
WANN: AN IMPLEMENTATION OF WEIGHTED NEAREST
NEIGHBOR SEARCH

A. SOBOLEVSKĬI

Abstract. WANN (Weighted Approximate Nearest Neighbors) is a library of
C++ classes for weighted nearest neighbor search. It is based on the ANN li-

brary of D. Mount and S. Arya and generalizes their implementation of nearest

neighbor search, providing a building block for solution of the discrete trans-
port problem. WANN is meant as part of a multipurpose library for numerical

transport optimization. Installation and basic usage of the WANN library are

described.

1. Introduction

The standard nearest neighbor problem is formulated as follows: given a finite
set of points P in d-dimensional Euclidean space and a query point q, find the point
p∗(q) in P whose distance from q is minimal:

(1) p∗(q) = arg min
p∈P
|q − p|2.

Minimizing the square of distance, rather than distance itself, is immaterial for
the nearest-neighbor search as such, but squared distances are significant for the
application of a generalized version of this problem to reconstruction of cosmological
velocity and density fields from galaxy catalogues [9, 7, 8] by the Monge–Ampère–
Kantorovich (MAK) method [6, 2] and, in a wider context, for various numerical
transport optimization techniques.

Let now Q be a set of query points with 1 ≤ |Q| ≤ |P |. The discrete transport
problem is to find an invertible map π from Q to P that minimizes the quantity

(2)
∑
q∈Q

|q − π(q)|2.

The problem is called asymmetric if |P | 6= |Q|; when |P | = |Q| it becomes an
instance of the assignment problem. Minimizing (2) with no constraints on π can
be reduced to a collection of |Q| independent nearest neighbor problems; the nearest
neighbor problem (1) is recovered when |Q| = 1.

1.1. Why weighted? For small |P | and |Q| solution may be obtained by comput-
ing sums of squared distances (2) for each of the |P |!/(|P |−|Q|)! possible choices of
the map π. A more sophisticated approach is based on the following idea. Suppose
at each q in Q there is a little creature that wants to move to a certain p in P but
has in the process to pay a transport cost proportional to |q − p|2. Each creature
would like to go to its nearest neighbor in P , but if a few creatures compete for the
same p, only one can succeed. To settle the conflict, the creatures pay not only the
transport cost but an additional fee w(p) for being admitted to a specific p, which
may make distant points more attractive than nearest neighbors. It is not difficult

1

2 A. SOBOLEVSKĬI

to show (see e.g. [1]) that there exists a set of equilibrium fees w∗ such that the
map π∗ minimizing (2) reduces to solving |Q| independent minimization problems
of the form

(3) π∗(q) = arg min
p∈P

(
|q − p|2 + w∗(p)

)
.

In this note the fees are called weights and the problem of minimizing the expression
in the r.h.s. of (3), the weighted nearest neighbor problem.

1.2. Why a dedicated implementation? The discrete transport problem is an
instance of network flow problem, itself a particular case of the general linear pro-
gramming problem. For these classes of optimization problems there is a large
supply of efficient algorithms and fast solvers. In our terms these algorithms often
involve a sequence of weighted nearest neighbor searches alternated with suitably
updating the weights.

For the discrete transport problem, a generic linear programming solver would
require O(|P | |Q|) space for the cost matrix c(p, q) = |p − q|2 as well as for the
solution, which is expressed as a transport plan x(p, q) prescribing how much mass
goes from p to q. However an optimal transport plan uses only O(max(|P |, |Q|))
variables (those for which p = π∗(q)). Dedicated network flow solvers take into
account the sparsity of the transport plan, but often fail to recognize the effective
sparsity of c(p, q): the elements of this matrix can be computed on demand from the
O(|P |+ |Q|) storage necessary for the sets P and Q rather than precomputed and
stored. More importantly, where the weighted nearest-neighbor search is required
in the discrete transport problem, these algorithms typically perform inefficient
brute-force search if the cost matrix is full.

For these reasons, it is of interest to develop a dedicated solver for discrete trans-
port problems based on adequate geometric search routines. This note describes
an implementation of these routines.

1.3. Why ANN? There are quite a few nearest neighbor solvers based on prepro-
cessing the set P into various data structures that allow to efficiently find nearest
neighbors; see e.g. [11, 3, 5], the STANN project [4], and the links at the Stony
Brook Algorithm Repository at [13, Section 1.6.5]. One of the most common ap-
proaches to the problem is based on preprocessing the set P into a kd-tree. There
are many flavors of kd-trees, described e.g. in the ANN Programming Manual [10]
(see also a chapter on kd-trees in Numerical Recipes [12]).

In a nutshell, a kd-tree is a binary tree whose root is the bounding box for the
set P and whose nodes correspond to nested boxes with edges paralles to coordinate
axes; each box contains a portion of the point set P and each of its two subboxes
contains approximately one half of that portion. Nearest neighbor search in a kd-
tree is based on the fact that the distance from a query point to any point contained
in a box can be estimated from below with the distance from the query point to
this box. After a candidate point is found, this simple property allows to discard
boxes that are farther from the query point than the candidate, and to achieve a
typical performance of O(log |P |) operations per query, where log |P | corresponds
to the depth of the kd-tree. The worst case behaviour of this data structure may be
significantly worse but in typical discrete transport applications in low-dimensional
spaces one should not worry about it.

WANN: AN IMPLEMENTATION OF WEIGHTED NEAREST NEIGHBOR SEARCH 3

Of all the approaches to nearest neighbor search listed above, kd-trees are prob-
ably best suited for the weighted nearest neighbor search. Indeed, if one maintains
for each box the minimal weight of its points, then the total cost for points in
this box can again be estimated from below with the sum of the squared distance
to the box and this minimal value, allowing to discard boxes when processign a
query. Resetting a point’s weight may require to update minimal weight values of
its parent boxes, but this is achieved, too, in O(log |P |) operations.

The most well-known and stable implementation of nearest neighbor search based
on kd-trees is arguably the ANN library by D. Mount and S. Arya [11, 10]. In the
present note we report an extension of this library to weighted nearest neighbor
search. Care was taken to fully retain the original ANN functionality: the WANN
library may even be compiled without the support for weights, which makes it
identical to ANN (see subsection 2.1 on the build process below).

2. Using WANN

2.1. Downloading and buiding WANN. The current version of WANN is 0.1.
The WANN package including the source code and documentation is availbale at
the web page

http://www.mccme.ru/~ansobol/otarie/software.html

Most of the directory layout in WANN version 0.1 comes from the the origi-
nal ANN distribution. After unpacking the package a directory wann-0.1 will be
created containing the following directories:

include/: Include files for compiling programs that use the WANN library.
src/: The source files for the WANN library.
sample/: A small sample program that shows how to use the WANN library.
test/: The program ann_test that provides a simple script language for

preprocessing point sets and performing weighted nearest-neighbor queries.
ann2fig/: The program ann2fig that generates a visual representation in fig

format for the preprocessed set.
bin/, lib/: These directories are used by the original ANN make script to

put binaries and the library file built from ANN sources. They are not
needed for the WANN build procedure and may be removed from later
versions of the WANN package.

doc/: Contains the ANN Programming manual [10], the WANN documenta-
tion (this file), and the sample program wanntest.cxx described in sub-
section 2.2.

MS Win32/: Solution and project for compiling the original ANN library under
Microsoft Windows (tm).

For details on how to use the ann_test and ann2fig programs see the ANN Pro-
gramming Manual [10].

To build and install the WANN library on your system, descend to the direc-
tory wann-0.1/ and issue the following commands: ./configure; make; [sudo]
make install. Running make install requires root privileges, and sudo is a way
of obtaining them on BSD-like Unices. Check documentation to your system to find
out how to obtain root privileges (or run make install from a superuser account).

The basic build procedure described in the previous paragraph will build WANN
as both static and (system permitting) shared library, and will also build and install

http://www.mccme.ru/~ansobol/otarie/software.html

4 A. SOBOLEVSKĬI

the ann_test and ann2fig utilities. Performance evaluation will not be enabled.
To customize the build procedure use the following options to the configure script:

--disable-weights: Build the WANN library without weighted nearest neigh-
bor search (so that it becomes identical to the original ANN library of
D. Mount and S. Arya).

--disable-ann test: Do not build the ann_test utility.
--disable-ann2fig: Do not build the ann2fig program.
--enable-stats: Enable performance evaluation (see the ANN Programming

Manual [10] for a detailed description).
The make install command will install the WANN library and the ann_test

and ann2fig utilities into subdirectories of the default system locations (on most
Unices they are /usr/local/include/ for libraries and /usr/local/bin/ for ex-
ecutables). These locations can be changed in the invocation of the configure
script. E.g., to install WANN to directories under your home directory run the
script with ./configure prefix=\$HOME.

Help on customization of the configuration and build procedure can be obtained
by running ./configure --help.

Care was taken in this release to ensure as much compatibility with the original
ANN library as possible. In particular, there is a possibility to run the original
ANN build procedure, which is not based on the configure script. In order to
do this, run the unWANN script in the wann-0.1/ directory, which moves the files
named Makefile.ANN to Makefile in all subdirectories, renames include/wann/
to include/ANN/, and edits WANN source files to reflect renaming the include
directory. After this the make command will invoke the original ANN build proce-
dure. Note that using this feature is deprecated and may be not supported in later
versions of the WANN library.

2.2. A sample program. Here is a sample program wanntest.cxx illustrating
how to use the weighted nearest neighbor search.

1 #include <wann/ANN.h>

2 #include <iostream >

3

4 #define N 3

5 #define DIM 2

6 #define K 1

7

8 using namespace std;

9

10 int main ()

11 {

12 ANNpointArray dataPts;

13 ANNdistArray dataWeights;

14 ANNpoint q;

15 ANNidxArray nnIdx;

16 ANNdistArray costs;

17 ANNkd_tree* kdTree;

18

19 q = annAllocPt(DIM);

WANN: AN IMPLEMENTATION OF WEIGHTED NEAREST NEIGHBOR SEARCH 5

20 dataPts = annAllocPts(N, DIM);

21 dataWeights = annAllocWeights(N);

22 nnIdx = new ANNidx[K];

23 costs = new ANNdist[K];

24

25 dataPts [0][0] = -1.; dataPts [0][1] = 0.;

26 dataPts [1][0] = 1.; dataPts [1][1] = -1.;

27 dataPts [2][0] = 1.; dataPts [2][1] = 1.;

28 dataWeights [0] = dataWeights [1] = dataWeights [2] = 0.;

29

30 kdTree = new ANNkd_tree(dataPts , dataWeights , N, DIM);

31

32 q[0] = q[1] = 0.;

33

34 kdTree ->annkSearch(q, K, nnIdx , costs , 0.);

35

36 cout << "Nearest neighbor: (";

37 cout << dataPts[nnIdx [0]][0] << ", ";

38 cout << dataPts[nnIdx [0]][1] << "); squared dist = ";

39 cout << costs [0] << "\n";

40

41 kdTree ->setWeight(0, 2.);

42

43 kdTree ->annkSearch(q, 1, nnIdx , costs , 0.);

44

45 cout << "Weighted nearest neighbor: (";

46 cout << dataPts[nnIdx [0]][0] << ", ";

47 cout << dataPts[nnIdx [0]][1] << "); squared dist = ";

48 cout << costs [0] - dataWeights[nnIdx [0]] << "\n";

49

50 annDeallocPt(q);

51 annDeallocPts(dataPts);

52 annDeallocWeights(dataWeights);

53 delete [] nnIdx;

54 delete [] costs;

55 delete kdTree;

56 annClose ();

57

58 return 0;

59 }

The WANN library header file is included in line 1 (its name is unchanged from
the original ANN implementation). In lines 4–6, there are defined the number of
points N = 3, the dimension of space DIM = 2, and the number of nearest neighbors
to look for K = 1. The arrays nnIdx and costs, which in our case both have only
one element, contain indices of optimal points and values of the transportation cost
from the query point.

The array dataPts contains coordinates of three points in two-dimensional plane:
(−1, 0), (1,−1), and (1, 1). The array is filled in lines 25–27; normally the data

6 A. SOBOLEVSKĬI

points would be read from an input file or generated by a separate routine. Weghts
of all three points are contained in the array dataWeights initially filled with zeros
in line 28. The array q contains coordinates of the query point, (0, 0).

The main data structure, a kd-tree kdTree, is built in line 30. The search routine
is called twice. In line 34 it returns the nearest neighbor of the query point, (−1, 0).
After this the weight of this point is set to 2, making the other two points optimal
in the weighted nearest neighbor problem. Of these, the last one is picked up by
the search routine.

Note the explicit deallocation of all dynamically allocated data in lines 50–56.
This program has been compiled on a Mac OS X 10.5 system with the command

1 g++ -L/usr/local/lib/wann -lWANN wanntest.cxx

The -L option specifies the path to the directory where the compiled WANN library
file libWANN.a is located; as is standard for a GCC compiler, the -l (small `) option
gives the name of the library file without the prefix lib and the suffix .a. Here is
the output:

1 Nearest neighbor: (-1, 0); squared dist = 1

2 Weighted nearest neighbor: (1, 1); squared dist = 2

Acknowledgments

We are grateful to U. Frisch and R. Mohayaee for initiating the cosmological
application of optimal transport, to M. Hénon for sharing his early work on the
discrete transport problem, and to J. Matoušek for a pointer to kd-trees as efficient
means of search in Euclidean space, which eventually led to the approach presented
here. Special thanks go to David M. Mount and Sunil Arya for the development
of the ANN library. This work is supported by the ANR (Agence nationale de
la recherche, France) under grant BLAN07-2 183172 OTARIE and by the RFBR
(Russian Foundation for Basic Research) under grant RFBR/CNRS 07–01–92217.

References

[1] Bertsekas, D. P. Auction algorithms for network flow problems: A tutorial introduction.
Computational Optimization and Applications 1, 1 (1992), 7–66.

[2] Brenier, Y., Frisch, U., Hénon, M., Loeper, G., Matarrese, S., Mohayaee, R., and
Sobolevskĭı, A. Reconstruction of the early Universe as a convex optimization problem.
Monthly Notices of the Royal Astronomical Society 346, 2 (December 2003), 501–524.

[3] Chan, T. M. A minimalist’s implementation of an approximate nearest neighbor algorithm

in fixed dimensions. 2006.
[4] Connor, M. The Simple, Thread-safe Approximate Nearest Neighbor (STANN) C++ Li-

brary, 2007. http://compgeom.com/~stann/html/index.html.
[5] Franklin, W. R. Nearest point query on 184m points in e3 with a uniform grid. In Pro-

ceedings of the 17th Canadian Conference on Computational Geometry (CCCG’05) (2005),
pp. 239–242.

[6] Frisch, U., Matarrese, S., Mohayaee, R., and Sobolevski, A. A reconstruction of the
initial conditions of the universe by optimal mass transportation. Nature 417 (2002), 260–262.

[7] Mohayaee, R., Mathis, H., Colombi, S., and Silk, J. Reconstruction of primordial density
fields. Monthly Notices of the Royal Astronomical Society 365, 3 (January 2006), 939–959.

[8] Mohayaee, R., and Sobolevskii, A. The Monge–Ampère–Kantorovich approach to recon-
struction in cosmology. Physica D Nonlinear Phenomena (2008).

[9] Mohayaee, R., Tully, R. B., and Frisch, U. Reconstruction of large-scale peculiar velocity

fields. Current Issues in Cosmology, April 2006, pp. 123–136.

http://compgeom.com/~stann/html/index.html

WANN: AN IMPLEMENTATION OF WEIGHTED NEAREST NEIGHBOR SEARCH 7

[10] Mount, D. M. ANN Programming Manual, 2006. Available at http://www.cs.umd.edu/

~mount/ANN/.

[11] Mount, D. M., and Arya, S. ANN: A library for approximate nearest neighbor searching,
Apr 2005. http://www.cs.umd.edu/~mount/ANN/.

[12] Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. Numerical

Recipes: The Art of Scientific Computing, 3rd ed. Cambridge University Press, August 2007.
[13] Skiena, S. The Stony Brook algorithm repository, 2008. http://www.cs.sunysb.edu/

~algorith/.

http://www.cs.umd.edu/~mount/ANN/
http://www.cs.umd.edu/~mount/ANN/
http://www.cs.umd.edu/~mount/ANN/
http://www.cs.sunysb.edu/~algorith/
http://www.cs.sunysb.edu/~algorith/

	1. Introduction
	1.1. Why weighted?
	1.2. Why a dedicated implementation?
	1.3. Why ANN?

	2. Using WANN
	2.1. Downloading and buiding WANN
	2.2. A sample program

	Acknowledgments
	References

