Last Cases of Dejean's Conjecture

Michaël Rao
CNRS - LaBRI - Université Bordeaux 1, France
rao@labri.fr
http://www.labri.fr/~rao

Repetitions

(p, q) is a repetition in a word w if:

- $p q$ is a factor of w,
- $p \neq \epsilon$ and
- q is a prefix of $p q$.

The exponent of the repetition is $\frac{|p q|}{|p|}$. Squares are repetitions of exponent 2.

A word is said x-free (resp. x^{+}-free) if it does not contain a repetition of exponent y with $y \geq x$ (resp. $y>x$).

Repetitions

(p, q) is a repetition in a word w if:

- $p q$ is a factor of w,
- $p \neq \epsilon$ and
- q is a prefix of $p q$.

The exponent of the repetition is $\frac{|p q|}{|p|}$.
Squares are repetitions of exponent 2.
A word is said x-free (resp. x^{+}-free) if it does not contain a repetition of exponent y with $y \geq x($ resp. $y>x)$.

Repetitions

(p, q) is a repetition in a word w if:

- $p q$ is a factor of w,
- $p \neq \epsilon$ and
- q is a prefix of $p q$.

The exponent of the repetition is $\frac{|p q|}{|p|}$.
Squares are repetitions of exponent 2.
A word is said x-free (resp. x^{+}-free) if it does not contain a repetition of exponent y with $y \geq x$ (resp. $y>x$).

Dejean's Conjecture

Let $\operatorname{RT}(k)$ be the smallest x such that there is an infinite x^{+}-free word over a k-letter alphabet $(k \geq 2)$.

Conjecture (Dejean's conjecture, 1972)

$$
\mathrm{RT}(k)= \begin{cases}\frac{7}{4} & \text { if } k=3 \\ \frac{7}{5} & \text { if } k=4 \\ \frac{k}{k-1} & \text { otherwise }\end{cases}
$$

Dejean's Conjecture

Already proved for:

- $k=2$
- $k=3$
- $k=4$
- $5 \leq k \leq 11$
- $12 \leq k \leq 14$
- $k \geq 33$
- $k \geq 27$
- $8 \leq k \leq 38$
- $15 \leq k \leq 26$
[Thue 1906]
[Dejean 1972]
[Pansiot 1984]
[Moulin Ollagnier 1992]
[Currie, Mohammad-Noori 2004]
[Carpi 2007]
[Currie, Rampersad 2008,2009]
[Currie, Rampersad 2009]

Dejean's Conjecture

Already proved for:

- $k=2$
- $k=3$
- $k=4$
- $5 \leq k \leq 11$
- $12 \leq k \leq 14$
- $k \geq 33$
- $k \geq 27$
- $8 \leq k \leq 38$
- $15 \leq k \leq 26$
[Thue 1906]
[Dejean 1972]
[Pansiot 1984]
[Moulin Ollagnier 1992]
[Currie, Mohammad-Noori 2004]
[Carpi 2007]
[Currie, Rampersad 2008,2009]
[R. 2009]
[Currie, Rampersad 2009]

$k=2$ and $k=3$

Theorem (Thue 1906)

Thue-Morse word (i.e. fixed point of $0 \rightarrow 01,1 \rightarrow 10$) is 2^{+}-free.
$f(a)=a b c a c b c a b c b a c b c a c b a$
$f(b)=b c a b a c a b c a c b a c a b a c b$
$f(c)=c a b c b a b c a b a c b a b c b a c$
Theorem (Dejean 1972)
A fived point of f is $\frac{7}{4}^{+}$-free.

Theorem (Brandenburg 1983)

Fixed point method does not work for $k \geq 4$.

$k=2$ and $k=3$

Theorem (Thue 1906)

Thue-Morse word (i.e. fixed point of $0 \rightarrow 01,1 \rightarrow 10$) is 2^{+}-free.
$f(a)=a b c a c b c a b c b a c b c a c b a$
$f(b)=b c a b a c a b c a c b a c a b a c b$
$f(c)=c a b c b a b c a b a c b a b c b a c$
Theorem (Dejean 1972)
A fixed point of f is $\frac{7}{4}^{+}$-free.

Theorem (Brandenburg 1983)

Fixed point method does not work for $k \geq 4$.

$k=2$ and $k=3$

Theorem (Thue 1906)

Thue-Morse word (i.e. fixed point of $0 \rightarrow 01,1 \rightarrow 10$) is 2^{+}-free.
$f(a)=a b c a c b c a b c b a c b c a c b a$
$f(b)=b c a b a c a b c a c b a c a b a c b$
$f(c)=c a b c b a b c a b a c b a b c b a c$

Theorem (Dejean 1972)

A fixed point of f is $\frac{7}{4}^{+}$-free.

Theorem (Brandenburg 1983)

Fixed point method does not work for $k \geq 4$.

Pansiot's Coding

If a word w on a k-letter alphabet is $\frac{k-1}{k-2}$-free, then every factor of length $k-1$ consists of $k-1$ different letters.
$\rightarrow w$ can be encoded by a binary word $P_{k}(w)$:

$$
\begin{aligned}
& P_{k}(w)[i]=\left\{\begin{array}{lllllllllllll}
0 & \text { if } w[i+k-1]=w[i] \\
1 & \text { if } w[i+k-1] \notin\{w[i], \ldots, w[i+k-2]\} .
\end{array}\right. \\
& w
\end{aligned}
$$

Remark: If w validates Dejean's conjecture then $P_{k}(w)$ is $\{00,111\}$-free.

Pansiot's Coding

If a word w on a k-letter alphabet is $\frac{k-1}{k-2}$-free, then every factor of length $k-1$ consists of $k-1$ different letters.
$\rightarrow w$ can be encoded by a binary word $P_{k}(w)$:

$$
P_{k}(w)[i]= \begin{cases}0 & \text { if } w[i+k-1]=w[i] \\ 1 & \text { if } w[i+k-1] \notin\{w[i], \ldots, w[i+k-2]\} .\end{cases}
$$

Remark: If w validates Dejean's conjecture then $P_{k}(w)$ is $\{00,111\}$-free.

Pansiot's Coding

If a word w on a k-letter alphabet is $\frac{k-1}{k-2}$-free, then every factor of length $k-1$ consists of $k-1$ different letters.
$\rightarrow w$ can be encoded by a binary word $P_{k}(w)$:

$$
\left.\begin{array}{l}
P_{k}(w)[i]=\left\{\begin{array}{lllllllllllll}
0 & \text { if } w[i+k-1]=w[i] \\
1 & \text { if } w[i+k-1] \notin\{w[i], \ldots, w[i+k-2]\} .
\end{array}\right. \\
w
\end{array} \begin{array}{llllllllllllll}
&
\end{array}\right]
$$

Remark: If w validates Dejean's conjecture then $P_{k}(w)$ is $\{00,111\}$-free.

Pansiot's Coding

If a word w on a k-letter alphabet is $\frac{k-1}{k-2}$-free, then every factor of length $k-1$ consists of $k-1$ different letters.
$\rightarrow w$ can be encoded by a binary word $P_{k}(w)$:

$$
\begin{aligned}
& P_{k}(w)[i]=\left\{\begin{array}{lllllllllllll}
0 & \text { if } w[i+k-1]=w[i] \\
1 & \text { if } w[i+k-1] \notin\{w[i], \ldots, w[i+k-2]\} .
\end{array}\right. \\
& w \\
& P_{6}(w)=
\end{aligned}
$$

Remark: If w validates Dejean's conjecture then $P_{k}(w)$ is $\{00,111\}$-free.

Pansiot's Coding

If a word w on a k-letter alphabet is $\frac{k-1}{k-2}$-free, then every factor of length $k-1$ consists of $k-1$ different letters.
$\rightarrow w$ can be encoded by a binary word $P_{k}(w)$:

$$
\left.\begin{array}{l}
P_{k}(w)[i]=\left\{\begin{array}{lllllllllllll}
0 & \text { if } w[i+k-1]=w[i] \\
1 & \text { if } w[i+k-1] \notin\{w[i], \ldots, w[i+k-2]\} .
\end{array}\right. \\
w \\
P_{6}(w)=1
\end{array}=\begin{array}{llllllllllllll}
& 2 & 3 & 4 & 5 & 1 & 6 & 3 & 2 & 4 & 1 & 5 & \ldots
\end{array}\right] .
$$

Remark: If w validates Dejean's conjecture then $P_{k}(w)$ is $\{00,111\}$-free.

Pansiot's Coding

If a word w on a k-letter alphabet is $\frac{k-1}{k-2}$-free, then every factor of length $k-1$ consists of $k-1$ different letters.
$\rightarrow w$ can be encoded by a binary word $P_{k}(w)$:

$$
\left.\begin{array}{l}
P_{k}(w)[i]=\left\{\begin{array}{lllllllllllll}
0 & \text { if } w[i+k-1]=w[i] \\
1 & \text { if } w[i+k-1] \notin\{w[i], \ldots, w[i+k-2]\} .
\end{array}\right. \\
w \\
P_{6}(w)=1
\end{array}=\begin{array}{lllllllllllllll}
& 2 & 3 & 4 & 5 & 1 & 6 & 3 & 2 & 4 & 1 & 5 & \ldots
\end{array}\right] .
$$

Remark: If w validates Dejean's conjecture then $P_{k}(w)$ is $\{00,111\}$-free.

Pansiot's Coding

If a word w on a k-letter alphabet is $\frac{k-1}{k-2}$-free, then every factor of length $k-1$ consists of $k-1$ different letters.
$\rightarrow w$ can be encoded by a binary word $P_{k}(w)$:

$$
\left.\begin{array}{l}
P_{k}(w)[i]=\left\{\begin{array}{lllllllllllll}
0 & \text { if } w[i+k-1]=w[i] \\
1 & \text { if } w[i+k-1] \notin\{w[i], \ldots, w[i+k-2]\} .
\end{array}\right. \\
w \\
P_{6}(w)=1
\end{array}=\begin{array}{lllllllllllllll}
& 2 & 3 & 4 & 5 & 1 & 6 & 3 & 2 & 4 & 1 & 5 & \ldots
\end{array}\right] .
$$

Remark: If w validates Dejean's conjecture then $P_{k}(w)$ is $\{00,111\}$-free.

Pansiot's Coding

If a word w on a k-letter alphabet is $\frac{k-1}{k-2}$-free, then every factor of length $k-1$ consists of $k-1$ different letters.
$\rightarrow w$ can be encoded by a binary word $P_{k}(w)$:

$$
\left.\begin{array}{l}
P_{k}(w)[i]=\left\{\begin{array}{lllllllllllll}
0 & \text { if } w[i+k-1]=w[i] \\
1 & \text { if } w[i+k-1] \notin\{w[i], \ldots, w[i+k-2]\} .
\end{array}\right. \\
w \\
P_{6}(w)=1
\end{array}=\begin{array}{lllllllllllllll}
& 2 & 3 & 4 & 5 & 1 & 6 & 3 & 2 & 4 & 1 & 5 & \ldots
\end{array}\right] .
$$

Remark: If w validates Dejean's conjecture then $P_{k}(w)$ is $\{00,111\}$-free.

Pansiot's Coding

If a word w on a k-letter alphabet is $\frac{k-1}{k-2}$-free, then every factor of length $k-1$ consists of $k-1$ different letters.
$\rightarrow w$ can be encoded by a binary word $P_{k}(w)$:

$$
\begin{aligned}
& P_{k}(w)[i]=\left\{\begin{array}{lllllllllllll}
0 & \text { if } w[i+k-1]=w[i] \\
1 & \text { if } w[i+k-1] \notin\{w[i], \ldots, w[i+k-2]\} .
\end{array}\right. \\
& w \\
& P_{6}(w)=
\end{aligned}
$$

Remark: If w validates Dejean's conjecture then $P_{k}(w)$ is $\{00,111\}$-free.

Pansiot's Coding

If a word w on a k-letter alphabet is $\frac{k-1}{k-2}$-free, then every factor of length $k-1$ consists of $k-1$ different letters.
$\rightarrow w$ can be encoded by a binary word $P_{k}(w)$:

$$
\begin{aligned}
& P_{k}(w)[i]=\left\{\begin{array}{llllllllllllll}
0 & \text { if } w[i+k-1]=w[i] \\
1 & \text { if } w[i+k-1] \notin\{w[i], \ldots, w[i+k-2]\} .
\end{array}\right. \\
& w \\
& P_{6}(w)=
\end{aligned}
$$

Remark: If w validates Dejean's conjecture then $P_{k}(w)$ is $\{00,111\}$-free.

Pansiot's Coding

If a word w on a k-letter alphabet is $\frac{k-1}{k-2}$-free, then every factor of length $k-1$ consists of $k-1$ different letters.
$\rightarrow w$ can be encoded by a binary word $P_{k}(w)$:

$$
\left.\begin{array}{l}
P_{k}(w)[i]=\left\{\begin{array}{lllllllllllll}
0 & \text { if } w[i+k-1]=w[i] \\
1 & \text { if } w[i+k-1] \notin\{w[i], \ldots, w[i+k-2]\} .
\end{array}\right. \\
w \\
P_{6}(w)=
\end{array} \begin{array}{llllllllllllll}
& 2 & 3 & 4 & 5 & 1 & 6 & 3 & 2 & 4 & 1 & 5 & \ldots
\end{array}\right] .
$$

Remark: If w validates Dejean's conjecture then $P_{k}(w)$ is $\{00,111\}$-free.

Pansiot's Coding

Let $M_{k}()$ be inverse of $P_{k}()$. (s.t. $\left.M_{k}(w)[1 . . k-1]=1 \ldots k-1\right)$
i.e. $P_{k}\left(M_{k}(w)\right)=w$ for every binary word w.

Let w_{4} be a fixed point of $h_{4}: 0 \rightarrow 101101,1 \rightarrow 10$.

Theorem (Pansiot 1084)

$M_{4}\left(w_{4}\right)$ is $\frac{7}{5}^{+}$-free.

Pansiot's Coding

Let $M_{k}()$ be inverse of $P_{k}()$. (s.t. $\left.M_{k}(w)[1 . . k-1]=1 \ldots k-1\right)$
i.e. $P_{k}\left(M_{k}(w)\right)=w$ for every binary word w.

Let w_{4} be a fixed point of $h_{4}: 0 \rightarrow 101101,1 \rightarrow 10$.

Theorem (Pansiot 1984)

$M_{4}\left(w_{4}\right)$ is $\frac{7}{5}^{+}$-free.

Moulin Ollagnier's ideas

Pansiot's coding can also be viewed by the way of an action on the symmetric group \mathbb{S}_{k} :

Let ψ be the morphism between $\{0,1\}^{*}$ and \mathbb{S}_{k} such that:

- $\Psi(0)=\left(\begin{array}{lll}1 & 2 \ldots k-1\end{array}\right)$ and $\Psi(1)=\left(\begin{array}{lll}1 & 2 \ldots k-1 & k\end{array}\right)$

For all $i \geq 0$ and $1 \leq j \leq k-1, M_{k}(w)[i+j]=\Psi(w[1 . . i])(j)$.
$M_{k}(w)[i . . i+k-1]=M_{k}(w)[j . . j+k-1]($ for $j>i)$
iff $\Psi(w[i+1 . . j])=\operatorname{Id}_{k}$.

Moulin Ollagnier's ideas

Pansiot's coding can also be viewed by the way of an action on the symmetric group \mathbb{S}_{k} :

Let Ψ be the morphism between $\{0,1\}^{*}$ and \mathbb{S}_{k} such that:

- $\Psi(0)=(12 \ldots k-1)$ and $\Psi(1)=\left(\begin{array}{lll}1 & 2 \ldots k-1 & k\end{array}\right)$

For all $i \geq 0$ and $1 \leq j \leq k-1, M_{k}(w)[i+j]=\Psi(w[1 . . i])(j)$.
$M_{k}(w)[i . . i+k-1]=M_{k}(w)[j . . j+k-1]($ for $j>i)$ iff $\Psi(w[i+1 . . j])=\operatorname{Id}_{k}$.

Moulin Ollagnier's ideas

Pansiot's coding can also be viewed by the way of an action on the symmetric group \mathbb{S}_{k} :

Let Ψ be the morphism between $\{0,1\}^{*}$ and \mathbb{S}_{k} such that:

- $\Psi(0)=(12 \ldots k-1)$ and $\Psi(1)=\left(\begin{array}{lll}1 & 2 \ldots k-1 & k\end{array}\right)$

For all $i \geq 0$ and $1 \leq j \leq k-1, M_{k}(w)[i+j]=\Psi(w[1 . . i])(j)$.
$M_{k}(w)[i . . i+k-1]=M_{k}(w)[j . . j+k-1]($ for $j>i)$ iff $\Psi(w[i+1 . . j])=\operatorname{Id}_{k}$.

Moulin Ollagnier's ideas

Pansiot's coding can also be viewed by the way of an action on the symmetric group \mathbb{S}_{k} :

Let Ψ be the morphism between $\{0,1\}^{*}$ and \mathbb{S}_{k} such that:

- $\Psi(0)=\left(\begin{array}{ll}1 & 2 \ldots k-1\end{array}\right)$ and $\Psi(1)=\left(\begin{array}{lll}1 & 2 \ldots k-1 & k\end{array}\right)$

For all $i \geq 0$ and $1 \leq j \leq k-1, M_{k}(w)[i+j]=\Psi(w[1 . . i])(j)$.
$M_{k}(w)[i . . i+k-1]=M_{k}(w)[j . . j+k-1]($ for $j>i)$ iff $\Psi(w[i+1 . . j])=\operatorname{ld}_{k}$.

A picture...

$$
|u|=k-1 .
$$

$$
P_{k}(w):
$$

Then $\Psi(v)=\mathrm{Id}_{k}$.

Moulin Ollagnier's ideas

- A repetition (p, q) is short if $|q|<k-1$.
(Note: if forbidden \Rightarrow bounded size.)
- A repetition is a kernel repetition if $|q| \geq k-1$.

On Pansiot's codes:

- (p, q) is a ψ-kernel repetition if (p, q) is a repetition, and $\Psi(p)=I d_{k}$.

Lemma (Moulin Ollagnier)
$M_{k}(w)$ has a kernel repetition $(p, q) \Leftrightarrow$
w has a Ψ-kernel repetition (p^{\prime}, q^{\prime}) with $|p|=\left|p^{\prime}\right|$ and
$\left|q^{\prime}\right|=|q|-k+1$.

Moulin Ollagnier's ideas

- A repetition (p, q) is short if $|q|<k-1$.
(Note: if forbidden \Rightarrow bounded size.)
- A repetition is a kernel repetition if $|q| \geq k-1$.

On Pansiot's codes:

- (p, q) is a ψ-kernel repetition if (p, q) is a repetition, and $\Psi(p)=\mathrm{Id}_{k}$.

Lemma (Moulin Ollagnier)
$M_{k}(w)$ has a kernel repetition $(p, q) \Leftrightarrow$
w has a Ψ-kernel repetition $\left(p^{\prime}, q^{\prime}\right)$ with $|p|=\left|p^{\prime}\right|$ and
$\left|q^{\prime}\right|=|q|-k+1$.

Moulin Ollagnier's ideas

- A repetition (p, q) is short if $|q|<k-1$.
(Note: if forbidden \Rightarrow bounded size.)
- A repetition is a kernel repetition if $|q| \geq k-1$.

On Pansiot's codes:

- (p, q) is a ψ-kernel repetition if (p, q) is a repetition, and $\Psi(p)=\mathrm{Id}_{k}$.

Lemma (Moulin Ollagnier)

$M_{k}(w)$ has a kernel repetition $(p, q) \Leftrightarrow$
w has a Ψ-kernel repetition $\left(p^{\prime}, q^{\prime}\right)$ with $|p|=\left|p^{\prime}\right|$ and $\left|q^{\prime}\right|=|q|-k+1$.

Moulin Ollagnier's ideas

To prove Dejean's conjecture for $k \geq 5$, find a morphism h s.t.:

- $M_{k}(w)$ has no forbidden short repetition,
- w has no ψ-kernel repetition (p, q) with $\frac{|p q|+k-1}{|p|}>\frac{k}{k-1}$. where w is a fixed point of h.

Moulin Ollagnier's ideas

Idea: Limit us to h such that:

- $\Psi(h(0))=\sigma \cdot \Psi(0) \cdot \sigma^{-1}$ and
- $\Psi(h(1))=\sigma \cdot \Psi(1) \cdot \sigma^{-1}$,
for a $\sigma \in \mathbb{S}_{k}$.

Lemma (Moulin Ollagnier)

Let (p, q) be a ψ-kernel repetition in w. If q is long enough, then (p, q) is an image by h of a smaller ψ-kernel repetition in w.

Moulin Ollagnier's ideas

Idea: Limit us to h such that:

- $\Psi(h(0))=\sigma \cdot \Psi(0) \cdot \sigma^{-1}$ and
- $\Psi(h(1))=\sigma \cdot \Psi(1) \cdot \sigma^{-1}$,
for a $\sigma \in \mathbb{S}_{k}$.

Lemma (Moulin Ollagnier)

Let (p, q) be a Ψ-kernel repetition in w. If q is long enough, then (p, q) is an image by h of a smaller Ψ-kernel repetition in w.

Moulin Ollagnier's results

Let w be a fixed point of h.
Checking if $M_{k}(w)$ is $\frac{k}{k-1}^{+}$-free is decidable:

- check if $M_{k}(w)$ has no small forbidden repetition,
- check if iterated images of "small" kernel repetitions in w are not forbidden.

> Moulin Ollagnier gives morphisms h_{k} for $5 \leq k \leq 11$ such that $M_{k}\left(w_{k}\right)$ is $\frac{k}{k-1}^{+}$-free (where w_{k} is a fixed point of h_{k}).
> \rightarrow Dejean's conjecture holds for $5 \leq k \leq 11$.

Moulin Ollagnier's results

Let w be a fixed point of h.
Checking if $M_{k}(w)$ is $\frac{k}{k-1}^{+}$-free is decidable:

- check if $M_{k}(w)$ has no small forbidden repetition,
- check if iterated images of "small" kernel repetitions in w are not forbidden.

Moulin Ollagnier gives morphisms h_{k} for $5 \leq k \leq 11$ such that $M_{k}\left(w_{k}\right)$ is $\frac{k}{k-1}^{+}$-free (where w_{k} is a fixed point of h_{k}).
\rightarrow Dejean's conjecture holds for $5 \leq k \leq 11$.

Moulin Ollagnier's morphisms

$h_{5}:\left\{\begin{array}{l}0 \rightarrow 010101101101010110110 \\ 1 \rightarrow 101010101101101101101\end{array}\right.$
$h_{6}:\left\{\begin{array}{l}0 \rightarrow 010101101101011010110 \\ 1 \rightarrow 101011010110110101101\end{array}\right.$
$h_{7}:\left\{\begin{array}{l}0 \rightarrow 0110110110110101101101101010 \\ 1 \rightarrow 1010110110110101101101101101\end{array}\right.$
$h_{8}:\left\{\begin{array}{l}0 \rightarrow 1011010101101011010110101010 \\ 1 \rightarrow 1011010101011011011010101101\end{array}\right.$
$h_{9}:\left\{\begin{array}{l}0 \rightarrow 101011010110110101011010110110101010 \\ 1 \rightarrow 101010110110110101011011010110101101\end{array}\right.$
$h_{10}:\left\{\begin{array}{l}0 \rightarrow 1010101011011011011010101011011011010110 \\ 1 \rightarrow 1010101011011011010110101010101011010101\end{array}\right.$
$h_{11}:\left\{\begin{array}{l}0 \rightarrow 1010101010101101101011010110101010110110 \\ 1 \rightarrow 1010101010101011011011011011011010101101\end{array}\right.$

New results

Image of the Thue-Morse sequence

Moulin Ollagnier ideas can be extended to HDOLs.

```
It is sufficient to work of a special case of HDOLs:
    Image by a morphism of the Thue-Morse sequence.
```

Let $w_{T M}$ be the Thue-Morse sequence on a, b
i.e. fixed point of $g: a \rightarrow a b, b \rightarrow b a$.
Let $h:\{a, b\}^{*} \rightarrow\{0,1\}^{*}$ be a morphism.

Question

Is $M_{k}\left(h\left(W_{T M}\right)\right) \frac{k}{k-1}{ }^{+}$-free ?

Image of the Thue-Morse sequence

Moulin Ollagnier ideas can be extended to HDOLs.

It is sufficient to work of a special case of HDOLs: Image by a morphism of the Thue-Morse sequence.

Let $w_{T M}$ be the Thue-Morse sequence on a, b i.e. fixed point of $g: a \rightarrow a b, b \rightarrow b a$.

Let $h:\{a, b\}^{*} \rightarrow\{0,1\}^{*}$ be a morphism.
Question
Is $M_{k}\left(h\left(w_{T M}\right)\right) \frac{k}{k-1}^{+}$-free ?

Image of the Thue-Morse sequence

Moulin Ollagnier ideas can be extended to HDOLs.

It is sufficient to work of a special case of HDOLs: Image by a morphism of the Thue-Morse sequence.

Let $w_{T M}$ be the Thue-Morse sequence on a, b
i.e. fixed point of $g: a \rightarrow a b, b \rightarrow b a$.

Let $h:\{a, b\}^{*} \rightarrow\{0,1\}^{*}$ be a morphism.
Question
Is $M_{k}\left(h\left(W_{T M}\right)\right) \frac{k}{k-1}^{+}$-free ?

Image of the Thue-Morse sequence

Moulin Ollagnier ideas can be extended to HDOLs.

It is sufficient to work of a special case of HDOLs: Image by a morphism of the Thue-Morse sequence.

Let $w_{T M}$ be the Thue-Morse sequence on a, b
i.e. fixed point of $g: a \rightarrow a b, b \rightarrow b a$.

Let $h:\{a, b\}^{*} \rightarrow\{0,1\}^{*}$ be a morphism.

Question

Is $M_{k}\left(h\left(w_{T M}\right)\right) \frac{k}{k-1}^{+}$-free ?

Image of the Thue-Morse sequence

$$
\begin{aligned}
& \text { Let } \sigma_{a}=\Psi(h(a)) \text { and } \sigma_{b}=\Psi(h(b)) \text {, } \\
& \text { Let } \Psi^{\prime}:\{a, b\}^{*} \rightarrow \mathbb{S}_{k} \text { s.t. } \Psi^{\prime}(a)=\sigma_{a} \text { and } \Psi^{\prime}(b)=\sigma_{b}
\end{aligned}
$$

Idea behind this:

Find a h such that:

- $h\left(w_{T M}\right)$ has to avoid forbidden "short" Ψ-kernel repetitions
- $\boldsymbol{W}_{T M}$ has to avoid forbidden "long" Ψ^{\prime}-kernel repetitions.
- We obtain results for smaller h.

Image of the Thue-Morse sequence

Following Moulin Ollagnier's idea:
Limit us to h such that:

- $\Psi^{\prime}(g(a))=\sigma_{a} \cdot \sigma_{b}=\sigma \cdot \sigma_{a} \cdot \sigma^{-1}$ and
- $\Psi^{\prime}(g(b))=\sigma_{b} \cdot \sigma_{a}=\sigma \cdot \sigma_{b} \cdot \sigma^{-1}$
for a $\sigma \in \mathbb{S}_{k}$.

Remark: σ_{a} and σ_{b} have to be conjugate.
Moreover: h is uniform, synchronizing, and the last letters differ.

Image of the Thue-Morse sequence

Following Moulin Ollagnier's idea:
Limit us to h such that:

- $\Psi^{\prime}(g(a))=\sigma_{a} \cdot \sigma_{b}=\sigma \cdot \sigma_{a} \cdot \sigma^{-1}$ and
- $\Psi^{\prime}(g(b))=\sigma_{b} \cdot \sigma_{a}=\sigma \cdot \sigma_{b} \cdot \sigma^{-1}$
for a $\sigma \in \mathbb{S}_{k}$.

Remark: σ_{a} and σ_{b} have to be conjugate.
Moreover: h is uniform, synchronizing, and the last letters differ.

Image of the Thue-Morse sequence

Following Moulin Ollagnier's idea:

Limit us to h such that:

- $\Psi^{\prime}(g(a))=\sigma_{a} \cdot \sigma_{b}=\sigma \cdot \sigma_{a} \cdot \sigma^{-1}$ and
- $\Psi^{\prime}(g(b))=\sigma_{b} \cdot \sigma_{a}=\sigma \cdot \sigma_{b} \cdot \sigma^{-1}$
for a $\sigma \in \mathbb{S}_{k}$.

Remark: σ_{a} and σ_{b} have to be conjugate.
Moreover: h is uniform, synchronizing, and the last letters differ.

Let (p, q) be a ψ-kernel repetition of $h\left(w_{T M}\right)$.

- If q is long enough, then (p, q) is an image by h of a Ψ^{\prime}-kernel repetition in $W_{T M}$.

```
Let \((p, q)\) be a \(\Psi^{\prime}\)-kernel repetition of \(w_{T M}\).
- If \(q\) is long enough, then \((p, q)\) is an image by \(g\) of a \(\psi^{\prime}\)-kernel repetition in \(\mathbf{W T}_{\text {TM }}\).
```

An image by g of a Ψ^{\prime}-kernel repetition has a smaller exponent.

This is decidable :

Check only small $\boldsymbol{\psi}$-kernel repetitions in $h\left(W_{T M}\right)$ and small Ψ^{\prime}-kernel repetitions in $W_{T M}$.

Let (p, q) be a Ψ-kernel repetition of $h\left(w_{T M}\right)$.

- If q is long enough, then (p, q) is an image by h of a Ψ^{\prime}-kernel repetition in $W_{T M}$.

Let (p, q) be a Ψ^{\prime}-kernel repetition of $w_{T M}$.

- If q is long enough, then (p, q) is an image by g of a Ψ^{\prime}-kernel repetition in $W_{T M}$.

An image by g of a Ψ^{\prime}-kernel repetition has a smaller exponent.

This is decidable :

Check only small $\boldsymbol{\psi}$-kernel repetitions in $h\left(W_{T M}\right)$ and small Ψ^{\prime}-kernel repetitions in $W_{T M}$.

Let (p, q) be a Ψ-kernel repetition of $h\left(w_{T M}\right)$.

- If q is long enough, then (p, q) is an image by h of a Ψ^{\prime}-kernel repetition in $w_{T M}$.

Let (p, q) be a Ψ^{\prime}-kernel repetition of $w_{T M}$.

- If q is long enough, then (p, q) is an image by g of a Ψ^{\prime}-kernel repetition in $W_{T M}$.

An image by g of a Ψ^{\prime}-kernel repetition has a smaller exponent.

This is decidable :

Check only small $\boldsymbol{\psi}$-kernel repetitions in $h\left(W_{T M}\right)$ and small Ψ^{\prime}-kernel repetitions in $W_{T M}$.

Let (p, q) be a Ψ-kernel repetition of $h\left(w_{T M}\right)$.

- If q is long enough, then (p, q) is an image by h of a Ψ^{\prime}-kernel repetition in $\omega_{T M}$.

Let (p, q) be a Ψ^{\prime}-kernel repetition of $w_{T M}$.

- If q is long enough, then (p, q) is an image by g of a Ψ^{\prime}-kernel repetition in $w_{T M}$.

An image by g of a Ψ^{\prime}-kernel repetition has a smaller exponent.

This is decidable :

Check only small Ψ-kernel repetitions in $h\left(w_{T M}\right)$ and small Ψ^{\prime}-kernel repetitions in $w_{T M}$.

Results

Theorem

For every $k \in\{8, \ldots 38\}$, there is a uniform morphism h_{k} such that $M_{k}\left(h_{k}\left(w_{T M}\right)\right)$ is $\frac{k}{k-1}^{+}$-free.

Corollary

Dejean's conjecture holds for $8 \leq k \leq 38$.

Results

Example: $k=18$.

$$
h_{18}:\left\{\begin{array}{l}
a \rightarrow 10101101010110101101010110110101011010110 \\
b \rightarrow 10101011010110101101011010110101011010101
\end{array}\right.
$$

Size of $h_{k}(x)$

From 30 (for $k=8$) up to 74 (for $k=38$).

Computation time on a 2.4 Ghz processor

- Few seconds/minutes for "small" k.
- Couple of hours for $k=38$.

Results

This technique does not work for $k \in\{3,5,6,7\}$ since for every $\sigma_{a}, \sigma_{b}, \sigma \in \mathbb{S}_{k}$ such that:

- $\sigma_{a} \cdot \sigma_{b}=\sigma \cdot \sigma_{a} \cdot \sigma^{-1}$ and
- $\sigma_{b} \cdot \sigma_{a}=\sigma \cdot \sigma_{b} \cdot \sigma^{-1}$,
$w_{T M}$ has a Ψ^{\prime}-kernel repetition of exponent at least $\mathrm{RT}(k)$.
Works for $k=4\left(\left|h_{4}(x)\right|=80\right)$.

Conjecture
For every $k \geq 8$ there is a morphism h_{k} such that $M_{k}\left(h_{k}\left(w_{T M}\right)\right)$ is $\frac{k}{k-1}^{+}$-free.

Results

This technique does not work for $k \in\{3,5,6,7\}$ since for every $\sigma_{a}, \sigma_{b}, \sigma \in \mathbb{S}_{k}$ such that:

- $\sigma_{a} \cdot \sigma_{b}=\sigma \cdot \sigma_{a} \cdot \sigma^{-1}$ and
- $\sigma_{b} \cdot \sigma_{a}=\sigma \cdot \sigma_{b} \cdot \sigma^{-1}$,
$w_{T M}$ has a Ψ^{\prime}-kernel repetition of exponent at least $\mathrm{RT}(k)$.
Works for $k=4\left(\left|h_{4}(x)\right|=80\right)$.

Conjecture

For every $k \geq 8$ there is a morphism h_{k} such that $M_{k}\left(h_{k}\left(W_{T M}\right)\right)$ is $\frac{k}{k-1}^{+}$-free.

Results

This technique does not work for $k \in\{3,5,6,7\}$ since for every $\sigma_{a}, \sigma_{b}, \sigma \in \mathbb{S}_{k}$ such that:

- $\sigma_{a} \cdot \sigma_{b}=\sigma \cdot \sigma_{a} \cdot \sigma^{-1}$ and
- $\sigma_{b} \cdot \sigma_{a}=\sigma \cdot \sigma_{b} \cdot \sigma^{-1}$,
$w_{T M}$ has a Ψ^{\prime}-kernel repetition of exponent at least $\mathrm{RT}(k)$.
Works for $k=4\left(\left|h_{4}(x)\right|=80\right)$.

Conjecture

For every $k \geq 8$ there is a morphism h_{k} such that $M_{k}\left(h_{k}\left(w_{T M}\right)\right)$ is $\frac{k}{k-1}^{+}$-free.
$h_{4}:\left\{\begin{array}{c}a \rightarrow 1011010101101101011011010101101101010110 \ldots \\ \ldots 1101010110101011011010110110101011011010 \\ b \rightarrow 1011010101101101011011010101101010110110 \ldots \\ \ldots 1010110110101011011010110110101011010101\end{array}\right.$
$h_{8}:\left\{\begin{array}{l}a \rightarrow 101101101101010101011010101101 \\ b \rightarrow 101101010101011011011011011010\end{array}\right.$
$\left\{\begin{array}{l}a \rightarrow 1011011010101010101011011010110101 \\ b \rightarrow 1010110110101010101101101011010110\end{array}\right.$
$\left\{\begin{array}{l}a \rightarrow 10101101010101101010101101010110101101 \\ b \rightarrow 10101101010110101101101011010101010110\end{array}\right.$
$\left\{\begin{array}{l}a \rightarrow 101010110101101010110101101011010110101010110110 \\ b \rightarrow 101011010101101011010110101011010110101010110101\end{array}\right.$
$\left\{\begin{array}{l}a \rightarrow 1011010110110110101010101011010110110110110 \\ b \rightarrow 1011010101010110101101101101011010110101101\end{array}\right.$
$\left\{\begin{array}{l}a \rightarrow 10101101010110101010110101101010101011011010101 \\ b \rightarrow 10101011011010101011010101101101010101011010110\end{array}\right.$
$h_{14}: \begin{cases}a & \rightarrow 1010110110101101101011010110101011010110110110 \\ b & \rightarrow 1011010110101101101011010110101011010110110101\end{cases}$
$h_{15}:\left\{\begin{array}{l}a \rightarrow 101101101101010110101010101101011011011011010101010110 \\ b \rightarrow 101011011011010110110101010101011011010110110101010101\end{array}\right.$
$h_{16}:\left\{\begin{array}{l}a \rightarrow 101010110101101101011010110101101101011010110101011011010110 \\ b \rightarrow 101010110110101101011010101101101101011011010101011011010101\end{array}\right.$
$h_{17}:\left\{\begin{array}{l}a \rightarrow 10110101101101010110110110110101010110110110101 \\ b \rightarrow 10110101101101010110110110101101010110110110110\end{array}\right.$
$h_{18}:\left\{\begin{array}{l}a \rightarrow 10101101010110101101010110110101011010110 \\ b \rightarrow 10101011010110101101011010110101011010101\end{array}\right.$
$h_{19}:\left\{\begin{array}{l}a \rightarrow 101010110110110101101011010101010110101011010110110110 \\ b \rightarrow 101010110110110101101011010110110110101010110101010101\end{array}\right.$
$h_{20}:\left\{\begin{array}{l}a \rightarrow 101011010101011010110110101010110101101011011011010110101 \\ b \rightarrow 101011010101011011010110101010110101011011011011010110110\end{array}\right.$
$h_{21}:\left\{\begin{array}{l}a \rightarrow 1010101101010110110110110110101101011010101010101 \\ b \rightarrow 1010110101010110110110110101101101011010101010110\end{array}\right.$
$\left\{\begin{array}{l}a \rightarrow 10101101011010110110110101101011010101101010110 \\ b \rightarrow 10101101011010110110110110101011010101101010101\end{array}\right.$
$\left\{\begin{array}{l}a \rightarrow 10101010101101101101101010110110110101010101 \\ b \rightarrow 10101010101101101101011010110110110101010110\end{array}\right.$
$\left\{\begin{array}{l}a \rightarrow 1010101010101011011011010101010110110101010101 \\ b \rightarrow 1010101010101011011010110101010110110101010110\end{array}\right.$
$\left\{\begin{array}{l}a \rightarrow 10101011010101101011010101101010101101010110101\end{array}\right.$
$b \rightarrow 10101011010101101010110101101010101101010110110$
$\left\{\begin{array}{l}a \rightarrow 101101010101010101010101101101101010101101101101 \\ b \rightarrow 101101010101010101101101101101101010101101101010\end{array}\right.$
$\{a \rightarrow 1010101010101101101011011010101010101011011011010101$ $\{b \rightarrow 1010101010101101101011010110101010101011011011010110$
$h_{28}:\left\{\begin{array}{l}a \rightarrow 101010101010101011010110110101010101010101011011010101 \\ b \rightarrow 101010101010101011010110101101010101010101011011010110\end{array}\right.$
$h_{29}:\left\{\begin{array}{l}a \rightarrow 101010110101010101101010101010101101010101011010101101 \\ b \rightarrow 101010110101010101101101101010101101010101011010101010\end{array}\right.$
$h_{30}:\left\{\begin{array}{l}a \rightarrow 1010101010101011011011011011010101010110110110110101010101 \\ b \rightarrow 1010101010101011011011011010110101010110110110110101010110\end{array}\right.$
$h_{31}:\left\{\begin{array}{l}a \rightarrow 10110110110110110110101011010110110101101101010110110110101 \\ b \rightarrow 10110110110110110110101010110110110101101101010110110110110\end{array}\right.$
$h_{32}:\left\{\begin{array}{l}a \rightarrow 101101011011011010101101010101101101011011010101011010101101 \\ b \rightarrow 101101011011011010101101101101101101011011010101011010101010\end{array}\right.$
$h_{33}:\left\{\begin{array}{l}a \rightarrow 1010101010101011010101101011011010101010101010101101010110110101 \\ b \rightarrow 1010101010101011010101101011010110101010101010101101010110110110\end{array}\right.$
$h_{34}:\left\{\begin{array}{l}a \rightarrow 101011011010101010101010101010110101101010110101010101010101010101 \\ b \rightarrow 101011011010101010101010101010101101101010110101010101010101010110\end{array}\right.$

Ochem's stronger conjecture

In a Dejean word (with $k \geq 5$), each letter has frequency at least $\frac{1}{k+1}$ and at most $\frac{1}{k-1}$.

Conjecture (Ochem 2005)

(1) For every $k \geq 5$, there exists an infinite $\frac{k}{k-1}^{+}$-free word over k-letter with letter frequency $\frac{1}{k+1}$.
(2) For every $k \geq 6$, there exists an infinite $\frac{k}{k-1}^{+}$-free word over k-letter with letter frequency $\frac{1}{k-1}$.

Theorem (Chalopin, Ochem 2006)

(1) holds for $k=5$ and (2) holds for $k=6$.

Ochem's stronger conjecture

In a Dejean word (with $k \geq 5$), each letter has frequency at least $\frac{1}{k+1}$ and at most $\frac{1}{k-1}$.

Conjecture (Ochem 2005)

(1) For every $k \geq 5$, there exists an infinite $\frac{k}{k-1}^{+}$-free word over k-letter with letter frequency $\frac{1}{k+1}$.
(2) For every $k \geq 6$, there exists an infinite $\frac{k}{k-1}^{+}$-free word over k-letter with letter frequency $\frac{1}{k-1}$.

Theorem (Chalopin, Ochem 2006)

(1) holds for $k=5$ and (2) holds for $k=6$.

Ochem's stronger conjecture

In a Dejean word (with $k \geq 5$), each letter has frequency at least $\frac{1}{k+1}$ and at most $\frac{1}{k-1}$.

Conjecture (Ochem 2005)

(1) For every $k \geq 5$, there exists an infinite $\frac{k}{k-1}^{+}$-free word over k-letter with letter frequency $\frac{1}{k+1}$.
(2) For every $k \geq 6$, there exists an infinite $\frac{k}{k-1}^{+}$-free word over k-letter with letter frequency $\frac{1}{k-1}$.

Theorem (Chalopin, Ochem 2006)

(1) holds for $k=5$ and (2) holds for $k=6$.

Ochem's stronger conjecture

If the Pansiot's code of w has a 0 at position $i(\bmod k-1)$, then w has a letter with frequency $\frac{1}{k-1}$.
If the Pansiot's code of w has a 0 at position $i(\bmod k+1)$, then w has a letter with frequency $\frac{1}{k+1}$.

Theorem
For every $9 \leq k \leq 38$, Ochem's conjecture holds.
(Does not work for $k=8$.)

Ochem's stronger conjecture

If the Pansiot's code of w has a 0 at position $i(\bmod k-1)$, then w has a letter with frequency $\frac{1}{k-1}$.
If the Pansiot's code of w has a 0 at position $i(\bmod k+1)$, then w has a letter with frequency $\frac{1}{k+1}$.

Theorem

For every $9 \leq k \leq 38$, Ochem's conjecture holds.
(Does not work for $k=8$.)

Further Researchs

Generalized Repetition Threshold (next two talks).

The growth rate of L is $g(L)=\lim _{n \rightarrow \infty} \sqrt[n]{\left|L \cap \sum^{n}\right|}$.
Question
Compute $g\left(D_{k}\right)$ for $k \geq 3$.

Good lower and upper bounds by Kolpakov and Shur. E.g.: $1.245 \leq g\left(D_{3}\right) \leq 1.2456148$ [Kolpakov 06, Shur 08].

Further Researchs

Generalized Repetition Threshold (next two talks).

The growth rate of L is $g(L)=\lim _{n \rightarrow \infty} \sqrt[n]{\left|L \cap \sum^{n}\right|}$.

Question

Compute $g\left(D_{k}\right)$ for $k \geq 3$.

Good lower and upper bounds by Kolpakov and Shur. E.g.: $1.245 \leq g\left(D_{3}\right) \leq 1.2456148$ [Kolpakov 06, Shur 08].

Thank you!

