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THE PROBLEM OF RECONSTRUCTION

NASA−GODDARD
WMAP   Feb. 2003

Find (reconstruct)
the dynamical history
of the Universe
from the initial and
present mass distribution.

Find the trajectory q 7→ x(q, t)
of each point mass initially at q,
and the velocity ∂t x(q, t).

q: Lagrangian coordinates;
x: Eulerian coordinates.

The restricted problem:
Find the Lagrangian map
q 7→ x(q) from the initial
position q at t = tin
to the present one, x(q),
at t = t0, and its inverse.
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THE VLASOV–POISSON EQUATIONS

Newtonian statistical mechanics description of the condensation
through self-gravitating dynamics of barionic matter.

• Particle of mass m and velocity v has the impulse p = mv.

• Particles are identical; their distribution function: f(x,p, t).

• The matter density: ρ(x, t) = m

∫
f(x,p, t) dp.

• Pressure is neglected; no diffusion (for simplicity).

• The Liouville equation: ∂tf + (m−1 p · ∇x −∇x φ · ∇p)f = 0.

• The Poisson equation for the gravity potential φ(x, t): ∇2
x φ = 4πG(ρ(x, t)− ρ).

In R3, φ(x, t) = −Gm

∫∫
f(y,p, t)

|y − x|
dp dy.

However, solving the Liouville equation in R6 is too numerically intensive a problem
(although the unknown function is just a scalar field).



THE EULER–POISSON EQUATIONS

Single-speed solutions to hydrodynamic-like equations.

• Density is rescaled. Initially, at τ = 0, it is uniform: ρin(q) = 1.

• The “linear growth factor” τ ∝ t2/3 is used instead of time t.

• Equations are in the spatial coordinate system co-moving with the expansion.

• The Euler equation: ∂τv + (v · ∇x)v = − 3

2τ
(v +∇x φ).

• Mass conservation: ∂τρ+∇x · (ρv) = 0.

• The Poisson equation for the gravity potential φ(x, t): ∇2
x φ = (ρ− 1)/τ .

• The solution is non-singular near τ = 0 only if slaving occurs: vin(q) = −∇x φin.

Slaving implies that for any τ ≥ 0 the flow velocity v(x, τ)
is potential in the Eulerian coordinates.

v(x, τ) = ∇xΨ, the potential satisfying ∂τΨ+
1

2
|∇xΨ|2 = − 3

2τ
(Ψ + φ) and Ψin = −φin.



THE ZELDOVICH APPROXIMATION

• Solutions to the EP problem can be expanded in a power series in τ .

• The leading term of the expansion is the Zeldovich approximation,

satisfying ∂τv + (v · ∇x)v = 0.

• In the Lagrangian formulation, the Zeldovich approximation amounts to Dτv = 0,

i.e. particles move with constant speed along straight lines.

In the Zeldovich approximation, for any τ ≥ 0, the flow velocity
is potential both in the Lagrangian and Eulerian coordinates;

⇒ the map q 7→ x(q) is potential.

• Actually, the second term in the short-time Lagrangian expansion yields a map,

which is potential in Lagrangian — but not Eulerian — coordinates (Moutarde et al., 1991).



OPTIMAL MASS TRANSPORT PROBLEM

Consider the restricted
reconstruction problem:

τ=0

τ=τ0

ρ = ρ0(x)

ρ = ρin(q)

• Optimal mass transport problem with quadratic cost (Brenier 1987, 1991):∫
|x(q)− q|2 ρin(q) dq =

∫
|x− q(x)|2 ρ0(x) dx → minimum.

• Mass conservation: ρ0(x) dx = ρin(q) dq.

• The optimal map is potential: x(q) = ∇qΦ(q). The potential Φ(q) is convex.

⇒ The inverse mapping q 7→ x(q) is well-defined and has a convex potential

Θ(x) = maxq(x · q − Φ(q)) (the Legendre transform of Φ).

• Numerical algorithm: The Monge-Ampère-Kantorovich (MAK) method.



THE MONGE–AMPÈRE EQUATION

Mass conservation: ρ0(x) dx = ρin(q) dq

Map potentiality: x(q) = ∇qΦ(q)

 ⇒

The Monge–Ampère equation: detH(Φ) =
ρin(q)

ρ0(∇qΦ(q))
,

where the matrix H(Φ) ≡ |∂2
qiqj

Φ| is the Hessian of the potential Φ(q).

• ρ0(x), ρin(q) > 0 ⇒ the potential Φ(q) is convex.

⇒ The inverse mapping q 7→ x(q) is well-defined and has a convex potential Θ(x)

satisfying, for ρin = 1, the MAE detH(Θ) = ρ0(x).



MAK RECONSTRUCTION TEST
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Test of the MAK reconstruction
for a sample of N=17178 points initially situated

on a cubic grid with ∆x = 6.25 h−1Mpc. The

scatter diagram plots true versus reconstructed

initial positions using a quasiperiodic projection

which ensures one-to-one correspondence with

points on the cubic grid. The histogram inset

gives the distribution (in percentages) of distances

between true and reconstructed initial positions;

the horizontal unit is the sample mesh. The width

of the first bin is less than unity to ensure that

only exactly reconstructed points fall in it.

Brenier et al., MNRAS (2003);
Frisch et al., Nature (2002)

Why is the accuracy good?



EULERIAN AND LAGRANGIAN POTENTIALITY OF FLOWSEP ZA
v=∇xΨ(x, t) v=∇qΨ̃(q, t)?

Flows, potential in the Eulerian coordinates

Flows, potential in the Lagrangian coordinates

q 7→ x(q) = ∇qΦ(q, t) (MAK ⇔ MAE)

Actually, any optimal mass transport can be realized by a potential Euler flow [Benamou, Brenier, 2000].

EP: solutions to the Euler-Poisson equations (+ slaving); ZA: Zeldovich Approximation to EP;
MAE: the Monge–Ampère equation; MAK: the Monge-Ampère-Kantorovich method.



Part II. EXAMPLES OF FLOWS, POTENTIAL

IN LAGRANGIAN AND EULERIAN COORDINATES IN R2

Yes, such flows in R2 do exist!

• Bi-potential and omni-potential flows in Rd, d ≥ 2

• Criteria for omni-potentiality of flows in Rd, d ≥ 2

• Zeldovich-type flows

• 2D Hessian codiagonalizability PDE (HCE)

• Construction of omni-potential flows in R2, whose potentials are

linear combinations of infinitely many homogeneous polynomials,

by application of the 2D HCE.



BI-POTENTIAL AND OMNI-POTENTIAL FLOWS

Let flows v(x, t) be defined in Rd × [0, T ] and be sufficiently smooth.

Definition. If the flow velocity is potential in both Eulerian and Lagrangian coordinates,
the flow is called bi-potential.

Definition. For any two times t and τ , such that 0 ≤ t < τ ≤ T , the mapping
from fluid particle positions at time t to their positions at time τ is called the (t, τ)-mapping.

• The (0, τ)-mapping is the standard Lagrangian map.

Definition. When the flow-induced (t, τ)-mapping between any two times t and τ is potential,
q 7→ x = ∇qΦ(q, t; τ), the flow is called omni-potential.

• Here it is required that all potentials Φ(q, t; τ) be convex in q ⇒ the (t, τ)-mappings have
inverses that are also potential. Invertibility and continuity of the Hessians H(Φ(q, t; τ))
in t and τ imply convexity of the potentials. The (t, t)-mapping is the identity mapping having the

convex potential Φ(q, t; t) = |q|2/2, whose Hessian is the identity. For τ > t, convexity is lost when an eigenvalue

of the Hessian goes through zero; ⇒ the Jacobian matrix (for a potential mapping, equal to the Hessian of the

potential) becomes degenerate; ⇒ generically, the inverse mapping ceases to exist.



CRITERIA FOR OMNI-POTENTIALITY

Theorem. (i) A flow is omni-potential ⇔ the Hessians H(Φ(q, t; τ)),
calculated at the same trajectory for any two pairs of times, t and τ , commute;
(ii) ⇔ ḢH = HḢ, where we have denoted H(t) = H(Φ(q; 0, t));
(iii) Omni-potentiality of a flow is equivalent to its bi-potentiality.

q

x(q)

ξ(q)

∇qΦ(q, t0; t)

∇xΦ(x, t; τ)

∇qΦ(q, t0; τ)

Potential composition
of two potential maps.

∇qΦ1(q) =

∇qΦ2(q) =

(i) Omni-potentiality ⇔ the Hessians commute (same start time)
The (t, τ)-mapping is potential ⇔
∂xj

ξi = ∂xi
ξj ∀ 1 ≤ i, j ≤ d. By the chain rule,

Hmn(Φ2) = ∂qnξm =
d∑

k=1

∂xk
ξm ∂qnxk

=
d∑

k=1

∂xk
ξmHkn(Φ1)

⇔
∥∥∥∥∂ξ∂x

∥∥∥∥ = H(Φ2)H−1(Φ1).

The r.h.s. is a symmetric matrix ⇔
the Hessians H(Φ2) and H(Φ1) commute.



q0
t0

q1

t1
τ1

τ0

∇qΦ(q0, t0; t1)

∇qΦ(q0, t0; τ0)

∇qΦ(q1, t1; τ1)

A sketch of a trajectory
and flow-induced mappings
from times t0 and t1
to times τ0 and τ1.

Omni-potentiality ⇔ the Hessians commute (the general case)

• Along a given trajectory,
the Hessians of the potentials
for the same start time commute: e.g.,
for the (t0, t1)-mapping and the (t0, τ0)-mapping.

• Similarly, the Hessians of the potentials of two
mappings, such that the end time of one of them
coincides with the start time of the second one,
commute: e.g., for the (t0, t1)-mapping
and the (t1, τ1)-mapping.

⇒ By the theorem on codiagonalizability
of symmetric commuting matrices (commutativity

of symmetric matrices with distinct eigenvalues is associative),
the Hessians of the potentials of the (t0, τ0)-mapping
and of the (t1, τ1)-mapping, calculated for the same
trajectory, commute, for any t0 ≤ τ0 and t1 ≤ τ1.



Proof of (ii). Commutation of the Hessian and its time derivative

H(t)H(t′) = H(t′)H(t) ∀t, t′ ⇒ H(t)Ḣ(t) = Ḣ(t)H(t),
where H(t) is any differentiable family of symmetric matrices, e.g. H(t) = H(Φ(q, 0; t)).
The converse is also true.

Suppose (for simplicity) all eigenvalues λi of the symmetric matrix H(t) are distinct.

H(t) = U t(t)Λ(t)U(t), where U is a unitary matrix, and Λ is diagonal.

U(t)U t(t) = I ⇒ UU̇ t = −U̇U t ⇒ X ≡ UU̇ t is antisymmetric.

H(t)Ḣ(t) = Ḣ(t)H(t) ⇒ Λ(XΛ− ΛX) = (XΛ− ΛX)Λ. By the theorem on codiagonalizability,

XΛ− ΛX and Λ are simultaneously diagonalizable ⇒ XΛ− ΛX is diagonal.

The entries of XΛ− ΛX are (λj − λi)Xij ⇒ Xij = 0 ∀i ̸= j.

By antisymmetry of X, X = 0 ⇒ U̇ = −XU = 0. QED.

Proof of (iii). Omni-potentiality ⇒ bi-potentiality

• Let the (t, τ)-mappings be the gradients of convex potentials, q 7→ x = ∇qΦ(q, t; τ).
Differentiation in τ yields v(q, t; τ) = ∇q Ψ(q, t; τ), where Ψ(q, t; τ) = ∂τΦ(q, t; τ).

⇒ In an omni-potential flow, the Lagrangian velocity v(q, 0; t) = ∇qΨ(q, 0; t)
and the Eulerian velocity v(x, t; t) = ∇xΨ(x, t; t) are both potential.



Converse: Bi-potentiality ⇒ omni-potentiality

Denote by vL(q, t) and vE(x, t) the Lagrangian and Eulerian velocity, respectively.

vL(q, t) is potential ⇒ the Lagrangian map q 7→ x(q, t) has a convex potential Φ(q, 0; t).

vE(x, t) = vL(q(x, t), t);
x 7→ q(x, t) is the inverse Lagrangian map;
its Jacobian is H−1, where H = H(Φ(q, 0; t)).

By the chain rule, ∀i, j,

∂xi
vEj (x, t) =

d∑
m=1

(H−1)im ∂qmv
L
j (q, t) =

d∑
m=1

(H−1)im ∂2
qmqj

Φ̇(q, 0; t) =
d∑

m=1

(H−1)imḢmj.

vE(x, t) is potential
⇔ ∂xv

E(x, t) = H−1Ḣ is a symmetric matrix
⇔ H−1 (and H) commute with Ḣ.

QED



ZELDOVICH-TYPE FLOWS

• In the Zeldovich approximation, the Lagrangian map is q 7→ x = ∇q

(
|q|2
2 + tΨ0(q)

)
.

Here Ψ0(q) is the velocity potential at t = 0.

• Clearly, the Hessians H(q, t) = I + tH(Ψ0) commute ⇒ the flow is omni-potential.
Here I is the identity matrix.

• Similarly, the maps defined by the potentials Φ(q, 0; t) = µ(t)
|q|2

2
+ η(t)Ψ0(q),

are associated with omni-potential flows. Here µ(t) and η(t) are arbitrary.

• After the zooming factor 1/µ(t) is applied, and the new time t′ = η(t)/µ(t) is introduced,
particles move along straight lines with a constant velocity, like in Zeldovich flow.
We call such flows Zeldovich-type flows.

Do omni-potential flows exist that are not of this type?

Another “uninteresting” spherically-symmetric flow: Φ(q, 0; t) = Φ(|q|, t).
Hij(Φ(|q|, t)) = Φ′|q|−1δji + (Φ′′|q|−2 − Φ′|q|−3)qiqj.
Particles move along straight lines in radial directions.



A PDE FOR TWO-DIMENSIONAL OMNI-POTENTIAL FLOW

Let an eigenvector of a symmetric 2× 2 matrix H make angle θ with the cartesian axis:

H11 cos θ +H12 sin θ = λ cos θ, H12 cos θ +H22 sin θ = λ sin θ

⇒ H11 −H22

H12
= cot 2θ

The r.h.s. uniquely defines the orthogonal frame of the two eigendirections.
The values of cot 2θ define θ modulo π/2;

changing θ → θ + π/2 swaps the eigendirections, but does not affect the set of eigendirections.

In an omni-potential flow, the eigendirections of the Hessians of the (0, t)-potentials
should depend only on the Lagrangian position q and not on the time t.

In R2, omni-potential flow with the potential Φ(q, t) satisfies the 2D HCE:

(∂2
q1q1

− ∂2
q2q2

)Φ = g(q) ∂2
q1q2

Φ.

The search for non-Zeldovich-type omni-potential flow in R2 is reduced
to solving the “2D Hessian codiagonalizability equation” (2D HCE)
for suitably prescribed functions g(q).



EXAMPLES OF TWO-DIMENSIONAL OMNI-POTENTIAL FLOW

The strategy: use the 2D HCE (∂2
q1q1

− ∂2
q2q2

)Φ = g(q) ∂2
q1q2

Φ.

• Find linearly independent solutions, Φk(q); Φ0(q) = |q|2/2.
By linearity, Φ =

∑
k µk(t)Φk(q) is a solution.

• The potential Φ gives rise to an omni-potential flow that is of non-Zeldovich type,
if µk(t) are linearly independent. (Smallness of µk for k > 0 ensures convexity of Φ is inherited from |q|2/2).

The algebraic approach

• Let g(q) be a ratio of homogeneous polynomials of degree m (2m+ 1 independent coefficients).

• Seek a homogeneous polynomial solution, p
(2)
n (q), of degree n ≥ m+2 (n independent coefficients).

• The 2D HCE reduces to m+ n− 1 equations in 2m+ n+ 1 coefficients.
⇒ A family of p

(2)
n (q) parameterized by m+ 2 coefficients of g(q) is expected to exist

(however, the equations for the coefficients are, in general, nonlinear).

• When g(q) is the ratio of linear functions, the equations for the coefficients of p
(2)
n (q)

are linear, and can be solved for any prescribed coefficients of g(q).



Solving (∂2
q1q1

− ∂2
q2q2

)Φ = g(q) ∂2
q1q2

Φ for g(q) = (aq21 − bq22)/(q1q2)

• Homogeneous polynomial solutions involving only even powers of qi (to enforce convexity in R2):

p
(2)
2k (q1, q2) =

k∑
i=0

(
i−1∏
j=0

(2k − 1 + 2j(a− 1))
k−1−i∏
j=0

(2k − 1 + 2j(b− 1))

)
k! q2i1 q

2(k−i)
2

i!(k − i)!(2k − 1)
.

• Small-n examples: p
(2)
4 (q1, q2) = (2a+ 1)q41 + 6q21q

2
2 + (2b+ 1)q42,

p
(2)
6 (q1, q2) = (4a+ 1)(2a+ 3)q61 + 15(2a+ 3)q41q

2
2 + 15(2b+ 3)q21q

4
2 + (4b+ 1)(2b+ 3)q62.

• p
(2)
2k = 0 identically for â = 1− 2k − 1

2ĵ
and b̂ = 1− 2k − 1

2j
, where j ≥ 1 and ĵ ≥ 1 are integer, and j+ ĵ ≤ k−1.

For such â and b̂, two independent solutions are
∂

∂a
p
(2)
2k

∣∣∣
a=â, b=b̂

and
∂

∂b
p
(2)
2k

∣∣∣
a=â, b=b̂

.

• p
(2)
2k (q) is convex, if all coefficients are positive: min(a, b) ≥ −1/(2k − 2).

The potentials Φ(q, t) = µ2(t)
|q|2

2
+
∑
k≥2

µ2k(t)p
(2)
2k (q1, q2) are convex if min(a, b) ≥ 0

and all µ2k(t) ≥ 0. Also need µ2k(t) → 0 fast enough to ensure the convergence.

• The initial condition is satisfied, if µ2(0) = 1 and µ2k(0) = 0 ∀k > 1.



Part III. EXAMPLES

OF SYMMETRIC OMNI-POTENTIAL FLOWS IN R3

Yes, omni-potential flows in Rd for d ≥ 3 do exist!

But all our examples of such flows are symmetric in qi.

• Invariants of d× d real symmetric matrices

under variation of eigenvalues (for d ≥ 2)

• A set of PDEs for omni-potential flows in R3

• Construction of omni-potential flows in Rd (for d ≥ 3),

whose potentials are linear combinations of three

symmetric homogeneous polynomials of degree up to 6

• Construction of omni-potential flows in R3,

whose potentials are linear combinations

of infinitely many symmetric homogeneous polynomials

Part IV. OPEN PROBLEMS



INVARIANTS OF SYMMETRIC MATRICES

UNDER VARIATION OF EIGENVALUES

How to characterize the linear subspace of d× d symmetric matrices (spanned by

{Hk | 0 ≤ k ≤ d− 1}), whose frame of eigendirections coincides with that of a given H?

This must have been done in the XIX century, but we have not found references.

• The general problem can be tackled by using Plücker coordinates.
For d > 3, our characterization involves fewer invariants.

Let (for simplicity) all eigenvalues λi of the symmetric d× d matrix H be distinct
⇔ all eigendirections be uniquely defined. Denote by h(λi) an eigenvector associated with λi.

• For 1 ≤ m ̸= n ≤ d and k ≤ d, set βmn,i = hm(λi)/hn(λi) and γ
(d,k)
mn = P (d,k)(βmn,1, ..., βmn,d),

where P (d,k) are symmetric homogeneous polynomials of degree k ≤ d:
for y ∈ Rd, P (d,k)(y) ≡

∑
1≤j1<...<jl<...<jk≤d yj1...yjl...yjk.

By construction, γ
(d,k)
mn are invariant — they depend only on the set of eigendirections.

• Expressing h(λi) in terms of λi and Hij, represent γ
(d,k)
mn as a rational function of Hij and λi.

• λi enter only through symmetric polynomial combinations, that are
known functions of Hij by Viète’s theorem applied to the characteristic polynomial.



• An arbitrary set of d orthogonal directions in Rd is described by d(d− 1)/2 parameters.

The d2(d− 1) invariants γ
(d,k)
mn are clearly too numerous to be independent.

E.g., for any 1 ≤ m ̸= n ̸= l ≤ d and 0 < k < d, γ
(d,d)
mn γ

(d,d)
nm = 1, γ

(d,d)
ml γ

(d,d)
ln = γ

(d,d)
mn , γ

(d,k)
mn = γ

(d,d)
mn γ

(d,d−k)
nm .

• Do d(d−1)/2 suitably chosen invariants uniquely define the frame of eigendirections?

• In R2, γ
(2,1)
12 = (H11 −H22)/H12 is the only non-trivial invariant.

INVARIANTS IN R3

• In R3, h(λi) = (H12H23+H13(λi−H22), H12H13+H23(λi−H11), (λi−H11)(λi−H22)−H2
12)

⇒ γ
(3,1)
21 =

H22 −H11

H12
+

H13

H12

(H11 −H22)H13H23 + (H2
23 −H2

13)H12

(H22 −H33)H12H13 + (H2
13 −H2

12)H23

+
(H11 −H33)H12H23 + (H2

23 −H2
12)H13

(H22 −H33)H12H13 + (H2
13 −H2

12)H23
.

• γ
(3,2)
21 = γ

(3,3)
21 γ

(3,1)
12 ; γ

(3,3)
21 is the ratio of two polynomials

∏d
i=1(λi + c) = det ∥H + cI∥:

γ
(3,3)
21 = −(H11 −H33)H12H23 + (H2

23 −H2
12)H13

(H22 −H33)H12H13 + (H2
13 −H2

12)H23
.



• The invariants γ
(3,k)
21 for 1 ≤ k ≤ 3 uniquely define βi = h2(λi)/h1(λi):

by Viète’s theorem, βi are roots of

β3 − γ
(3,1)
21 β2 + γ

(3,2)
21 β2 − γ

(3,3)
21 = 0.

• Eigenvectors are recovered as h(λi) = (1, βi, ci),
where ci are determined from the orthogonality relations.

• This yields two solutions: {ci} and {−ci}.
⇒ The invariants γ

(3,k)
21 , 1 ≤ k ≤ 3, define two distinct sets of eigendirections.

The non-uniqueness is eliminated, if in addition we know any of γ
(3,i)
j3 or γ

(3,i)
3j for i = 1, 3 and j = 1, 2.

• The invariants γ
(3,k)
21 , 1 ≤ k ≤ 3, admit real values γk, respectively, whenever

(i) The equation for βi has three real roots:

4(3γ2 − γ2
1)

3 + (2γ3
1 − 9γ1γ2 + 27γ3)

2 ≤ 0.

(ii) The orthogonality relations are solvable in ci:

(1 + β1β2)(1 + β2β3)(1 + β3β1) ≤ 0 ⇔ γ2 + γ1γ3 + γ2
3 ≤ −1.



A SET OF PDEs FOR THREE-DIMENSIONAL OMNI-POTENTIAL FLOW
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+
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Φ
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q1,q3

Φ
−

∂2
q1,q3

Φ

∂2
q2,q3

Φ

)

=

(
g1(q) +

(∂2
q1,q1

− ∂2
q2,q2

)Φ

∂2
q1,q2

Φ

)(
(∂2
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Φ
+
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Φ
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Φ
−
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Φ

∂2
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Φ

)
,

∂2
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Φ

∂2
q1,q3

Φ

(
g1(q) +

(∂2
q1,q1

− ∂2
q2,q2

)Φ

∂2
q1,q2

Φ

)
= g2(q)− g3(q)

(∂2
q1,q1

− ∂2
q2,q2

)Φ

∂2
q1,q2

Φ
,

g3(q)

(
(∂2
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− ∂2

q3,q3
)Φ
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Φ
+

∂2
q1,q3

Φ

∂2
q1,q2

Φ
−

∂2
q1,q2

Φ

∂2
q1,q3

Φ

)
=

(∂2
q3,q3

− ∂2
q1,q1

)Φ

∂2
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Φ
+

∂2
q1,q2

Φ

∂2
q2,q3

Φ
−

∂2
q2,q3

Φ

∂2
q1,q2

Φ
,

where gk are modified invariants: g1(q) = γ
(3,1)
21 + γ

(3,3)
21 , g2(q) = γ

(3,2)
21 + 1, g3(q) = γ

(3,3)
21 .

AN OPEN PROBLEM: What are the solvability conditions in terms of gk(q)?



SYMMETRIC EXAMPLES OF OMNI-POTENTIAL FLOW IN Rd, d ≥ 3

The strategy

• The potential is a linear combination of homogeneous polynomials, p
(d)
n (q) (of degree n), with

time-dependent coefficients. One polynomial, p
(d)
m (q), is prescribed. For any other polynomial

the commutator of the two Hessians,

C(p(d)m , p(d)n ) ≡ H(p(d)m )H(p(d)n )−H(p(d)n )H(p(d)m )

must vanish. This implies the required commutation of the Hessians. |q|2 is a trivial solution.

• In general, this strategy fails: p
(d)
n (q) has

(n+ d− 1)!

n!(d− 1)!
coefficients. C is antisymmetric ⇒

we must consider the
d(d− 1)

2
non-diagonal entries of C; they are homogeneous polynomials

of degree m + n− 4. ⇒ The number of equations,
d(m+ n+ d− 5)!

2(m+ n− 4)!(d− 2)!
exceeds the number

of coefficients,
(m+ d− 1)!

m!(d− 1)!
+

(n+ d− 1)!

n!(d− 1)!
.

• The strategy works, if the homogeneous polynomials are symmetric in their argu-
ments (i.e., invariant under any permutation qi ↔ qj): it suffices to consider one equation
arising from any non-diagonal entry of C (all such equations are equivalent).



An example in Rd for d ≥ 3 involving one unknown homogeneous polynomial

• We seek convex potentials ⇒ we consider polynomials involving only even powers of qj:

p
(d)
4 (q) =

d∑
i=1

q4i + c̃
d∑

i=2

i−1∑
j=1

q2i q
2
j , p

(d)
6 (q) =

d∑
i=1

q6i + ã
d∑

i=1

d∑
j=1

q4i q
2
j + b̃

∑
1≤i<j<k≤d

q2i q
2
j q

2
k.

• The degree of C12(p
(d)
6 , p

(d)
4 ) is 6. In p

(d)
4 and p

(d)
6 any power of q1 and q2 is even ⇒ C12 ∝ q1q2,

and the polynomial C12/(q1q2) involves each qi only in even powers. By symmetry,

C12 = 0 for q1 = q2 ⇒ C12 ∝ (q21 − q22) ⇒ C12 = q1q2(q
2
1 − q22)

(
α1(q

2
1 + q22) + α2

∑d
j=3 q

2
j

)
.

Three independent parameters, ã, b̃ and c̃ enter just two equations, α1 = α2 = 0.

For ã =
15 c̃

12− c̃
and b̃ =

75 c̃ 2

(12− c̃)(3 + c̃)
, Φ(q, t) = µ2(t)

|q|2

2
+ µ4(t)p

(d)
4 (q) + µ6(t)p

(d)
6 (q)

is the potential of a non-Zeldovich-type omni-potential flow in Rd for any d ≥ 3.

• Φ(q, t) is convex if all µi(t) ≥ 0 and 0 ≤ c̃ < 12.

• For c̃ ̸= 2, p
(d)
4 and p

(d)
6 (and hence Φ(q, t)) do not have spherical symmetry.



An example in R3 involving infinitely many homogeneous polynomials

p
(3)
2n (q) =

∑
i,j,k≥0, i+j+k=n

ãi,j,k q
2i
1 q

2j
2 q2k3 is symmetric ⇔

{
ãi,j,k does not change under any
permutations of subscripts i, j, k.

C12(p
(3)
2n , p

(3)
4 ) = 8q1q2

∑
i,j,k≥0, i+j+k=ñ

ai,j,k q
2i−2
1 q2j−2

2 q2k3
(
ij(c̃− 6)(q21 − q22) + c̃ (−j(2j − 1 + 2k)q21 + i(2i− 1 + 2k)q22)

)
• C12(p

(3)
2n , p

(3)
4 ) = 0 ⇒ the Hessians of any two polynomials from this family commute.

• C12 = 0 ⇔ ãi,j,k = ãi+1,j−1,k χj/χi+1 ∀i, j and k, where χm = (c̃ (2n+2−3m)+6(m−1))/m.

• For each k, this as a recurrence for ãi,j,k.

For k = 0, set ãn,0,0 = 1 ⇒ ãi,n−1,0 =
∏n−i

m=1 χm

∏i
m=1 χm /

∏n
m=1 χm .

For k > 0, set ãn−k,0,k = ãn−k,k,0 ⇒ ãi,j,k =
∏i

m=1 χm

∏j
m=1 χm

∏k
m=1 χm /

∏n
m=1 χm .

• Clearly, such polynomial p
(3)
2n is symmetric.

• The potential Φ̃(q, t) = µ2(t)
|q|2

2
+
∑
n≥2

µ2n(t)p
(3)
2n (q) defines a non-Zeldovich-type

omni-potential flow in R3, if µ2n(t) are linearly independent and decay sufficiently fast.

• p
(3)
2n (q) is convex for 0 ≤ c̃ <

6(n− 1)

n− 2
⇒ Φ̃(q, t) is convex for µ2n(t) ≥ 0 and 0 ≤ c̃ ≤ 6.



OPEN PROBLEMS

• How general are omni-potential flows in R3?
In R2, any initial flow can be accommodated for small enough τ .
This was shown by a WKB technique.

• Find all relations between the invariants in Rd for d > 3.
In Rd, we have introduced d2(d− 1) invariants γ

(d,k)
mn — too many,

since a frame of eigendirections is described by just d(d− 1)/2 parameters.
For d = 3, we have derived 15 relations between the 18 invariants.

• What are the solvability conditions for the set of PDEs
for three-dimensional omni-potential flow
in terms of the invariants gk(q)?


