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Repetitions

(p, q) is a repetition in a word w if :
@ pq is a factor of w,
@ p#e€and
@ g is a prefix of pg.
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Repetitions

(p, q) is a repetition in a word w if :
@ pq is a factor of w,
@ p#e€and
@ g is a prefix of pg.

The exponent of the repetition is %.

Squares are repetitions of exponent 2.
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Repetitions

(p, q) is a repetition in a word w if :
@ pq is a factor of w,
@ p#e€and
@ g is a prefix of pg.

The exponent of the repetition is %.

Squares are repetitions of exponent 2.

A word is said x-free (resp. xT-free) if it does not contain a
repetition of exponent y with y > x (resp. y > x).
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Dejean’s Conjecture

Let RT(k) be the smallest x such that there is an infinite x*-free
word over a k-letter alphabet (k > 2).

Conjecture (Dejean’s conjecture, 1972)

I ifk=3
RT(k)=q% ifk=4
K otherwise.

=~
|
—
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Dejean’s Conjecture

Already proved for:

o k=2 [Thue 1906]
e k=3 [Dejean 1972]
o k=4 [Pansiot 1984]
e 5<k<11 [Moulin Ollagnier 1992]
0 12< k<14 [Currie, Mohammad-Noori 2004]
o k>33 [Carpi 2007]
o k>27 [Currie, Rampersad 2008,2009]

Michaél Rao Last Cases of Dejean’s Conjecture



Dejean’s Conjecture

Already proved for:

o k=2 [Thue 1906]
e k=3 [Dejean 1972]
o k=4 [Pansiot 1984]
e 5<k<11 [Moulin Ollagnier 1992]
0 12< k<14 [Currie, Mohammad-Noori 2004]
o k>33 [Carpi 2007]
e k>27 [Currie, Rampersad 2008,2009]
°8< k<38 [R. 2009]
0 15 < k<26 [Currie, Rampersad 2009]

Michaél Rao Last Cases of Dejean’s Conjecture



—2and kK = 3

Theorem (Thue 1906)

Thue-Morse word (i.e. fixed point of 0 — 01, 1 — 10) is 2" -free.
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—2and kK = 3

Theorem (Thue 1906)

Thue-Morse word (i.e. fixed point of 0 — 01, 1 — 10) is 2" -free.

f(a) = abcacbcabcbacbcacbha
f(b) = bcabacabcacbacabacb
f(¢) = cabcbabcabacbabcbac

Theorem (Dejean 1972)

A fixed point of f is %+-free.
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—2and kK = 3

Theorem (Thue 1906)

Thue-Morse word (i.e. fixed point of 0 — 01, 1 — 10) is 2" -free.

f(a) = abcacbcabcbacbcacbha
f(b) = bcabacabcacbacabacb
f(¢) = cabcbabcabacbabcbac

Theorem (Dejean 1972)

A fixed point of f is %+-free.

Theorem (Brandenburg 1983)
Fixed point method does not work for k > 4.
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Pansiot's Coding

If a word w on a k-letter alphabet is %—free, then every factor of
length k — 1 consists of kK — 1 different letters.
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Pansiot's Coding

If a word w on a k-letter alphabet is ;= é free, then every factor of
length k — 1 consists of kK — 1 different letters.

— w can be encoded by a binary word Py(w):

oo i wli+ k1] = wli]
Pi(w)li] = {1 if wli +k—1] ¢ {w[i],...,wli +k—2]}.
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Pansiot's Coding

If a word w on a k-letter alphabet is 7= free then every factor of
length k — 1 consists of kK — 1 dlfferent Ietters.

— w can be encoded by a binary word Py(w):

oo i wli+ k1] = wli]
Pi(w)li] = {1 if wli +k—1] ¢ {w[i],...,wli +k—2]}.

o W
=N
=~
[«
= o

1
Ps(w) = 0
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Pansiot's Coding

If a word w on a k-letter alphabet is 7= free then every factor of
length k — 1 consists of kK — 1 dlfferent Ietters.

— w can be encoded by a binary word Py(w):

oo i wli+ k1] = wli]
Pi(w)li] = {1 if wli +k—1] ¢ {w[i],...,wli +k—2]}.

O W
—= N
=~
o =
= o

1
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Pansiot's Coding

If a word w on a k-letter alphabet is ;= é free, then every factor of
length k — 1 consists of kK — 1 different letters.

— w can be encoded by a binary word Py(w):

oo i wli+ k1] = wli]
Pi(w)li] = {1 if wli +k—1] ¢ {w[i],...,wli +k—2]}.

w = 1 2 3 4 5

1 6 3 2 4 15
Ps(w) = 010110 1

Remark: If w validates Dejean’s conjecture then Py (w) is {00, 111}-free.
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Pansiot's Coding

Let Mg() be inverse of Py(). (sit. My(w)[l.k—1]=1 ... k—1)

i.e. Px(Mg(w)) = w for every binary word w.
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Pansiot's Coding

Let Mg() be inverse of Py(). (sit. My(w)[l.k—1]=1 ... k—1)

i.e. Px(Mg(w)) = w for every binary word w.

Let wy be a fixed point of Ay : 0 — 101101,1 — 10.

Theorem (Pansiot 1984)

Mas(wa) is %Jr -free.
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Moulin Ollagnier's ideas

Pansiot’s coding can also be viewed by the way of an action on the
symmetric group Sg:
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Moulin Ollagnier's ideas

Pansiot’s coding can also be viewed by the way of an action on the
symmetric group Sg:

Let W be the morphism between {0,1}* and Sy such that:
e V(0)=(1 2...k—1)andW(1)=(1 2...k—1 k)
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Pansiot’s coding can also be viewed by the way of an action on the
symmetric group Sg:

Let W be the morphism between {0,1}* and Sy such that:
e V(0)=(1 2...k—1)andW(1)=(1 2...k—1 k)

Foralli>0and 1<, <k—1 M(w)[i +j] = V(w[l..]])()). |
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Moulin Ollagnier's ideas

Pansiot’s coding can also be viewed by the way of an action on the
symmetric group Sg:

Let W be the morphism between {0,1}* and Sy such that:
e V(0)=(1 2...k—1)andW(1)=(1 2...k—1 k)

Foralli>0and 1<, <k—1 M(w)[i +j] = V(w[l..]])()). |

M(W)[i .. i+ k — 1] = Mg(w)[j .. j + k — 1] (for j > )
iff W(wli+1 .. j]) = Idg. J
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|u| =k — 1.
u u
— —
w: t t t t
Pr(w) % %
v

Then W(v) = Idg.
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Moulin Ollagnier's ideas

@ A repetition (p, q) is short if |g| < k — 1.
(Note: if forbidden = bounded size.)

@ A repetition is a kernel repetition if |q| > k — 1.
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Moulin Ollagnier's ideas

@ A repetition (p, q) is short if |g| < k — 1.
(Note: if forbidden = bounded size.)

@ A repetition is a kernel repetition if |q| > k — 1.

On Pansiot’s codes:

e (p,q) is a W-kernel repetition if (p, q) is a repetition, and
V(p) = ldx.
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Moulin Ollagnier's ideas

@ A repetition (p, q) is short if |g| < k — 1.
(Note: if forbidden = bounded size.)

@ A repetition is a kernel repetition if |q| > k — 1.

On Pansiot’s codes:

e (p,q) is a W-kernel repetition if (p, q) is a repetition, and
V(p) = ldx.

Lemma (Moulin Ollagnier)

My (w) has a kernel repetition (p,q) <
w has a V-kernel repetition (p’, q') with |p| = |p’| and
|q'| = lq| — k+1.
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Moulin Ollagnier's ideas

To prove Dejean’s conjecture for k > 5, find a morphism h s.t.:

@ My (w) has no forbidden short repetition,

@ w has no W-kernel repetition (p, g) with % > ﬁ

where w is a fixed point of h.
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Moulin Ollagnier's ideas

Idea: Limit us to h such that:
o V(h(0)) =0 -W(0) -0~ ! and
o V(h(1)) =0 V(1) 071,

for a o € Sy.
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Moulin Ollagnier's ideas

Idea: Limit us to h such that:

o V(h(0)) =0 -W(0) -0~ ! and
o U(h(1) =0 -W(1) 071,

for a o € Sy.

Lemma (Moulin Ollagnier)

Let (p,q) be a W-kernel repetition in w. If q is long enough, then
(p, q) is an image by h of a smaller V-kernel repetition in w.
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Moulin Ollagnier’s results

Let w be a fixed point of h.

Checking if My(w) is kfl+—free is decidable:
@ check if My(w) has no small forbidden repetition,

@ check if iterated images of “small” kernel repetitions in w are
not forbidden.
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Moulin Ollagnier’s results

Let w be a fixed point of h.

Checking if My(w) is kfl+—free is decidable:
@ check if My(w) has no small forbidden repetition,

@ check if iterated images of “small” kernel repetitions in w are
not forbidden.

Moulin Ollagnier gives morphisms hy for 5 < k < 11 such that
My (wy) is k—fl+—free (where wy is a fixed point of hy).
— Dejean’s conjecture holds for 5 < k < 11.
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Moulin Ollagnier's morphisms

he: 0 — 010101101101010110110
° 1 — 101010101101101101101

e {0 — 010101101101011010110
1 —101011010110110101101
b {0 — 0110110110110101101101101010
1 —1010110110110101101101101101
e {0 — 1011010101101011010110101010
1 —1011010101011011011010101101
o {0 — 101011010110110101011010110110101010
1 — 101010110110110101011011010110101101
hio: {0 — 1010101011011011011010101011011011010110
1 — 1010101011011011010110101010101011010101
huy: {0 — 1010101010101101101011010110101010110110
1 —1010101010101011011011011011011010101101
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New results
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Image of the Thue-Morse sequence

Moulin Ollagnier ideas can be extended to HDOLs. )
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Image of the Thue-Morse sequence

Moulin Ollagnier ideas can be extended to HDOLs. )

It is sufficient to work of a special case of HDOLs:
Image by a morphism of the Thue-Morse sequence.
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Image of the Thue-Morse sequence

Moulin Ollagnier ideas can be extended to HDOLs. )

It is sufficient to work of a special case of HDOLs:
Image by a morphism of the Thue-Morse sequence.

Let wrp be the Thue-Morse sequence on a, b
i.e. fixed point of g : a — ab, b — ba.
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Image of the Thue-Morse sequence

Moulin Ollagnier ideas can be extended to HDOLs. )
It is sufficient to work of a special case of HDOLs:
Image by a morphism of the Thue-Morse sequence. J

Let wrp be the Thue-Morse sequence on a, b
i.e. fixed point of g : a — ab, b — ba.

Let h: {a, b}* — {0,1}* be a morphism.

Is Mi(h(wrm)) 255 -free ?
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Image of the Thue-Morse sequence

Let o, = W(h(a)) and o = V(h(b)),
Let W' : {a, b}* — Sk s.t. V/(a) = 0, and V/(b) = 0.

Idea behind this:

Find a h such that:
e h(wrpm) has to avoid forbidden “short” W-kernel repetitions

@ wrpy has to avoid forbidden “long” W’-kernel repetitions.

@ We obtain results for smaller A. )
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Image of the Thue-Morse sequence

Following Moulin Ollagnier’s idea:

o V'(g(a))=0a-0p=0-0,-0"
o V(g(b)=o0p-0a=0-0p-0"

for a o € Sy.
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Image of the Thue-Morse sequence

Following Moulin Ollagnier’s idea:

o V'(g(a))=0a-0p=0-0,-0"
o V(g(b)=o0p-0a=0-0p-0"

for a o € Sy.

Remark: o, and o} have to be conjugate.
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Image of the Thue-Morse sequence

Following Moulin Ollagnier’s idea:

o V'(g(a))=0a-0p=0-0,-0"
o V(g(b)=o0p-0a=0-0p-0"

for a o € Sy.

Remark: o, and o} have to be conjugate.

Moreover: h is uniform, synchronizing, and the last letters differ.
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Let (p, g) be a W-kernel repetition of h(wrpy).

e If g is long enough, then (p, q) is an image by h of a V'-kernel
repetition in wrpy.
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Let (p, g) be a W-kernel repetition of h(wrpy).

e If g is long enough, then (p, q) is an image by h of a V'-kernel
repetition in wrpy.

Let (p, g) be a W'-kernel repetition of wry.

e If g is long enough, then (p, q) is an image by g of a W'-kernel
repetition in wryy.
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Let (p, g) be a W-kernel repetition of h(wrpy).

e If g is long enough, then (p, q) is an image by h of a V'-kernel
repetition in wrpy.

Let (p, g) be a W'-kernel repetition of wry.

e If g is long enough, then (p, q) is an image by g of a W'-kernel
repetition in wryy.

An image by g of a W-kernel repetition has a smaller exponent. J
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Let (p, g) be a W-kernel repetition of h(wrpy).

e If g is long enough, then (p, q) is an image by h of a V'-kernel
repetition in wrpy.

Let (p, g) be a W'-kernel repetition of wry.

e If g is long enough, then (p, q) is an image by g of a W'-kernel
repetition in wryy.

An image by g of a W-kernel repetition has a smaller exponent. )

This is decidable :

Check only small W-kernel repetitions in h(wrps) and small
W’_kernel repetitions in wrp.
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For every k € {8,...38}, there is a uniform morphism hy such that
: +
My (hx(wrm)) is k—fl -free.

Dejean’s conjecture holds for 8 < k < 38.
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Example: k = 18.

~Ja—10101101010110101101010110110101011010110
b b — 10101011010110101101011010110101011010101.

From 30 (for k = 8) up to 74 (for k = 38).

Computation time on a 2.4 Ghz processor

e Few seconds/minutes for “small” k.

@ Couple of hours for k = 38.
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This technique does not work for k € {3,5,6,7} since for every
0a,0p,0 € Sk such that:

@ 0, 0p=0-05-0 1 and

° ab-aaza-ab-o_l,

wrpm has a W'-kernel repetition of exponent at least RT(k).
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This technique does not work for k € {3,5,6,7} since for every
0a,0p,0 € Sk such that:

@ 0, 0p=0-05-0 1 and

° ab-aaza-ab-o_l,

wrpm has a W'-kernel repetition of exponent at least RT(k).

Works for k = 4 (|ha(x)| = 80).
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This technique does not work for k € {3,5,6,7} since for every
0a,0p,0 € Sk such that:
@ 0, 0p=0-05-0 1 and

° ab-aa:a-ab-a_l,

wrpm has a W'-kernel repetition of exponent at least RT(k).

Works for k = 4 (|ha(x)| = 80).

For every k > 8 there is a morphism hy such that My (hy(wtwm)) is

k aF
= -free.
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a — 1011010101101101011011010101101101010110.. . .
...1101010110101011011010110110101011011010

ha:
4 b — 1011010101101101011011010101101010110110. ..
...1010110110101011011010110110101011010101
ha a — 101101101101010101011010101101
8 b — 101101010101011011011011011010
he: a — 1011011010101010101011011010110101
o b — 1010110110101010101101101011010110
hio: a — 10101101010101101010101101010110101101
10 b — 10101101010110101101101011010101010110
haia: a — 101010110101101010110101101011010110101010110110
e b — 101011010101101011010110101011010110101010110101
hio: a — 1011010110110110101010101011010110110110110
1z b — 1011010101010110101101101101011010110101101
hia: a — 10101101010110101010110101101010101011011010101
13 b — 10101011011010101011010101101101010101011010110
ha: a — 1010110110101101101011010110101011010110110110
14! b — 1011010110101101101011010110101011010110110101
hye: a — 101101101101010110101010101101011011011011010101010110
15 b — 101011011011010110110101010101011011010110110101010101
hie: a — 101010110101101101011010110101101101011010110101011011010110
16 b — 101010110110101101011010101101101101011011010101011011010101
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a — 10110101101101010110110110110101010110110110101
b — 10110101101101010110110110101101010110110110110

a — 10101101010110101101010110110101011010110
b — 10101011010110101101011010110101011010101

a — 101010110110110101101011010101010110101011010110110110
b — 101010110110110101101011010110110110101010110101010101

a — 101011010101011010110110101010110101101011011011010110101
b — 101011010101011011010110101010110101011011011011010110110

a — 1010101101010110110110110110101101011010101010101
b — 1010110101010110110110110101101101011010101010110

a — 10101101011010110110110101101011010101101010110

h2a:
22 {b — 10101101011010110110110110101011010101101010101

a — 10101010101101101101101010110110110101010101
b — 10101010101101101101011010110110110101010110

a — 1010101010101011011011010101010110110101010101
b — 1010101010101011011010110101010110110101010110

a — 10101011010101101011010101101010101101010110101
b — 10101011010101101010110101101010101101010110110

a — 101101010101010101010101101101101010101101101101
b — 101101010101010101101101101101101010101101101010

a — 1010101010101101101011011010101010101011011011010101
b — 1010101010101101101011010110101010101011011011010110

a — 101010101010101011010110110101010101010101011011010101
b — 101010101010101011010110101101010101010101011011010110
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a — 101010110101010101101010101010101101010101011010101101
b — 101010110101010101101101101010101101010101011010101010

a — 1010101010101011011011011011010101010110110110110101010101
b — 1010101010101011011011011010110101010110110110110101010110

hae: a — 10110110110110110110101011010110110101101101010110110110101
31 b — 10110110110110110110101010110110110101101101010110110110110

a — 101101011011011010101101010101101101011011010101011010101101
b — 101101011011011010101101101101101101011011010101011010101010

a — 1010101010101011010101101011011010101010101010101101010110110101
b — 1010101010101011010101101011010110101010101010101101010110110110

a — 101011011010101010101010101010110101101010110101010101010101010101
b — 101011011010101010101010101010101101101010110101010101010101010110
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Ochem’s stronger conjecture

In a Dejean word (with k > 5), each letter has frequency at least

k+1 and at most k N
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Ochem’s stronger conjecture

In a Dejean word (with k > 5), each letter has frequency at least

k+1 and at most k N

Conjecture (Ochem 2005)

(1) For every k > 5, there exists an infinite k—flJr-free word over
k-letter with letter frequency k%rl

(2) For every k > 6, there exists an infinite =5 *_free word over

k-letter with letter frequency = g
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Ochem’s stronger conjecture

In a Dejean word (with k > 5), each letter has frequency at least

k+1 and at most k N

Conjecture (Ochem 2005)

1) For every k > 5, there exists an infinite %Jr-free word over
Y k—1
k-letter with letter frequency k%rl

(2) For every k > 6, there exists an infinite kfl+-free word over

k-letter with letter frequency ﬁ

Theorem (Chalopin, Ochem 2006)

(1) holds for k =5 and (2) holds for k = 6.
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Ochem’s stronger conjecture

If the Pansiot’s code of w has a 0 at position / (mod k — 1), then
w has a letter with frequency ﬁ

If the Pansiot’s code of w has a 0 at position i (mod k + 1), then
w has a letter with frequency %H
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Ochem’s stronger conjecture

If the Pansiot’s code of w has a 0 at position / (mod k — 1), then
w has a letter with frequency ﬁ

If the Pansiot’s code of w has a 0 at position i (mod k + 1), then
w has a letter with frequency %H

For every 9 < k < 38, Ochem’s conjecture holds.

(Does not work for k = 8.)
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Further Researchs

Generalized Repetition Threshold (next two talks).
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Further Researchs

Generalized Repetition Threshold (next two talks).

The growth rate of Lis g(L) = limp—oo /|LN X",

Compute g(Dy) for k > 3.

Good lower and upper bounds by Kolpakov and Shur. E.g.:
1.245 < g(D3) < 1.2456148 [Kolpakov 06, Shur 08].
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Thank you !
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