Last Cases of Dejean's Conjecture

Michaël Rao

CNRS - LaBRI - Université Bordeaux 1, France rao@labri.fr http://www.labri.fr/~rao

Michaël Rao Last Cases of Dejean's Conjecture

< ∃ >

(p,q) is a *repetition* in a word w if :

- pq is a factor of w,
- $p \neq \epsilon$ and
- q is a prefix of pq.

The *exponent* of the repetition is $\frac{|pq|}{|p|}$. Squares are repetitions of exponent 2.

A word is said x-free (resp. x^+ -free) if it does not contain a repetition of exponent y with $y \ge x$ (resp. y > x).

(p,q) is a *repetition* in a word w if :

- pq is a factor of w,
- $p \neq \epsilon$ and
- q is a prefix of pq.

The *exponent* of the repetition is $\frac{|pq|}{|p|}$. Squares are repetitions of exponent 2.

A word is said x-free (resp. x^+ -free) if it does not contain a repetition of exponent y with $y \ge x$ (resp. y > x).

(p,q) is a *repetition* in a word w if :

- pq is a factor of w,
- $p \neq \epsilon$ and
- q is a prefix of pq.

The *exponent* of the repetition is $\frac{|pq|}{|p|}$. Squares are repetitions of exponent 2.

A word is said x-free (resp. x^+ -free) if it does not contain a repetition of exponent y with $y \ge x$ (resp. y > x).

Let RT(k) be the smallest x such that there is an infinite x^+ -free word over a k-letter alphabet ($k \ge 2$).

Conjecture (Dejean's conjecture, 1972)	
$RT(k) = \begin{cases} \frac{7}{4} \\ \frac{7}{5} \\ \frac{k}{k-1} \end{cases}$	if k = 3 if k = 4 otherwise.

Already proved for:

- *k* = 2
- *k* = 3
- *k* = 4
- $5 \le k \le 11$
- $12 \le k \le 14$
- *k* ≥ 33
- $k \ge 27$
- 8 ≤ k ≤ 38
- $15 \le k \le 26$

[Thue 1906] [Dejean 1972] [Pansiot 1984] [Moulin Ollagnier 1992] [Currie, Mohammad-Noori 2004] [Carpi 2007] [Currie, Rampersad 2008,2009] Already proved for:

- *k* = 2
- *k* = 3
- *k* = 4
- $5 \le k \le 11$
- $12 \le k \le 14$
- *k* ≥ 33
- $k \ge 27$
- $8 \le k \le 38$
- $15 \le k \le 26$

[Thue 1906] [Dejean 1972] [Pansiot 1984] [Moulin Ollagnier 1992] [Currie, Mohammad-Noori 2004] [Carpi 2007] [Currie, Rampersad 2008,2009] [R. 2009] [Currie, Rampersad 2009]

Theorem (Thue 1906)

Thue-Morse word (i.e. fixed point of $0 \rightarrow 01$, $1 \rightarrow 10$) is 2^+ -free.

f(a) = abcacbcabcbacbcacbaf(b) = bcabacabcacbacabacbf(c) = cabcbabcabacbabcbac

Theorem (Dejean 1972)

A fixed point of f is $\frac{7}{4}^+$ -free.

Theorem (Brandenburg 1983)

Fixed point method does not work for $k \ge 4$.

Theorem (Thue 1906)

Thue-Morse word (i.e. fixed point of $0 \rightarrow 01$, $1 \rightarrow 10$) is 2^+ -free.

f(a) = abcacbcabcbacbcacbaf(b) = bcabacabcacbacabacbf(c) = cabcbabcabacbabcbac

Theorem (Dejean 1972)

A fixed point of f is $\frac{7}{4}^+$ -free.

Theorem (Brandenburg 1983)

Fixed point method does not work for $k \ge 4$.

Theorem (Thue 1906)

Thue-Morse word (i.e. fixed point of $0 \rightarrow 01$, $1 \rightarrow 10$) is 2^+ -free.

f(a) = abcacbcabcbacbcacbaf(b) = bcabacabcacbacabacbf(c) = cabcbabcabacbabcbac

Theorem (Dejean 1972)

A fixed point of f is $\frac{7}{4}^+$ -free.

Theorem (Brandenburg 1983)

Fixed point method does not work for $k \ge 4$.

Pansiot's Coding

If a word w on a k-letter alphabet is $\frac{k-1}{k-2}$ -free, then every factor of length k-1 consists of k-1 different letters.

 $\rightarrow w$ can be encoded by a binary word $P_k(w)$:

$$P_{k}(w)[i] = \begin{cases} 0 & \text{if } w[i+k-1] = w[i] \\ 1 & \text{if } w[i+k-1] \notin \{w[i], \dots, w[i+k-2]\}. \end{cases}$$

$$w = 1 \ 2 \ 3 \ 4 \ 5 \ 1 \ 6 \ 3 \ 2 \ 4 \ 1 \ 5 \ \dots \\ P_{6}(w) = 0 \ 1 \ 0 \ 1 \ 1 \ 0 \ 1 \ \dots \end{cases}$$

Remark: If w validates Dejean's conjecture then $P_k(w)$ is $\{00, 111\}$ -free.

伺 ト イヨ ト イヨト

 \rightarrow w can be encoded by a binary word $P_k(w)$:

$$P_{k}(w)[i] = \begin{cases} 0 & \text{if } w[i+k-1] = w[i] \\ 1 & \text{if } w[i+k-1] \notin \{w[i], \dots, w[i+k-2]\}. \end{cases}$$

$$w = 1 \ 2 \ 3 \ 4 \ 5 \ 1 \ 6 \ 3 \ 2 \ 4 \ 1 \ 5 \ \dots \\ P_{6}(w) = 0 \ 1 \ 0 \ 1 \ 1 \ 0 \ 1 \ \dots \end{cases}$$

 \rightarrow w can be encoded by a binary word $P_k(w)$:

$$P_{k}(w)[i] = \begin{cases} 0 & \text{if } w[i+k-1] = w[i] \\ 1 & \text{if } w[i+k-1] \notin \{w[i], \dots, w[i+k-2]\}. \end{cases}$$

$$w = 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 1 \quad 6 \quad 3 \quad 2 \quad 4 \quad 1 \quad 5 \quad \dots \\ P_{6}(w) = \quad 0 \quad 1 \quad 0 \quad 1 \quad 1 \quad 0 \quad 1 \quad \dots \end{cases}$$

 \rightarrow w can be encoded by a binary word $P_k(w)$:

$$P_{k}(w)[i] = \begin{cases} 0 & \text{if } w[i+k-1] = w[i] \\ 1 & \text{if } w[i+k-1] \notin \{w[i], \dots, w[i+k-2]\}. \end{cases}$$

$$w = 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 1 \quad 6 \quad 3 \quad 2 \quad 4 \quad 1 \quad 5 \quad \dots \\ P_{6}(w) = \quad 0 \quad 1 \quad 0 \quad 1 \quad 1 \quad 0 \quad 1 \quad \dots \end{cases}$$

 \rightarrow w can be encoded by a binary word $P_k(w)$:

$$P_{k}(w)[i] = \begin{cases} 0 & \text{if } w[i+k-1] = w[i] \\ 1 & \text{if } w[i+k-1] \notin \{w[i], \dots, w[i+k-2]\}. \end{cases}$$

$$w = 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 1 \quad 6 \quad 3 \quad 2 \quad 4 \quad 1 \quad 5 \quad \dots \\ P_{6}(w) = \quad 0 \quad 1 \quad 0 \quad 1 \quad 1 \quad 0 \quad 1 \quad \dots \end{cases}$$

 \rightarrow w can be encoded by a binary word $P_k(w)$:

$$P_{k}(w)[i] = \begin{cases} 0 & \text{if } w[i+k-1] = w[i] \\ 1 & \text{if } w[i+k-1] \notin \{w[i], \dots, w[i+k-2]\}. \end{cases}$$

$$w = 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 1 \quad 6 \quad 3 \quad 2 \quad 4 \quad 1 \quad 5 \quad \dots \\ P_{6}(w) = \quad 0 \quad 1 \quad 0 \quad 1 \quad 1 \quad 0 \quad 1 \quad \dots \end{cases}$$

 \rightarrow w can be encoded by a binary word $P_k(w)$:

$$P_{k}(w)[i] = \begin{cases} 0 & \text{if } w[i+k-1] = w[i] \\ 1 & \text{if } w[i+k-1] \notin \{w[i], \dots, w[i+k-2]\}. \end{cases}$$

$$w = 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 1 \quad 6 \quad 3 \quad 2 \quad 4 \quad 1 \quad 5 \quad \dots \\ P_{6}(w) = \quad 0 \quad 1 \quad 0 \quad 1 \quad 1 \quad 0 \quad 1 \quad \dots \end{cases}$$

 \rightarrow w can be encoded by a binary word $P_k(w)$:

$$P_{k}(w)[i] = \begin{cases} 0 & \text{if } w[i+k-1] = w[i] \\ 1 & \text{if } w[i+k-1] \notin \{w[i], \dots, w[i+k-2]\}. \end{cases}$$

$$w = 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 1 \quad 6 \quad 3 \quad 2 \quad 4 \quad 1 \quad 5 \quad \dots \\ P_{6}(w) = 0 \quad 1 \quad 0 \quad 1 \quad 1 \quad 0 \quad 1 \quad \dots \end{cases}$$

 \rightarrow w can be encoded by a binary word $P_k(w)$:

$$P_{k}(w)[i] = \begin{cases} 0 & \text{if } w[i+k-1] = w[i] \\ 1 & \text{if } w[i+k-1] \notin \{w[i], \dots, w[i+k-2]\}. \end{cases}$$

$$w = 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 1 \quad 6 \quad 3 \quad 2 \quad 4 \quad 1 \quad 5 \quad \dots \\ P_{6}(w) = 0 \quad 1 \quad 0 \quad 1 \quad 1 \quad 0 \quad 1 \quad \dots \end{cases}$$

 \rightarrow w can be encoded by a binary word $P_k(w)$:

$$P_{k}(w)[i] = \begin{cases} 0 & \text{if } w[i+k-1] = w[i] \\ 1 & \text{if } w[i+k-1] \notin \{w[i], \dots, w[i+k-2]\}. \end{cases}$$

$$w = 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 1 \quad 6 \quad 3 \quad 2 \quad 4 \quad 1 \quad 5 \quad \dots \\ P_{6}(w) = 0 \quad 1 \quad 0 \quad 1 \quad 1 \quad 0 \quad 1 \quad \dots \end{cases}$$

 \rightarrow w can be encoded by a binary word $P_k(w)$:

$$P_{k}(w)[i] = \begin{cases} 0 & \text{if } w[i+k-1] = w[i] \\ 1 & \text{if } w[i+k-1] \notin \{w[i], \dots, w[i+k-2]\}. \end{cases}$$

$$w = 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 1 \quad 6 \quad 3 \quad 2 \quad 4 \quad 1 \quad 5 \quad \dots \\ P_{6}(w) = 0 \quad 1 \quad 0 \quad 1 \quad 1 \quad 0 \quad 1 \quad \dots \end{cases}$$

Let $M_k()$ be inverse of $P_k()$. (s.t. $M_k(w)[1..k-1] = 1 \dots k-1)$ i.e. $P_k(M_k(w)) = w$ for every binary word w.

Let w_4 be a fixed point of $h_4: 0 \rightarrow 101101, 1 \rightarrow 10$.

Theorem (Pansiot 1984)

 $M_4(w_4)$ is $\frac{7}{5}^+$ -free.

Let $M_k()$ be inverse of $P_k()$. (s.t. $M_k(w)[1..k-1] = 1 \dots k-1)$ i.e. $P_k(M_k(w)) = w$ for every binary word w.

Let w_4 be a fixed point of $h_4: 0 \rightarrow 101101, 1 \rightarrow 10$.

Theorem (Pansiot 1984)

 $M_4(w_4)$ is $\frac{7}{5}^+$ -free.

•
$$\Psi(0) = (1 \ 2 \dots k - 1)$$
 and $\Psi(1) = (1 \ 2 \dots k - 1 \ k)$

For all
$$i \ge 0$$
 and $1 \le j \le k - 1$, $M_k(w)[i + j] = \Psi(w[1..i])(j)$.

$$M_k(w)[i ... i + k - 1] = M_k(w)[j ... j + k - 1] \text{ (for } j > i\text{)}$$

iff $\Psi(w[i + 1 ... j]) = Id_k.$

•
$$\Psi(0) = (1 \ 2 \dots k - 1)$$
 and $\Psi(1) = (1 \ 2 \dots k - 1 \ k)$

For all
$$i \ge 0$$
 and $1 \le j \le k - 1$, $M_k(w)[i + j] = \Psi(w[1..i])(j)$.

$$M_k(w)[i ... i + k - 1] = M_k(w)[j ... j + k - 1] \text{ (for } j > i\text{)}$$

iff $\Psi(w[i + 1 ... j]) = Id_k.$

•
$$\Psi(0) = (1 \ 2 \dots k - 1)$$
 and $\Psi(1) = (1 \ 2 \dots k - 1 \ k)$

For all
$$i \ge 0$$
 and $1 \le j \le k - 1$, $M_k(w)[i + j] = \Psi(w[1..i])(j)$.

$$M_k(w)[i ... i + k - 1] = M_k(w)[j ... j + k - 1]$$
 (for $j > i$)
iff $\Psi(w[i + 1 ... j]) = Id_k$.

•
$$\Psi(0) = (1 \ 2 \dots k - 1)$$
 and $\Psi(1) = (1 \ 2 \dots k - 1 \ k)$

For all
$$i \ge 0$$
 and $1 \le j \le k - 1$, $M_k(w)[i + j] = \Psi(w[1..i])(j)$.

$$M_k(w)[i ... i + k - 1] = M_k(w)[j ... j + k - 1]$$
 (for $j > i$)
iff $\Psi(w[i + 1 ... j]) = Id_k$.



Then $\Psi(v) = \operatorname{Id}_k$.

æ

< ∃ >

Moulin Ollagnier's ideas

- A repetition (p, q) is short if |q| < k − 1. (Note: if forbidden ⇒ bounded size.)
- A repetition is a *kernel repetition* if $|q| \ge k 1$.

On Pansiot's codes:

• (p,q) is a Ψ -kernel repetition if (p,q) is a repetition, and $\Psi(p) = Id_k$.

Lemma (Moulin Ollagnier)

 $M_k(w)$ has a kernel repetition $(p, q) \Leftrightarrow$ w has a Ψ -kernel repetition (p', q') with |p| = |p'| and |q'| = |q| - k + 1.

□□ ▶ < □ ▶ < □ ▶</p>

Moulin Ollagnier's ideas

- A repetition (p, q) is short if |q| < k − 1. (Note: if forbidden ⇒ bounded size.)
- A repetition is a *kernel repetition* if $|q| \ge k 1$.

On Pansiot's codes:

• (p, q) is a Ψ -kernel repetition if (p, q) is a repetition, and $\Psi(p) = Id_k$.

Lemma (Moulin Ollagnier)

 $M_k(w)$ has a kernel repetition $(p, q) \Leftrightarrow$ w has a Ψ -kernel repetition (p', q') with |p| = |p'| and |q'| = |q| - k + 1.

一回 ト イヨト イヨト

Moulin Ollagnier's ideas

- A repetition (p, q) is short if |q| < k − 1. (Note: if forbidden ⇒ bounded size.)
- A repetition is a *kernel repetition* if $|q| \ge k 1$.

On Pansiot's codes:

• (p,q) is a Ψ -kernel repetition if (p,q) is a repetition, and $\Psi(p) = Id_k$.

Lemma (Moulin Ollagnier)

 $M_k(w)$ has a kernel repetition $(p,q) \Leftrightarrow$ w has a Ψ -kernel repetition (p',q') with |p| = |p'| and |q'| = |q| - k + 1.

伺 ト イヨト イヨ

To prove Dejean's conjecture for $k \ge 5$, find a morphism h s.t.:

- $M_k(w)$ has no forbidden short repetition,
- w has no Ψ -kernel repetition (p,q) with $\frac{|pq|+k-1}{|p|} > \frac{k}{k-1}$.

where w is a fixed point of h.

Idea: Limit us to h such that:

• $\Psi(h(0)) = \sigma \cdot \Psi(0) \cdot \sigma^{-1}$ and

•
$$\Psi(h(1)) = \sigma \cdot \Psi(1) \cdot \sigma^{-1}$$
,

for a $\sigma \in \mathbb{S}_k$.

Lemma (Moulin Ollagnier)

Let (p,q) be a Ψ -kernel repetition in w. If q is long enough, then (p,q) is an image by h of a smaller Ψ -kernel repetition in w.

Idea: Limit us to h such that:

• $\Psi(h(0)) = \sigma \cdot \Psi(0) \cdot \sigma^{-1}$ and

•
$$\Psi(h(1)) = \sigma \cdot \Psi(1) \cdot \sigma^{-1}$$
,

for a $\sigma \in \mathbb{S}_k$.

Lemma (Moulin Ollagnier)

Let (p,q) be a Ψ -kernel repetition in w. If q is long enough, then (p,q) is an image by h of a smaller Ψ -kernel repetition in w.

Moulin Ollagnier's results

Let w be a fixed point of h.

Checking if $M_k(w)$ is $\frac{k}{k-1}^+$ -free is decidable:

- check if $M_k(w)$ has no small forbidden repetition,
- check if iterated images of "small" kernel repetitions in w are not forbidden.

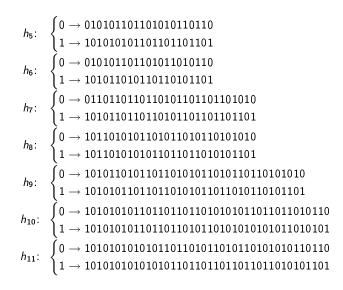
Moulin Ollagnier gives morphisms h_k for $5 \le k \le 11$ such that $M_k(w_k)$ is $\frac{k}{k-1}^+$ -free (where w_k is a fixed point of h_k). \rightarrow Dejean's conjecture holds for $5 \le k \le 11$. Let w be a fixed point of h.

Checking if $M_k(w)$ is $\frac{k}{k-1}^+$ -free is decidable:

- check if $M_k(w)$ has no small forbidden repetition,
- check if iterated images of "small" kernel repetitions in w are not forbidden.

Moulin Ollagnier gives morphisms h_k for $5 \le k \le 11$ such that $M_k(w_k)$ is $\frac{k}{k-1}^+$ -free (where w_k is a fixed point of h_k). \rightarrow Dejean's conjecture holds for $5 \le k \le 11$.

Moulin Ollagnier's morphisms



New results

Michaël Rao Last Cases of Dejean's Conjecture

It is sufficient to work of a special case of HDOLs: Image by a morphism of the Thue-Morse sequence.

Let w_{TM} be the Thue-Morse sequence on a, bi.e. fixed point of $g : a \rightarrow ab, b \rightarrow ba$.

Let $h: \{a, b\}^* \rightarrow \{0, 1\}^*$ be a morphism.

Question

Is $M_k(h(w_{TM})) \frac{k}{k-1}^+$ -free ?

It is sufficient to work of a special case of HDOLs: Image by a morphism of the Thue-Morse sequence.

Let w_{TM} be the Thue-Morse sequence on a, bi.e. fixed point of $g : a \rightarrow ab, b \rightarrow ba$.

Let $h: \{a, b\}^* \rightarrow \{0, 1\}^*$ be a morphism.

Question

Is $M_k(h(w_{TM})) \frac{k}{k-1}^+$ -free ?

It is sufficient to work of a special case of HDOLs: Image by a morphism of the Thue-Morse sequence.

Let w_{TM} be the Thue-Morse sequence on a, bi.e. fixed point of $g : a \rightarrow ab, b \rightarrow ba$.

Let $h: \{a, b\}^* \rightarrow \{0, 1\}^*$ be a morphism.

Question

Is
$$M_k(h(w_{TM})) \frac{k}{k-1}^+$$
-free ?

It is sufficient to work of a special case of HDOLs: Image by a morphism of the Thue-Morse sequence.

Let w_{TM} be the Thue-Morse sequence on a, bi.e. fixed point of $g : a \rightarrow ab, b \rightarrow ba$.

Let $h: \{a, b\}^* \rightarrow \{0, 1\}^*$ be a morphism.

Question

Is
$$M_k(h(w_{TM})) \frac{k}{k-1}^+$$
-free ?

Let
$$\sigma_a = \Psi(h(a))$$
 and $\sigma_b = \Psi(h(b))$,
Let $\Psi' : \{a, b\}^* \to \mathbb{S}_k$ s.t. $\Psi'(a) = \sigma_a$ and $\Psi'(b) = \sigma_b$.

Idea behind this:

Find a *h* such that:

- $h(w_{TM})$ has to avoid forbidden "short" Ψ -kernel repetitions
- w_{TM} has to avoid forbidden "long" Ψ' -kernel repetitions.

• We obtain results for smaller h.

Following Moulin Ollagnier's idea:

Limit us to *h* such that:

• $\Psi'(g(a)) = \sigma_a \cdot \sigma_b = \sigma \cdot \sigma_a \cdot \sigma^{-1}$ and

•
$$\Psi'(g(b)) = \sigma_b \cdot \sigma_a = \sigma \cdot \sigma_b \cdot \sigma^{-1}$$

for a $\sigma \in \mathbb{S}_k$.

Remark: σ_a and σ_b have to be conjugate.

Moreover: *h* is *uniform*, *synchronizing*, and the last letters differ.

Following Moulin Ollagnier's idea:

Limit us to *h* such that:

•
$$\Psi'(g(a)) = \sigma_a \cdot \sigma_b = \sigma \cdot \sigma_a \cdot \sigma^{-1}$$
 and

•
$$\Psi'(g(b)) = \sigma_b \cdot \sigma_a = \sigma \cdot \sigma_b \cdot \sigma^{-1}$$

for a $\sigma \in \mathbb{S}_k$.

Remark: σ_a and σ_b have to be conjugate.

Moreover: *h* is *uniform*, *synchronizing*, and the last letters differ.

Following Moulin Ollagnier's idea:

Limit us to *h* such that:

•
$$\Psi'(g(a)) = \sigma_a \cdot \sigma_b = \sigma \cdot \sigma_a \cdot \sigma^{-1}$$
 and

•
$$\Psi'(g(b)) = \sigma_b \cdot \sigma_a = \sigma \cdot \sigma_b \cdot \sigma^{-1}$$

for a $\sigma \in \mathbb{S}_k$.

Remark: σ_a and σ_b have to be conjugate.

Moreover: *h* is *uniform*, *synchronizing*, and the last letters differ.

• If q is long enough, then (p,q) is an image by h of a Ψ' -kernel repetition in w_{TM} .

Let (p,q) be a Ψ' -kernel repetition of w_{TM} .

• If q is long enough, then (p, q) is an image by g of a Ψ' -kernel repetition in w_{TM} .

An image by g of a Ψ' -kernel repetition has a smaller exponent.

This is decidable :

• If q is long enough, then (p,q) is an image by h of a Ψ' -kernel repetition in w_{TM} .

Let (p,q) be a Ψ' -kernel repetition of w_{TM} .

• If q is long enough, then (p, q) is an image by g of a Ψ' -kernel repetition in w_{TM} .

An image by g of a Ψ' -kernel repetition has a smaller exponent.

This is decidable :

• If q is long enough, then (p,q) is an image by h of a Ψ' -kernel repetition in w_{TM} .

Let (p,q) be a Ψ' -kernel repetition of w_{TM} .

• If q is long enough, then (p, q) is an image by g of a Ψ' -kernel repetition in w_{TM} .

An image by g of a Ψ' -kernel repetition has a smaller exponent.

This is decidable :

• If q is long enough, then (p, q) is an image by h of a Ψ' -kernel repetition in w_{TM} .

Let (p,q) be a Ψ' -kernel repetition of w_{TM} .

• If q is long enough, then (p, q) is an image by g of a Ψ' -kernel repetition in w_{TM} .

An image by g of a Ψ' -kernel repetition has a smaller exponent.

This is decidable :

Theorem

For every $k \in \{8, ..., 38\}$, there is a uniform morphism h_k such that $M_k(h_k(w_{TM}))$ is $\frac{k}{k-1}^+$ -free.

Corollary

Dejean's conjecture holds for $8 \le k \le 38$.

Example: k = 18.

Size of $h_k(x)$

From 30 (for k = 8) up to 74 (for k = 38).

Computation time on a 2.4 Ghz processor

- Few seconds/minutes for "small" k.
- Couple of hours for k = 38.

This technique does not work for $k \in \{3, 5, 6, 7\}$ since for every $\sigma_a, \sigma_b, \sigma \in \mathbb{S}_k$ such that:

•
$$\sigma_{a} \cdot \sigma_{b} = \sigma \cdot \sigma_{a} \cdot \sigma^{-1}$$
 and

•
$$\sigma_b \cdot \sigma_a = \sigma \cdot \sigma_b \cdot \sigma^{-1}$$
,

 w_{TM} has a Ψ' -kernel repetition of exponent at least RT(k).

Works for k = 4 ($|h_4(x)| = 80$).

Conjecture

For every $k \ge 8$ there is a morphism h_k such that $M_k(h_k(w_{TM}))$ is $\frac{k}{k-1}^+$ -free.

→ Ξ →

This technique does not work for $k \in \{3, 5, 6, 7\}$ since for every $\sigma_a, \sigma_b, \sigma \in \mathbb{S}_k$ such that:

•
$$\sigma_{a} \cdot \sigma_{b} = \sigma \cdot \sigma_{a} \cdot \sigma^{-1}$$
 and

•
$$\sigma_b \cdot \sigma_a = \sigma \cdot \sigma_b \cdot \sigma^{-1}$$
,

 w_{TM} has a Ψ' -kernel repetition of exponent at least RT(k).

Works for
$$k = 4$$
 ($|h_4(x)| = 80$).

Conjecture

For every $k \ge 8$ there is a morphism h_k such that $M_k(h_k(w_{TM}))$ is $\frac{k}{k-1}^+$ -free.

→ Ξ →

This technique does not work for $k \in \{3, 5, 6, 7\}$ since for every $\sigma_a, \sigma_b, \sigma \in \mathbb{S}_k$ such that:

•
$$\sigma_{a} \cdot \sigma_{b} = \sigma \cdot \sigma_{a} \cdot \sigma^{-1}$$
 and

•
$$\sigma_b \cdot \sigma_a = \sigma \cdot \sigma_b \cdot \sigma^{-1}$$
,

 w_{TM} has a Ψ' -kernel repetition of exponent at least RT(k).

Works for
$$k = 4 (|h_4(x)| = 80)$$
.

Conjecture

For every $k \ge 8$ there is a morphism h_k such that $M_k(h_k(w_{TM}))$ is $\frac{k}{k-1}^+$ -free.

Morphisms

h4 :	$\begin{cases} a \to 1011010101101101101101010110110110110101$
h8:	$\begin{cases} a \to 1011011011010101010101010101\\ b \to 101101010101011011011011011010 \end{cases}$
hg:	$\begin{cases} a \to 101101101010101010101101101010101010\\ b \to 1010110110101010101010110101010101010$
h10:	$\begin{cases} a \to 1010110101010101010101010101010101010$
h11:	$\begin{cases} \mathbf{a} \to 1010101101011010101101011010110101010$
h12:	$\begin{cases} a \to 101101011011011010101010101010110110110$
h13:	$\begin{cases} a \to 1010110101010101010101010101010101010$
h14:	$\begin{cases} a \to 1010110110110110110110101101010101010$
h15:	$\begin{cases} a \to 101101101101010110101010101010101101101$
h16:	$\begin{cases} a \to 101010110110110110110110110110110110110$

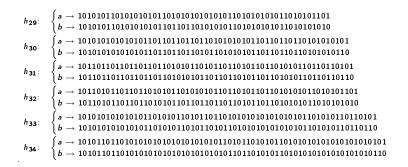
▶ ★ 臣 ▶

< 三→

æ

h17:	$\begin{cases} a \to 10110101101101010110110110110110101010$
h18:	$igcel{a} o 10101101010110101010101011010101010101$
h19:	$ \begin{cases} a \to 1010101101101101010110101010101010101$
h 20:	$ \begin{cases} a \to 1010110101010101101010101010101010101$
h 21 :	$ \begin{cases} a \to 1010101101010110110110110110110101010$
h 22 :	$ \begin{cases} a \to 1010110101101011011011011010110101010$
h23:	$ \begin{cases} a \to 1010101010110110110110101011011011010101$
h 24 :	$ \begin{cases} a \to 1010101010101010110110101010101010101$
h 25 :	$\begin{cases} a \to 1010101101010101010101010101010101010$
h 26	$\begin{cases} a \to 1011010101010101010101010110110110110101$
h 27 :	$\begin{cases} a \to 1010101010101010101010101010101010101$
h 28:	$egin{array}{c} a ightarrow 10101010101010101010101010101010101010$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの



In a Dejean word (with $k \ge 5$), each letter has frequency at least $\frac{1}{k+1}$ and at most $\frac{1}{k-1}$.

Conjecture (Ochem 2005)

- (1) For every $k \ge 5$, there exists an infinite $\frac{k}{k-1}^+$ -free word over k-letter with letter frequency $\frac{1}{k+1}$.
- (2) For every $k \ge 6$, there exists an infinite $\frac{k}{k-1}^+$ -free word over k-letter with letter frequency $\frac{1}{k-1}$.

Theorem (Chalopin, Ochem 2006)

(1) holds for k = 5 and (2) holds for k = 6.

In a Dejean word (with $k \ge 5$), each letter has frequency at least $\frac{1}{k+1}$ and at most $\frac{1}{k-1}$.

Conjecture (Ochem 2005)

- (1) For every $k \ge 5$, there exists an infinite $\frac{k}{k-1}^+$ -free word over k-letter with letter frequency $\frac{1}{k+1}$.
- (2) For every $k \ge 6$, there exists an infinite $\frac{k}{k-1}^+$ -free word over k-letter with letter frequency $\frac{1}{k-1}$.

Theorem (Chalopin, Ochem 2006)

(1) holds for k = 5 and (2) holds for k = 6.

In a Dejean word (with $k \ge 5$), each letter has frequency at least $\frac{1}{k+1}$ and at most $\frac{1}{k-1}$.

Conjecture (Ochem 2005)

- (1) For every $k \ge 5$, there exists an infinite $\frac{k}{k-1}^+$ -free word over k-letter with letter frequency $\frac{1}{k+1}$.
- (2) For every $k \ge 6$, there exists an infinite $\frac{k}{k-1}^+$ -free word over k-letter with letter frequency $\frac{1}{k-1}$.

Theorem (Chalopin, Ochem 2006)

(1) holds for k = 5 and (2) holds for k = 6.

If the Pansiot's code of w has a 0 at position i (mod k-1), then w has a letter with frequency $\frac{1}{k-1}$.

If the Pansiot's code of w has a 0 at position i (mod k + 1), then w has a letter with frequency $\frac{1}{k+1}$.

Theorem

For every $9 \le k \le 38$, Ochem's conjecture holds.

(Does not work for k = 8.)

If the Pansiot's code of w has a 0 at position i (mod k-1), then w has a letter with frequency $\frac{1}{k-1}$.

If the Pansiot's code of w has a 0 at position i (mod k + 1), then w has a letter with frequency $\frac{1}{k+1}$.

Theorem

For every $9 \le k \le 38$, Ochem's conjecture holds.

(Does not work for k = 8.)

Generalized Repetition Threshold (next two talks).

The growth rate of L is $g(L) = \lim_{n \to \infty} \sqrt[n]{|L \cap \Sigma^n|}$.

Question

Compute $g(D_k)$ for $k \ge 3$.

Good lower and upper bounds by Kolpakov and Shur. E.g.: $1.245 \leq g(D_3) \leq 1.2456148$ [Kolpakov 06, Shur 08]. Generalized Repetition Threshold (next two talks).

The growth rate of L is $g(L) = \lim_{n \to \infty} \sqrt[n]{|L \cap \Sigma^n|}$.

Question

Compute $g(D_k)$ for $k \ge 3$.

Good lower and upper bounds by Kolpakov and Shur. E.g.: $1.245 \leq g(D_3) \leq 1.2456148$ [Kolpakov 06, Shur 08].

Thank you !

Michaël Rao Last Cases of Dejean's Conjecture

э