This construction is a very simple way to construct the Apollonian circle.
7.2) The obtained line is called the trilinear polar with respect to the triangle.
8.1.1) Here the points are reflections of the given point with respect to the sides of the triangle.
8.1.4) Bulgaria, IMO Longlist 1966. See also 6.1.10.
9.1) If we construct our triangles in the direction of the interior, then we similarly obtain a point called the second Napoleon point.
9.3) See also 2.9 and 2.10.
10.4) This construction is equivalent to that of the Pappus theorem.
10.7) Personal communication from F. V. Petrov.
10.13) Personal communication from V. A. Shmarov.
10.14) Generalization of previous result.
11.4) Personal communication from F. K. Nilov.
11.9) Personal communication from V. B. Mokin.
11.10) Personal communication from P. A. Kozhevnikov.
11.19, 11.20) Personal communication from F. K. Nilov.
11.21) Personal communication from F. K. Nilov.
11.22) Personal communication from F. K. Nilov.
11.1.13) This line is called the polar line of a point with respect to the conic.
11.1.24) The same statement holds for any inscribed circumscribed polygon with an even number of sides.
11.2.1, 11.2.2) Personal communication from A. A. Zaslavsky.
11.3.10) K. A. Sukhov, Saint Petersburg Mathematical Olympiad, 2005, Team Selection Test for All-Russian Mathematical Olympiad, Grade 10, Problem 1.
11.3.11) Personal communication from F. K. Nilov.
11.3.16) Personal communication from F. K. Nilov.

Constructions the author discovered while working on this book: 4.5.24, 4.5.25, 4.5.28, 4.5.31, 4.5.42, 5.4.17, 6.8.5, 6.8.6, 6.8.12, 10.8, 10.9, 10.11, 10.14, 11.4.2.
Bibliography

